Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 10;78(Pt 3):317–321. doi: 10.1107/S2056989022001475

Distorted zinc coordination polyhedra in bis­(1-eth­oxy-2-{[(2-meth­oxy­eth­yl)imino]­meth­yl}propan-1-olato)zinc, a possible CVD precursor for zinc oxide thin films

Keneshia O Johnson a,*, Antionette Brown a, Gabriella Farris a, Alexabria Starks a, Ray J Butcher b, Jason S Matthews b
PMCID: PMC8900511  PMID: 35371543

The coordination polyhedra of the zinc atoms in the title complex display long Zn—O bonds as parts of distorted trigonal bipyramids and octa­hedra.

Keywords: crystal structure, β-imino­esterate complex, ketoiminato zinc complex

Abstract

A new metal–organic precursor for the chemical vapor deposition of zinc oxide thin films, [Zn(C9H16NO3)2], has been synthesized and characterized by 1H and 13C NMR spectroscopy, single-crystal X-ray diffraction and thermogravimetric analysis. The asymmetric unit of the title compound consists of two mol­ecules (Z′ = 2), with different zinc coordination polyhedra. In one mol­ecule, the metal atom is in a distorted trigonal–bipyramidal ZnN2O3 environment (τ5 = 0.192) with a long bond to an ether O donor atom [Zn—O = 2.727 (6) Å]. In the other, the Zn atom is in a distorted ZnN2O4 octa­hedral environment with long bonds to the ether O donors of both ligands [Zn—O = 2.514 (4) and 2.661 (4) Å; O—Zn—O = 82.46 (14)°]. The crystal structure features weak C—H⋯·O inter­actions.

Chemical context

Zinc oxide is of considerable current inter­est in materials science because it is a semiconductor with a band gap of 3.37 eV and it possesses high electron mobility, a high exciton binding energy of 60 meV, strong room-temperature luminescence, photoelectric response, high transparency, and high photocatalytic activity (Ganesh et al., 2017; Das & Sarkar, 2017). As a result of these favorable properties, ZnO has potential applications in solar cells, sensors, ultra-violet laser diodes, actuators, field-emission devices, photocatalysts and piezoelectric devices (Galstyann et al., 2015; Hong et al., 2017). The identification of a viable technique that is capable of depositing zinc oxide thin films of high purity and high quality is a significant challenge. Metal–organic chemical vapor deposition (MOCVD) has proven to be a promising method for depositing high-quality ZnO thin films at a high growth rate over a large area (Malandrino et al., 2005). The success of the MOCVD process depends heavily on the precursor. An ‘ideal’ MOCVD precursor should be volatile, exhibit a sufficiently large temperature window between evaporation and film deposition, and decompose without the incorporation of residual impurities. Diethyl zinc, Zn(C2H5)2, in combination with an oxygen source, H2O, or ROH is the traditional precursor for depositing ZnO thin films (Smith, 1983). As a result of the pyrophoric nature of the alkyl zinc reagents and the gas-phase pre-reaction that results in precursor decomposition and film contamination, alternative precursors such as alkoxide, dialkyl zinc precursors of acetate and acetyl­acetonate have been employed (Sato et al., 1994). The drawback with these precursors is that impurities are often incorporated in the deposited ZnO films. These disadvantages have resulted in a search for single-source precursors. A single-source precursor is one that has the oxygen already present in the precursor, thereby eliminating the need for an external oxygen source. graphic file with name e-78-00317-scheme1.jpg

The synthesis of two thermally stable ketoiminato zinc complexes [Zn{[(CH2) x OCH3]NC(CH3)=C(H)C(CH3)=O}2] (1: x = 2; 2: x = 3) were reported with melting points as low as 330 K (Barreca et al., 2010; Bekermann et al., 2010a ,b ). In another case, ketoiminato zinc complexes that incorporate ether O-donor atoms have shown promise (Cosham et al., 2015). With these favorable results in mind, we decided to further explore the β-enamino­alk­oxy­ester ligand platform. Our research group has demonstrated that high-quality ZnO thin films with fewer impurities can be accomplished by utilizing Zn–bis-β-imino­esterate complexes (Matthews et al., 2006; Onakoya et al., 2011; Gbemigun et al., 2019). Studies have shown that the organic ligand attached to the N moiety of the zinc complex has a significant effect on the level of carbon incorporated into the deposited ZnO thin film (Manzi et al., 2015), thus the investigation of such compounds with different substituents at the N atom is of significant inter­est in improving precursors for these ZnO films. Herein, the synthesis, characterization and crystal structure of the title compound 1 are reported.

Structural commentary

The synthesis of [Zn(C9H16NO3)2] (1), was carried out by the direct reaction of 1a with diethyl zinc in a 2:1 molar ratio under an inert atmosphere of nitro­gen utilizing Schlenk techniques to afford white single crystals of complex 1. The 1H-NMR and 13C-NMR spectra of 1 contain the characteristic resonances in the expected regions. The 1H-NMR spectrum in particular shows the absence of the N—H resonance (δ = 8.63) that was present in the free ligand (1a), indicating the absence of any starting material. Generally, the introduction of a Lewis acidic metal center into the ligand sphere results in the proton and carbon resonances being shifted downfield (Matthews et al., 2006). This was not observed in this study: in going from the free ligand (1a) to complex 1 most of the proton and carbon resonances were slightly shifted upfield. This inconsistency suggests that the electron density in the chelate ring of 1 is not completely delocalized around the ring. If complete delocalization was observed, the carbon atoms and protons in the complex would have been deshielded and the resonances would have been shifted downfield.

The title complex, C18H32N2O6Zn, 1, crystallizes in the monoclinic space group P21/c with eight mol­ecules in the unit cell, thus two in the asymmetric unit (Z′ = 2 and named as A and B for the purposes of discussion), which have adopted different metal-ion coordinations and conformations (Table 1). In mol­ecule A (Fig. 1), the Zn atom is in a distorted trigonal–bipyramidal ZnN2O3 environment (τ5 = 0.192; Addison et al., 1984) with a long bond to an ether O donor atom [Zn1—O4A = 2.727 (6) Å] and the ligand N atoms in the axial sites [N1A—Zn1—N2A = 144.05 (19)°].

Table 1. Selected geometric parameters (Å, °).

Zn1—N1A 1.958 (4) Zn2—N2B 2.004 (5)
Zn1—N2A 1.966 (5) Zn2—O1B 2.017 (4)
Zn1—O2A 1.974 (4) Zn2—O2B 2.045 (4)
Zn1—O1A 2.025 (4) Zn2—O6B 2.514 (4)
Zn1—O4A 2.727 (6) Zn2—O4B 2.661 (4)
Zn2—N1B 1.990 (4)    
       
N1A—Zn1—N2A 144.05 (19) N1B—Zn2—O2B 101.90 (17)
N1A—Zn1—O2A 112.56 (17) N2B—Zn2—O2B 92.60 (18)
N2A—Zn1—O2A 94.98 (17) O1B—Zn2—O2B 102.98 (17)
N1A—Zn1—O1A 95.04 (17) N1B—Zn2—O6B 86.02 (16)
N2A—Zn1—O1A 96.25 (17) N2B—Zn2—O6B 76.39 (17)
O2A—Zn1—O1A 110.72 (18) O1B—Zn2—O6B 85.76 (16)
N1A—Zn1—O4A 71.83 (18) O2B—Zn2—O6B 167.48 (16)
N2A—Zn1—O4A 84.34 (17) N1B—Zn2—O4B 73.58 (16)
O2A—Zn1—O4A 93.49 (18) N2B—Zn2—O4B 83.20 (17)
O1A—Zn1—O4A 155.58 (17) O1B—Zn2—O4B 164.14 (14)
N1B—Zn2—N2B 152.5 (2) O2B—Zn2—O4B 90.42 (15)
N1B—Zn2—O1B 95.08 (17) O6B—Zn2—O4B 82.46 (14)
N2B—Zn2—O1B 104.33 (18)    

Figure 1.

Figure 1

The mol­ecular structure of mol­ecule A showing the long Zn—O (ether) inter­action influencing the conformation of the substituent. Atomic displacement parameters are shown at the 30% probability level.

In mol­ecule B (Fig. 2), the Zn atom is in a distorted octa­hedral environment with long bonds to the ether O donors of both ligands [Zn—O bond lengths of 2.514 (4) and 2.661 (4) Å; O6B—Zn2—O4B bond angle = 82.46 (14)°]. Also in B there is disorder in some of the ethyl substituent groups [occupancies of 0.717 (13)/0.283 (13) and 0.68 (3)/0.32 (3)]. In B, the ether donor atoms are arranged in a cis fashion so the complex does not exhibit tetra­gonal distortion. There are significant differences in the short Zn—O and Zn—N bond lengths in the two mol­ecules [Zn—O = 1.974 (4)/2.025 (4) and 2.017 (4)/2.045 (4) Å: Zn—N = 1.958 (4)/1.966 (5) and 1.990 (4)/2.004 (5) Å for A and B, respectively].

Figure 2.

Figure 2

The mol­ecular structure of mol­ecule B (major disorder component only) showing long Zn—O (ether) bonds (arranged in a cis fashion) resulting a distorted octa­hedral coordination for the metal atom. Atomic displacement parameters are shown at the 30% probability level.

Both keto­imine chelate rings are almost planar (r.m.s. deviations of 0.018 and 0.026 Å for mol­ecule A and 0.002 and 0.014 Å for mol­ecule B) with the zinc atoms deviating from the respective planes by 0.089 (6)/0.220 (6) Å and 0.248 (2)/0.030 (7) Å for A and B, respectively. The dihedral angles between the chelate planes in 1 are 71.4 (1) and 77.3 (1)° for the A and B mol­ecules, respectively.

Supra­molecular features

As far as the packing of 1 is concerned, there are both inter- and intra­molecular C—H⋯O inter­actions (Table 2). While these are presumably weak based on their length, it can be seen that the intra­molecular C—H⋯O inter­actions influence the conformations adopted by the side chains for both mol­ecules (see Figs. 1, 2 and 3).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6A—H6AB⋯O3B i 0.98 2.63 3.568 (8) 161
C15A—H15A⋯O6A 0.98 2.64 3.396 (7) 134
C15A—H15C⋯O3A ii 0.98 2.65 3.369 (7) 131
C18A—H18A⋯O3A iii 0.98 2.60 3.304 (8) 129
C8B—H8BA⋯O2B 0.99 2.60 3.279 (7) 126

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 3.

Figure 3

Packing diagram for 1 showing both the intra- and inter­molecular C—H⋯O inter­actions.

Database survey

Four closely related structures to 1 have been reported [Cambridge Structural Database (Groom et al., 2016) refcodes SUPXEI, SUPXIM, SUPXOS and SUPXUY; Cosham et al., 2015], which incorporate both a keto­imine ligand along with ether O donors. In each case the ether donors are in cis positions with Zn—O bond lengths ranging from 2.316 to 2.575 Å.

There are five previously reported structures of ketoiminato zinc complexes (EFIWEY and EFIWIC, Gbemigun et al., 2019; IDAWAN, Onakoya et al., 2011; WELSOW, Matthews et al., 2006; YUJMAT, Manzi et al., 2015). These all contain zinc in a slightly distorted tetra­hedral environment [τ4′ = 0.65, 0.65 0.73, 0.82, 0.79 and 0.73 (Okuniewski et al., 2015), respectively, for EFIWEY, EFIWIC, IDAWAN, WELSOW and YUJMAT]. However EFIWEY and EFIWIC are both dimers with only one imino­esterate ligand attached to each zinc atom so IDAWAN, WELSOW and YUJMAT are the most relevant structures to the present example.

The asymmetry in the out-of-plane deviations of the Zn atoms in 1 noted above is a pattern that is repeated in the three most closely related structures (deviations = 0.084/0.341, 0.146/0.373 and 0.152/0.208 Å for IDAWAN, WELSOW and YUJMAT, respectively). The dihedral angles between the chelate-ring planes for IDAWAN, WELSOW and YUJMAT are 89.29, 81.0 and 72.47°, respectively.

Experimental

All chemicals were purchased from Aldrich and used without further purification. The 1H and 13C-NMR spectra were recorded with a Bruker AVANCE 400MHz Ultra ShieldTM NMR spectrometer. Chemical shifts for 1H (400MHz) and 13C (100MHz) were referenced to CDCl3 and reported in ppm. Thermogravimetric analyses were performed under a nitro­gen atmosphere at 1atm using a Perkin–Elmer thermogravimetric analyzer series 7 at a heating rate of 10°C min−1. All manipulations were carried out using oven dried, standard reflux glassware consisting of a condenser connected to a round-bottom flask. Distillation was performed using oven-dried micro-still apparatus.

Synthesis and crystallization

Synthesis of ethyl-3- N -(2-meth­oxy­ethyl­amino)­but-2-enoate (1a)

Ethyl aceto­acetate (5.00 g, 38.42 mmol) and 2-meth­oxy­ethyl­amine (5.77 g, 76.84 mmol) were added to a 100 ml round-bottom flask via syringe. The solution was refluxed for 1h with constant stirring. The resulting mixture was allowed to cool to room temperature and approximately 30 ml of hexane was added to dissolve the product. The solution was then dried over anhydrous sodium sulfate. The resulting mixture was then filtered, and the solvent was evaporated in vacuo to afford a viscous yellow oil. This crude product was then purified via vacuum distillation to afford a viscous light-yellow oil (1a) (yield 73.02%, 5.22 g), b.p. 389–396 K at 1.2 mm Hg; 1H NMR 400 MHz, CDCl3, δ ppm: 1.21 (t, 3H, (OCH2CH3), 1.90 (s, 3H, CH3CN), 3.35 (s, 3H, OCH3), 3.36 (q, 2H, NCH2CH2), 3.46 (t, 2H, OCH2CH2), 4.05 (q, 2H, OCH2CH3), 4.43 (s, 1H, CCHCO), 8.63 (br s, 1H, NH); 13C NMR 100 MHz, CDCl3, δ ppm: 14.57 [OCH2CH3], 19.43 [CH3CN], 42.78 [CH2CH2N], 58.20 [OCH3], 58.99 [OCH2CH3], 71.80 [OCH2CH2], 82.60 [CCHCO], 161.55 [CH3CN], 170.44 [CHCO].

Synthesis and crystallization of [Zn (C9H16NO3)2] (1)

50ml of dried hexa­nes, ethyl-3-N-(2-meth­oxy­ethyl­amino) butano­ate (1a) (6.87 g, 36.5 mmol) and a stir bar were added to a 250 ml Schlenk flask under an inert atmosphere of nitro­gen. The mixture was degassed with N2 gas for approximately fifteen minutes then diethyl zinc (2.25 g, 18.25 mmol) was added. The resulting mixture was refluxed for 4 h with constant stirring. The solvent was removed in vacuo at room temperature to afford a viscous yellow oil. The yellow oil was recrystallized from a solution in dry hexa­nes for 48 h at 243 K to afford white needle-like crystals. The hexa­nes were removed using a cannula and the white needle-like crystals were purified by washing with cold 10 ml portions of dried hexa­nes (yield 71.7%, 5.73 g), m.p. 311.0–311.2 K. 1H NMR 400 MHz, (CDCl3, ppm): δ 1.18 (t, 6H, (OCH2CH3), 1.92 (s, 6H, CH3CN), 3.20 (s, 6H, OCH3), 3.43 (m, 4H, NCH2CH2), 3.43 (m, 4H, OCH2CH2), 4.03 (q, 4H, OCH2CH3), 4.28 (s, 2H, CCHCO); 13C NMR 100 MHz, CDCl3, δ ppm: 15.01 [OCH2CH3], 22.87 [CH3CN], 49.66 [CH2CH2N], 58.87 [OCH3], 59.01 [OCH2CH3], 72.37 [OCH2CH2], 78.14 [CCHCO], 171.37 [CH3CN], 172.31 [CHCO].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. This was a highly air-sensitive compound and the best available crystal was chosen. However it was non-merohedrally twinned with multiple components. Integration and refinement using the hklf5 (twinned) file was not successful so the hklf4 file was used. Consequently there are two significant difference peaks in chemically unreasonable positions. A face-indexed absorption correction was applied but there are still some residual peaks near the metal atoms. For one of the asymmetric mol­ecules there is disorder in some of the ethyl substituents. These were constrained to have similar metrical parameters and refined with occupancy factors of 0.717 (13)/0.283 (13) and 0.68 (3)/0.32 (3). A riding model was used for the H atoms with atomic displacement parameters = 1.2U eq(C) [1.5U eq(CH3)], with C—H bond lengths ranging from 0.95 to 0.99 Å.

Table 3. Experimental details.

Crystal data
Chemical formula [Zn(C9H16NO3)2]
M r 437.82
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 14.6212 (4), 14.8002 (4), 20.1288 (7)
β (°) 101.719 (3)
V3) 4265.0 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.89
Crystal size (mm) 0.45 × 0.09 × 0.06
 
Data collection
Diffractometer Xcalibur, Ruby, Gemini
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.484, 0.908
No. of measured, independent and observed [I > 2σ(I)] reflections 17610, 8591, 6698
R int 0.089
(sin θ/λ)max−1) 0.629
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.111, 0.277, 1.06
No. of reflections 8591
No. of parameters 537
No. of restraints 78
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 4.24, −0.65

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001475/hb8009sup1.cif

e-78-00317-sup1.cif (637.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001475/hb8009Isup2.hkl

e-78-00317-Isup2.hkl (682.1KB, hkl)

CCDC reference: 2150564

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB wishes to acknowledge the NSF–MRI program for award CHE-0619278 for funds to purchase the diffractometer. KOJ wishes to acknowledge the Alabama A&M University Advancing Success in STEM Undergraduate Research and Education (ASSURED) program and the Alabama A&M University chemistry department for partial funding of this work.

supplementary crystallographic information

Crystal data

[Zn(C9H16NO3)2] F(000) = 1856
Mr = 437.82 Dx = 1.364 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 14.6212 (4) Å Cell parameters from 6033 reflections
b = 14.8002 (4) Å θ = 3.0–75.4°
c = 20.1288 (7) Å µ = 1.89 mm1
β = 101.719 (3)° T = 123 K
V = 4265.0 (2) Å3 Needle, colorless
Z = 8 0.45 × 0.09 × 0.06 mm

Data collection

Xcalibur, Ruby, Gemini diffractometer 6698 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1 Rint = 0.089
ω scans θmax = 76.0°, θmin = 3.1°
Absorption correction: analytical (CrysalisPro; Rigaku OD, 2015) h = −18→13
Tmin = 0.484, Tmax = 0.908 k = −18→17
17610 measured reflections l = −25→24
8591 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.111 Hydrogen site location: mixed
wR(F2) = 0.277 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1511P)2 + 16.9004P] where P = (Fo2 + 2Fc2)/3
8591 reflections (Δ/σ)max = 0.001
537 parameters Δρmax = 4.24 e Å3
78 restraints Δρmin = −0.65 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.35835 (5) 0.13597 (4) 0.66026 (4) 0.0310 (2)
O1A 0.4279 (3) 0.2317 (3) 0.6185 (2) 0.0357 (9)
O2A 0.3745 (3) 0.0160 (3) 0.6213 (2) 0.0387 (9)
O3A 0.4400 (3) 0.3643 (3) 0.5675 (2) 0.0378 (9)
O4A 0.2400 (4) 0.0727 (4) 0.7382 (3) 0.0599 (13)
O5A 0.4161 (3) −0.1296 (2) 0.63054 (19) 0.0336 (8)
O6A 0.4062 (3) 0.1582 (3) 0.8736 (2) 0.0381 (9)
N1A 0.2344 (3) 0.1872 (3) 0.6256 (2) 0.0296 (9)
N2A 0.4552 (3) 0.1178 (3) 0.7425 (2) 0.0294 (9)
C1A 0.5839 (5) 0.4288 (5) 0.5533 (4) 0.0546 (17)
H1AA 0.652064 0.424680 0.566692 0.082*
H1AB 0.563027 0.487155 0.567718 0.082*
H1AC 0.565151 0.423313 0.503881 0.082*
C2A 0.5402 (4) 0.3538 (4) 0.5864 (4) 0.0427 (14)
H2AA 0.559064 0.294447 0.570998 0.051*
H2AB 0.560679 0.357198 0.636359 0.051*
C3A 0.3870 (4) 0.2986 (3) 0.5886 (3) 0.0308 (11)
C4A 0.2923 (4) 0.3166 (3) 0.5742 (3) 0.0333 (11)
H4AA 0.273743 0.371701 0.551227 0.040*
C5A 0.2205 (4) 0.2630 (3) 0.5896 (3) 0.0307 (11)
C6A 0.1225 (4) 0.2945 (4) 0.5617 (3) 0.0407 (13)
H6AA 0.089920 0.304226 0.599082 0.061*
H6AB 0.089376 0.248593 0.530828 0.061*
H6AC 0.124397 0.351271 0.536915 0.061*
C7A 0.1500 (5) 0.1396 (4) 0.6387 (4) 0.0441 (14)
H7AA 0.114516 0.180905 0.662741 0.053*
H7AB 0.109194 0.123153 0.594809 0.053*
C8A 0.1747 (5) 0.0567 (5) 0.6798 (4) 0.0551 (18)
H8AA 0.117505 0.031666 0.692046 0.066*
H8AB 0.199421 0.010996 0.652223 0.066*
C9A 0.2629 (5) −0.0069 (4) 0.7766 (4) 0.0471 (15)
H9AA 0.310156 0.006841 0.817306 0.071*
H9AB 0.287574 −0.051946 0.749208 0.071*
H9AC 0.206749 −0.030789 0.789955 0.071*
C10A 0.3544 (5) −0.2377 (5) 0.5466 (4) 0.0507 (16)
H10A 0.324122 −0.246308 0.498918 0.076*
H10B 0.316328 −0.265642 0.575795 0.076*
H10C 0.416370 −0.265792 0.555085 0.076*
C11A 0.3641 (5) −0.1402 (4) 0.5616 (3) 0.0425 (14)
H11A 0.397559 −0.110298 0.529497 0.051*
H11B 0.301623 −0.112036 0.556678 0.051*
C12A 0.4215 (4) −0.0453 (3) 0.6573 (3) 0.0285 (10)
C13A 0.4795 (4) −0.0382 (3) 0.7205 (3) 0.0281 (10)
H13A 0.509933 −0.091839 0.739392 0.034*
C14A 0.4976 (3) 0.0410 (3) 0.7595 (3) 0.0261 (10)
C15A 0.5742 (4) 0.0330 (4) 0.8228 (3) 0.0335 (11)
H15A 0.552400 0.059895 0.861251 0.050*
H15B 0.630200 0.064945 0.815761 0.050*
H15C 0.589160 −0.030845 0.832241 0.050*
C16A 0.4798 (4) 0.1990 (3) 0.7836 (3) 0.0320 (11)
H16A 0.489866 0.249702 0.753800 0.038*
H16B 0.539023 0.188423 0.816527 0.038*
C17A 0.4043 (4) 0.2243 (4) 0.8214 (3) 0.0338 (11)
H17A 0.416101 0.285244 0.841526 0.041*
H17B 0.342492 0.224453 0.790183 0.041*
C18A 0.3342 (5) 0.1735 (5) 0.9087 (4) 0.0500 (16)
H18A 0.338404 0.129244 0.945369 0.075*
H18B 0.273718 0.167358 0.877353 0.075*
H18C 0.340015 0.234610 0.927785 0.075*
Zn2 0.85410 (5) 0.09199 (5) 0.66562 (4) 0.0317 (2)
O1B 0.9268 (3) 0.0149 (3) 0.6119 (2) 0.0359 (9)
O2B 0.8621 (3) 0.2179 (2) 0.6254 (2) 0.0366 (9)
O3B 0.9421 (3) −0.1030 (3) 0.5452 (3) 0.0504 (12)
O4B 0.7311 (3) 0.1518 (3) 0.7363 (2) 0.0416 (10)
O5B 0.9141 (3) 0.3605 (3) 0.6238 (2) 0.0409 (10)
O6B 0.8534 (3) −0.0450 (3) 0.7393 (2) 0.0410 (9)
N1B 0.7292 (3) 0.0503 (3) 0.6164 (2) 0.0298 (9)
N2B 0.9467 (3) 0.1229 (3) 0.7504 (3) 0.0351 (10)
C1B 1.0900 (6) −0.1661 (6) 0.5398 (5) 0.058 (2) 0.717 (13)
H1B1 1.064868 −0.225616 0.547854 0.087* 0.717 (13)
H1B2 1.157226 −0.164792 0.559060 0.087* 0.717 (13)
H1B3 1.079517 −0.154666 0.490931 0.087* 0.717 (13)
C2B 1.0416 (7) −0.0943 (6) 0.5732 (6) 0.054 (2) 0.717 (13)
H2B1 1.054296 −0.103284 0.623011 0.065* 0.717 (13)
H2B2 1.064031 −0.033569 0.563575 0.065* 0.717 (13)
C1D 1.0829 (14) −0.1511 (10) 0.6037 (8) 0.056 (3) 0.283 (13)
H1D1 1.056637 −0.139070 0.643915 0.084* 0.283 (13)
H1D2 1.150822 −0.142764 0.615077 0.084* 0.283 (13)
H1D3 1.068639 −0.213407 0.588584 0.084* 0.283 (13)
C2D 1.0410 (18) −0.0867 (11) 0.5477 (8) 0.054 (3) 0.283 (13)
H2D1 1.058486 −0.023274 0.559738 0.065* 0.283 (13)
H2D2 1.059044 −0.102287 0.504327 0.065* 0.283 (13)
C3B 0.8874 (4) −0.0465 (4) 0.5736 (3) 0.0348 (12)
C4B 0.7930 (4) −0.0664 (4) 0.5550 (3) 0.0367 (12)
H4BA 0.776373 −0.116307 0.525303 0.044*
C5B 0.7193 (4) −0.0205 (4) 0.5756 (3) 0.0316 (11)
C6B 0.6228 (4) −0.0594 (4) 0.5486 (3) 0.0417 (14)
H6BA 0.595931 −0.080524 0.586662 0.063*
H6BB 0.627730 −0.110194 0.518323 0.063*
H6BC 0.582572 −0.012613 0.523557 0.063*
C7B 0.6456 (4) 0.0888 (4) 0.6343 (3) 0.0371 (12)
H7BA 0.617737 0.043994 0.660856 0.044*
H7BB 0.599232 0.102002 0.592303 0.044*
C8B 0.6667 (4) 0.1750 (4) 0.6755 (3) 0.0411 (14)
H8BA 0.694399 0.220785 0.649594 0.049*
H8BB 0.608736 0.200129 0.686307 0.049*
C9B 0.7565 (5) 0.2290 (5) 0.7778 (4) 0.0518 (17)
H9BA 0.800679 0.211271 0.819136 0.078*
H9BB 0.700500 0.255088 0.789992 0.078*
H9BC 0.785691 0.273847 0.752968 0.078*
C10B 0.8568 (10) 0.4667 (6) 0.5372 (7) 0.056 (3) 0.68 (3)
H10G 0.817213 0.502189 0.561370 0.083* 0.68 (3)
H10H 0.833107 0.471962 0.488221 0.083* 0.68 (3)
H10I 0.920972 0.489476 0.548616 0.083* 0.68 (3)
C11B 0.8552 (12) 0.3684 (6) 0.5581 (7) 0.0503 (18) 0.68 (3)
H11E 0.790662 0.349670 0.559684 0.060* 0.68 (3)
H11F 0.878482 0.329484 0.525158 0.060* 0.68 (3)
C10D 0.8820 (18) 0.4511 (9) 0.5240 (10) 0.054 (3) 0.32 (3)
H10D 0.880279 0.502662 0.554221 0.081* 0.32 (3)
H10E 0.836771 0.460627 0.481408 0.081* 0.32 (3)
H10F 0.944796 0.445283 0.514391 0.081* 0.32 (3)
C11D 0.857 (2) 0.3656 (9) 0.5578 (11) 0.051 (2) 0.32 (3)
H11C 0.790534 0.366555 0.560710 0.061* 0.32 (3)
H11D 0.868203 0.312119 0.530835 0.061* 0.32 (3)
C12B 0.9140 (4) 0.2785 (3) 0.6554 (3) 0.0330 (11)
C13B 0.9754 (4) 0.2754 (4) 0.7185 (3) 0.0349 (12)
H13B 1.009261 0.328896 0.733501 0.042*
C14B 0.9910 (3) 0.2003 (4) 0.7615 (3) 0.0332 (12)
C15B 1.0658 (5) 0.2141 (5) 0.8255 (4) 0.0558 (18)
H15D 1.111591 0.165104 0.829503 0.084*
H15E 1.036701 0.213985 0.865293 0.084*
H15F 1.097111 0.272146 0.822763 0.084*
C16B 0.9706 (5) 0.0497 (4) 0.7992 (4) 0.0479 (16)
H16C 0.998356 0.075424 0.844182 0.058*
H16D 1.018013 0.010487 0.785051 0.058*
C17B 0.8880 (5) −0.0057 (4) 0.8052 (3) 0.0461 (15)
H17C 0.906039 −0.053657 0.839618 0.055*
H17D 0.839432 0.032532 0.818823 0.055*
C18B 0.7731 (5) −0.1005 (5) 0.7379 (4) 0.0502 (16)
H18D 0.754932 −0.128955 0.693186 0.075*
H18E 0.721432 −0.063302 0.746750 0.075*
H18F 0.787777 −0.147470 0.772798 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0219 (4) 0.0181 (3) 0.0519 (4) 0.0018 (2) 0.0047 (3) 0.0036 (3)
O1A 0.0216 (19) 0.0256 (18) 0.061 (2) 0.0044 (15) 0.0111 (16) 0.0087 (17)
O2A 0.038 (2) 0.0224 (18) 0.052 (2) 0.0057 (16) −0.0012 (17) −0.0002 (16)
O3A 0.029 (2) 0.0264 (19) 0.058 (2) 0.0023 (15) 0.0106 (17) 0.0113 (16)
O4A 0.053 (3) 0.051 (3) 0.071 (3) −0.011 (2) 0.001 (2) 0.012 (2)
O5A 0.034 (2) 0.0217 (17) 0.044 (2) 0.0024 (15) 0.0055 (16) −0.0039 (15)
O6A 0.031 (2) 0.037 (2) 0.049 (2) −0.0001 (17) 0.0138 (17) −0.0019 (17)
N1A 0.021 (2) 0.022 (2) 0.046 (2) 0.0006 (16) 0.0078 (17) −0.0042 (17)
N2A 0.030 (2) 0.0163 (18) 0.043 (2) −0.0025 (17) 0.0109 (18) −0.0009 (17)
C1A 0.046 (4) 0.038 (3) 0.086 (5) 0.002 (3) 0.026 (3) 0.007 (3)
C2A 0.029 (3) 0.036 (3) 0.065 (4) 0.001 (2) 0.015 (3) 0.003 (3)
C3A 0.027 (3) 0.020 (2) 0.046 (3) 0.000 (2) 0.010 (2) −0.001 (2)
C4A 0.031 (3) 0.022 (2) 0.048 (3) 0.006 (2) 0.011 (2) 0.006 (2)
C5A 0.024 (3) 0.024 (2) 0.043 (3) 0.004 (2) 0.005 (2) −0.008 (2)
C6A 0.030 (3) 0.034 (3) 0.056 (3) 0.010 (2) 0.003 (2) 0.000 (2)
C7A 0.033 (3) 0.035 (3) 0.062 (4) −0.005 (2) 0.003 (3) 0.002 (3)
C8A 0.052 (4) 0.057 (4) 0.054 (4) −0.019 (3) 0.003 (3) 0.009 (3)
C9A 0.036 (3) 0.037 (3) 0.070 (4) −0.004 (3) 0.016 (3) 0.010 (3)
C10A 0.053 (4) 0.041 (3) 0.055 (4) 0.005 (3) 0.002 (3) −0.009 (3)
C11A 0.042 (3) 0.030 (3) 0.050 (3) −0.001 (2) −0.004 (3) −0.003 (2)
C12A 0.022 (2) 0.016 (2) 0.049 (3) 0.0020 (18) 0.011 (2) 0.001 (2)
C13A 0.025 (3) 0.015 (2) 0.046 (3) 0.0032 (18) 0.012 (2) 0.0032 (19)
C14A 0.013 (2) 0.022 (2) 0.044 (3) −0.0019 (17) 0.0064 (18) 0.0022 (19)
C15A 0.027 (3) 0.027 (3) 0.046 (3) −0.002 (2) 0.007 (2) 0.000 (2)
C16A 0.028 (3) 0.019 (2) 0.049 (3) −0.003 (2) 0.007 (2) −0.005 (2)
C17A 0.028 (3) 0.024 (2) 0.050 (3) 0.001 (2) 0.010 (2) −0.004 (2)
C18A 0.041 (4) 0.057 (4) 0.058 (4) 0.007 (3) 0.023 (3) −0.006 (3)
Zn2 0.0195 (4) 0.0219 (4) 0.0528 (4) −0.0002 (3) 0.0056 (3) −0.0014 (3)
O1B 0.0205 (19) 0.0286 (19) 0.059 (2) −0.0041 (15) 0.0090 (16) −0.0085 (17)
O2B 0.031 (2) 0.0206 (17) 0.058 (2) −0.0056 (15) 0.0085 (17) 0.0033 (16)
O3B 0.025 (2) 0.042 (2) 0.086 (3) −0.0044 (18) 0.014 (2) −0.027 (2)
O4B 0.030 (2) 0.033 (2) 0.061 (2) 0.0036 (17) 0.0077 (18) 0.0066 (18)
O5B 0.026 (2) 0.0266 (19) 0.070 (3) −0.0044 (16) 0.0094 (18) 0.0091 (18)
O6B 0.030 (2) 0.032 (2) 0.061 (2) −0.0020 (17) 0.0095 (18) 0.0099 (18)
N1B 0.0108 (19) 0.032 (2) 0.047 (2) −0.0010 (16) 0.0071 (16) 0.0105 (19)
N2B 0.024 (2) 0.026 (2) 0.053 (3) 0.0025 (18) 0.0008 (19) 0.0023 (19)
C1B 0.027 (4) 0.055 (4) 0.097 (6) −0.003 (3) 0.024 (4) −0.024 (4)
C2B 0.022 (3) 0.046 (4) 0.096 (6) −0.004 (3) 0.019 (4) −0.021 (4)
C1D 0.023 (5) 0.048 (6) 0.098 (7) −0.009 (5) 0.017 (6) −0.016 (5)
C2D 0.022 (4) 0.047 (5) 0.097 (6) −0.006 (4) 0.020 (5) −0.018 (5)
C3B 0.020 (3) 0.030 (3) 0.057 (3) −0.002 (2) 0.014 (2) −0.005 (2)
C4B 0.024 (3) 0.030 (3) 0.056 (3) −0.005 (2) 0.008 (2) 0.000 (2)
C5B 0.022 (3) 0.029 (3) 0.044 (3) −0.003 (2) 0.007 (2) 0.011 (2)
C6B 0.021 (3) 0.040 (3) 0.063 (4) −0.005 (2) 0.004 (2) 0.017 (3)
C7B 0.021 (3) 0.039 (3) 0.053 (3) 0.006 (2) 0.011 (2) 0.014 (2)
C8B 0.026 (3) 0.036 (3) 0.065 (4) 0.013 (2) 0.018 (2) 0.019 (3)
C9B 0.035 (3) 0.045 (4) 0.079 (5) 0.004 (3) 0.020 (3) −0.011 (3)
C10B 0.048 (5) 0.037 (4) 0.078 (5) 0.002 (4) 0.005 (4) 0.015 (4)
C11B 0.040 (4) 0.036 (3) 0.070 (4) 0.000 (3) 0.002 (3) 0.011 (3)
C10D 0.045 (6) 0.038 (5) 0.075 (6) −0.001 (5) 0.003 (6) 0.012 (5)
C11D 0.042 (4) 0.037 (4) 0.071 (5) 0.000 (4) 0.002 (4) 0.011 (4)
C12B 0.019 (2) 0.021 (2) 0.063 (3) 0.0028 (19) 0.017 (2) 0.003 (2)
C13B 0.017 (2) 0.028 (3) 0.061 (3) −0.006 (2) 0.012 (2) −0.003 (2)
C14B 0.009 (2) 0.034 (3) 0.055 (3) −0.0024 (19) 0.004 (2) −0.003 (2)
C15B 0.043 (4) 0.049 (4) 0.068 (4) −0.013 (3) −0.008 (3) 0.005 (3)
C16B 0.038 (3) 0.036 (3) 0.062 (4) 0.001 (3) −0.007 (3) 0.010 (3)
C17B 0.047 (4) 0.034 (3) 0.055 (3) 0.007 (3) 0.005 (3) 0.014 (3)
C18B 0.039 (4) 0.043 (3) 0.068 (4) −0.007 (3) 0.008 (3) 0.020 (3)

Geometric parameters (Å, º)

Zn1—N1A 1.958 (4) O3B—C3B 1.361 (7)
Zn1—N2A 1.966 (5) O3B—C2B 1.456 (11)
Zn1—O2A 1.974 (4) O3B—C2D 1.46 (3)
Zn1—O1A 2.025 (4) O4B—C9B 1.419 (8)
Zn1—O4A 2.727 (6) O4B—C8B 1.425 (7)
O1A—C3A 1.246 (6) O5B—C12B 1.371 (7)
O2A—C12A 1.271 (6) O5B—C11D 1.42 (3)
O3A—C3A 1.364 (6) O5B—C11B 1.429 (15)
O3A—C2A 1.444 (7) O6B—C18B 1.429 (7)
O4A—C8A 1.376 (8) O6B—C17B 1.442 (8)
O4A—C9A 1.412 (8) N1B—C5B 1.322 (7)
O5A—C12A 1.355 (6) N1B—C7B 1.458 (7)
O5A—C11A 1.450 (7) N2B—C14B 1.312 (7)
O6A—C18A 1.400 (7) N2B—C16B 1.457 (8)
O6A—C17A 1.431 (7) C1B—C2B 1.509 (10)
N1A—C5A 1.329 (7) C1B—H1B1 0.9800
N1A—C7A 1.490 (8) C1B—H1B2 0.9800
N2A—C14A 1.306 (7) C1B—H1B3 0.9800
N2A—C16A 1.462 (6) C2B—H2B1 0.9900
C1A—C2A 1.502 (9) C2B—H2B2 0.9900
C1A—H1AA 0.9800 C1D—C2D 1.508 (11)
C1A—H1AB 0.9800 C1D—H1D1 0.9800
C1A—H1AC 0.9800 C1D—H1D2 0.9800
C2A—H2AA 0.9900 C1D—H1D3 0.9800
C2A—H2AB 0.9900 C2D—H2D1 0.9900
C3A—C4A 1.382 (8) C2D—H2D2 0.9900
C4A—C5A 1.399 (8) C3B—C4B 1.387 (8)
C4A—H4AA 0.9500 C4B—C5B 1.405 (8)
C5A—C6A 1.502 (7) C4B—H4BA 0.9500
C6A—H6AA 0.9800 C5B—C6B 1.518 (7)
C6A—H6AB 0.9800 C6B—H6BA 0.9800
C6A—H6AC 0.9800 C6B—H6BB 0.9800
C7A—C8A 1.483 (9) C6B—H6BC 0.9800
C7A—H7AA 0.9900 C7B—C8B 1.518 (9)
C7A—H7AB 0.9900 C7B—H7BA 0.9900
C8A—H8AA 0.9900 C7B—H7BB 0.9900
C8A—H8AB 0.9900 C8B—H8BA 0.9900
C9A—H9AA 0.9800 C8B—H8BB 0.9900
C9A—H9AB 0.9800 C9B—H9BA 0.9800
C9A—H9AC 0.9800 C9B—H9BB 0.9800
C10A—C11A 1.475 (9) C9B—H9BC 0.9800
C10A—H10A 0.9800 C10B—C11B 1.515 (9)
C10A—H10B 0.9800 C10B—H10G 0.9800
C10A—H10C 0.9800 C10B—H10H 0.9800
C11A—H11A 0.9900 C10B—H10I 0.9800
C11A—H11B 0.9900 C11B—H11E 0.9900
C12A—C13A 1.384 (8) C11B—H11F 0.9900
C13A—C14A 1.406 (7) C10D—C11D 1.515 (9)
C13A—H13A 0.9500 C10D—H10D 0.9800
C14A—C15A 1.520 (7) C10D—H10E 0.9800
C15A—H15A 0.9800 C10D—H10F 0.9800
C15A—H15B 0.9800 C11D—H11C 0.9900
C15A—H15C 0.9799 C11D—H11D 0.9900
C16A—C17A 1.511 (8) C12B—C13B 1.400 (8)
C16A—H16A 0.9900 C13B—C14B 1.398 (8)
C16A—H16B 0.9900 C13B—H13B 0.9500
C17A—H17A 0.9900 C14B—C15B 1.525 (8)
C17A—H17B 0.9900 C15B—H15D 0.9801
C18A—H18A 0.9800 C15B—H15E 0.9800
C18A—H18B 0.9800 C15B—H15F 0.9800
C18A—H18C 0.9800 C16B—C17B 1.484 (9)
Zn2—N1B 1.990 (4) C16B—H16C 0.9900
Zn2—N2B 2.004 (5) C16B—H16D 0.9900
Zn2—O1B 2.017 (4) C17B—H17C 0.9900
Zn2—O2B 2.045 (4) C17B—H17D 0.9900
Zn2—O6B 2.514 (4) C18B—H18D 0.9800
Zn2—O4B 2.661 (4) C18B—H18E 0.9800
O1B—C3B 1.253 (7) C18B—H18F 0.9800
O2B—C12B 1.247 (7)
N1A—Zn1—N2A 144.05 (19) C3B—O3B—C2B 114.1 (5)
N1A—Zn1—O2A 112.56 (17) C3B—O3B—C2D 123.2 (8)
N2A—Zn1—O2A 94.98 (17) C9B—O4B—C8B 111.1 (5)
N1A—Zn1—O1A 95.04 (17) C9B—O4B—Zn2 117.3 (4)
N2A—Zn1—O1A 96.25 (17) C8B—O4B—Zn2 91.2 (3)
O2A—Zn1—O1A 110.72 (18) C12B—O5B—C11D 115.2 (7)
N1A—Zn1—O4A 71.83 (18) C12B—O5B—C11B 116.4 (5)
N2A—Zn1—O4A 84.34 (17) C18B—O6B—C17B 112.6 (5)
O2A—Zn1—O4A 93.49 (18) C18B—O6B—Zn2 123.6 (4)
O1A—Zn1—O4A 155.58 (17) C17B—O6B—Zn2 100.0 (3)
C3A—O1A—Zn1 121.6 (3) C5B—N1B—C7B 118.2 (5)
C12A—O2A—Zn1 120.7 (4) C5B—N1B—Zn2 121.9 (4)
C3A—O3A—C2A 116.8 (4) C7B—N1B—Zn2 119.1 (4)
C8A—O4A—C9A 111.7 (6) C14B—N2B—C16B 119.5 (5)
C8A—O4A—Zn1 88.8 (4) C14B—N2B—Zn2 124.7 (4)
C9A—O4A—Zn1 119.6 (4) C16B—N2B—Zn2 115.6 (4)
C12A—O5A—C11A 117.2 (4) C2B—C1B—H1B1 109.5
C18A—O6A—C17A 110.8 (5) C2B—C1B—H1B2 109.5
C5A—N1A—C7A 117.1 (5) H1B1—C1B—H1B2 109.5
C5A—N1A—Zn1 123.3 (4) C2B—C1B—H1B3 109.5
C7A—N1A—Zn1 119.6 (4) H1B1—C1B—H1B3 109.5
C14A—N2A—C16A 121.2 (5) H1B2—C1B—H1B3 109.5
C14A—N2A—Zn1 124.2 (4) O3B—C2B—C1B 106.7 (7)
C16A—N2A—Zn1 114.6 (3) O3B—C2B—H2B1 110.4
C2A—C1A—H1AA 109.5 C1B—C2B—H2B1 110.4
C2A—C1A—H1AB 109.5 O3B—C2B—H2B2 110.4
H1AA—C1A—H1AB 109.5 C1B—C2B—H2B2 110.4
C2A—C1A—H1AC 109.5 H2B1—C2B—H2B2 108.6
H1AA—C1A—H1AC 109.5 C2D—C1D—H1D1 109.5
H1AB—C1A—H1AC 109.5 C2D—C1D—H1D2 109.5
O3A—C2A—C1A 107.7 (5) H1D1—C1D—H1D2 109.5
O3A—C2A—H2AA 110.2 C2D—C1D—H1D3 109.5
C1A—C2A—H2AA 110.2 H1D1—C1D—H1D3 109.5
O3A—C2A—H2AB 110.2 H1D2—C1D—H1D3 109.5
C1A—C2A—H2AB 110.2 O3B—C2D—C1D 99.9 (15)
H2AA—C2A—H2AB 108.5 O3B—C2D—H2D1 111.8
O1A—C3A—O3A 118.0 (5) C1D—C2D—H2D1 111.8
O1A—C3A—C4A 128.0 (5) O3B—C2D—H2D2 111.8
O3A—C3A—C4A 114.0 (5) C1D—C2D—H2D2 111.8
C3A—C4A—C5A 127.6 (5) H2D1—C2D—H2D2 109.5
C3A—C4A—H4AA 116.2 O1B—C3B—O3B 117.9 (5)
C5A—C4A—H4AA 116.2 O1B—C3B—C4B 128.9 (5)
N1A—C5A—C4A 124.1 (5) O3B—C3B—C4B 113.2 (5)
N1A—C5A—C6A 119.7 (5) C3B—C4B—C5B 126.8 (5)
C4A—C5A—C6A 116.3 (5) C3B—C4B—H4BA 116.6
C5A—C6A—H6AA 109.5 C5B—C4B—H4BA 116.6
C5A—C6A—H6AB 109.5 N1B—C5B—C4B 125.0 (5)
H6AA—C6A—H6AB 109.5 N1B—C5B—C6B 120.0 (5)
C5A—C6A—H6AC 109.5 C4B—C5B—C6B 115.1 (5)
H6AA—C6A—H6AC 109.5 C5B—C6B—H6BA 109.5
H6AB—C6A—H6AC 109.5 C5B—C6B—H6BB 109.5
C8A—C7A—N1A 111.9 (5) H6BA—C6B—H6BB 109.5
C8A—C7A—H7AA 109.2 C5B—C6B—H6BC 109.5
N1A—C7A—H7AA 109.2 H6BA—C6B—H6BC 109.5
C8A—C7A—H7AB 109.2 H6BB—C6B—H6BC 109.5
N1A—C7A—H7AB 109.2 N1B—C7B—C8B 112.0 (5)
H7AA—C7A—H7AB 107.9 N1B—C7B—H7BA 109.2
O4A—C8A—C7A 112.5 (6) C8B—C7B—H7BA 109.2
O4A—C8A—H8AA 109.1 N1B—C7B—H7BB 109.2
C7A—C8A—H8AA 109.1 C8B—C7B—H7BB 109.2
O4A—C8A—H8AB 109.1 H7BA—C7B—H7BB 107.9
C7A—C8A—H8AB 109.1 O4B—C8B—C7B 107.0 (4)
H8AA—C8A—H8AB 107.8 O4B—C8B—H8BA 110.3
O4A—C9A—H9AA 109.5 C7B—C8B—H8BA 110.3
O4A—C9A—H9AB 109.5 O4B—C8B—H8BB 110.3
H9AA—C9A—H9AB 109.5 C7B—C8B—H8BB 110.3
O4A—C9A—H9AC 109.5 H8BA—C8B—H8BB 108.6
H9AA—C9A—H9AC 109.5 O4B—C9B—H9BA 109.5
H9AB—C9A—H9AC 109.5 O4B—C9B—H9BB 109.5
C11A—C10A—H10A 109.5 H9BA—C9B—H9BB 109.5
C11A—C10A—H10B 109.5 O4B—C9B—H9BC 109.5
H10A—C10A—H10B 109.5 H9BA—C9B—H9BC 109.5
C11A—C10A—H10C 109.5 H9BB—C9B—H9BC 109.5
H10A—C10A—H10C 109.5 C11B—C10B—H10G 109.5
H10B—C10A—H10C 109.5 C11B—C10B—H10H 109.5
O5A—C11A—C10A 108.1 (5) H10G—C10B—H10H 109.5
O5A—C11A—H11A 110.1 C11B—C10B—H10I 109.5
C10A—C11A—H11A 110.1 H10G—C10B—H10I 109.5
O5A—C11A—H11B 110.1 H10H—C10B—H10I 109.5
C10A—C11A—H11B 110.1 O5B—C11B—C10B 107.2 (9)
H11A—C11A—H11B 108.4 O5B—C11B—H11E 110.3
O2A—C12A—O5A 116.8 (5) C10B—C11B—H11E 110.3
O2A—C12A—C13A 129.0 (5) O5B—C11B—H11F 110.3
O5A—C12A—C13A 114.2 (4) C10B—C11B—H11F 110.3
C12A—C13A—C14A 125.9 (5) H11E—C11B—H11F 108.5
C12A—C13A—H13A 117.0 C11D—C10D—H10D 109.5
C14A—C13A—H13A 117.0 C11D—C10D—H10E 109.5
N2A—C14A—C13A 123.6 (5) H10D—C10D—H10E 109.5
N2A—C14A—C15A 121.2 (5) C11D—C10D—H10F 109.5
C13A—C14A—C15A 115.2 (4) H10D—C10D—H10F 109.5
C14A—C15A—H15A 109.2 H10E—C10D—H10F 109.5
C14A—C15A—H15B 109.6 O5B—C11D—C10D 108.5 (17)
H15A—C15A—H15B 109.5 O5B—C11D—H11C 110.0
C14A—C15A—H15C 109.6 C10D—C11D—H11C 110.0
H15A—C15A—H15C 109.5 O5B—C11D—H11D 110.0
H15B—C15A—H15C 109.5 C10D—C11D—H11D 110.0
N2A—C16A—C17A 111.6 (4) H11C—C11D—H11D 108.4
N2A—C16A—H16A 109.3 O2B—C12B—O5B 118.0 (5)
C17A—C16A—H16A 109.3 O2B—C12B—C13B 129.1 (5)
N2A—C16A—H16B 109.3 O5B—C12B—C13B 112.9 (5)
C17A—C16A—H16B 109.3 C14B—C13B—C12B 125.5 (5)
H16A—C16A—H16B 108.0 C14B—C13B—H13B 117.2
O6A—C17A—C16A 107.0 (4) C12B—C13B—H13B 117.2
O6A—C17A—H17A 110.3 N2B—C14B—C13B 125.2 (5)
C16A—C17A—H17A 110.3 N2B—C14B—C15B 120.4 (5)
O6A—C17A—H17B 110.3 C13B—C14B—C15B 114.5 (5)
C16A—C17A—H17B 110.3 C14B—C15B—H15D 109.3
H17A—C17A—H17B 108.6 C14B—C15B—H15E 109.6
O6A—C18A—H18A 109.5 H15D—C15B—H15E 109.5
O6A—C18A—H18B 109.5 C14B—C15B—H15F 109.5
H18A—C18A—H18B 109.5 H15D—C15B—H15F 109.5
O6A—C18A—H18C 109.5 H15E—C15B—H15F 109.5
H18A—C18A—H18C 109.5 N2B—C16B—C17B 112.2 (5)
H18B—C18A—H18C 109.5 N2B—C16B—H16C 109.2
N1B—Zn2—N2B 152.5 (2) C17B—C16B—H16C 109.2
N1B—Zn2—O1B 95.08 (17) N2B—C16B—H16D 109.2
N2B—Zn2—O1B 104.33 (18) C17B—C16B—H16D 109.2
N1B—Zn2—O2B 101.90 (17) H16C—C16B—H16D 107.9
N2B—Zn2—O2B 92.60 (18) O6B—C17B—C16B 106.8 (5)
O1B—Zn2—O2B 102.98 (17) O6B—C17B—H17C 110.4
N1B—Zn2—O6B 86.02 (16) C16B—C17B—H17C 110.4
N2B—Zn2—O6B 76.39 (17) O6B—C17B—H17D 110.4
O1B—Zn2—O6B 85.76 (16) C16B—C17B—H17D 110.4
O2B—Zn2—O6B 167.48 (16) H17C—C17B—H17D 108.6
N1B—Zn2—O4B 73.58 (16) O6B—C18B—H18D 109.5
N2B—Zn2—O4B 83.20 (17) O6B—C18B—H18E 109.5
O1B—Zn2—O4B 164.14 (14) H18D—C18B—H18E 109.5
O2B—Zn2—O4B 90.42 (15) O6B—C18B—H18F 109.5
O6B—Zn2—O4B 82.46 (14) H18D—C18B—H18F 109.5
C3B—O1B—Zn2 120.9 (3) H18E—C18B—H18F 109.5
C12B—O2B—Zn2 122.8 (4)
C3A—O3A—C2A—C1A 175.4 (5) C2B—O3B—C3B—O1B 10.7 (9)
Zn1—O1A—C3A—O3A 173.9 (4) C2D—O3B—C3B—O1B −10.6 (11)
Zn1—O1A—C3A—C4A −5.1 (8) C2B—O3B—C3B—C4B −169.3 (7)
C2A—O3A—C3A—O1A −4.7 (8) C2D—O3B—C3B—C4B 169.4 (8)
C2A—O3A—C3A—C4A 174.4 (5) O1B—C3B—C4B—C5B 0.3 (11)
O1A—C3A—C4A—C5A −0.6 (10) O3B—C3B—C4B—C5B −179.7 (6)
O3A—C3A—C4A—C5A −179.6 (5) C7B—N1B—C5B—C4B −178.4 (5)
C7A—N1A—C5A—C4A 178.6 (5) Zn2—N1B—C5B—C4B −8.9 (7)
Zn1—N1A—C5A—C4A −2.2 (7) C7B—N1B—C5B—C6B 0.1 (7)
C7A—N1A—C5A—C6A −2.7 (7) Zn2—N1B—C5B—C6B 169.6 (4)
Zn1—N1A—C5A—C6A 176.5 (4) C3B—C4B—C5B—N1B 0.2 (10)
C3A—C4A—C5A—N1A 4.8 (9) C3B—C4B—C5B—C6B −178.3 (6)
C3A—C4A—C5A—C6A −173.9 (6) C5B—N1B—C7B—C8B −174.2 (5)
C5A—N1A—C7A—C8A −179.3 (5) Zn2—N1B—C7B—C8B 15.9 (6)
Zn1—N1A—C7A—C8A 1.4 (7) C9B—O4B—C8B—C7B 179.0 (5)
C9A—O4A—C8A—C7A −179.8 (6) Zn2—O4B—C8B—C7B 59.0 (4)
Zn1—O4A—C8A—C7A −58.2 (6) N1B—C7B—C8B—O4B −60.8 (6)
N1A—C7A—C8A—O4A 51.8 (9) C12B—O5B—C11B—C10B 172.8 (9)
C12A—O5A—C11A—C10A −171.2 (5) C12B—O5B—C11D—C10D −167.1 (14)
Zn1—O2A—C12A—O5A 169.2 (3) Zn2—O2B—C12B—O5B 179.9 (3)
Zn1—O2A—C12A—C13A −11.9 (8) Zn2—O2B—C12B—C13B 0.7 (8)
C11A—O5A—C12A—O2A 5.1 (7) C11D—O5B—C12B—O2B −2.9 (15)
C11A—O5A—C12A—C13A −173.9 (5) C11B—O5B—C12B—O2B −1.0 (10)
O2A—C12A—C13A—C14A 1.1 (9) C11D—O5B—C12B—C13B 176.4 (14)
O5A—C12A—C13A—C14A 180.0 (5) C11B—O5B—C12B—C13B 178.3 (9)
C16A—N2A—C14A—C13A −177.4 (5) O2B—C12B—C13B—C14B 0.4 (10)
Zn1—N2A—C14A—C13A 0.5 (7) O5B—C12B—C13B—C14B −178.8 (5)
C16A—N2A—C14A—C15A 0.1 (8) C16B—N2B—C14B—C13B 179.4 (6)
Zn1—N2A—C14A—C15A 178.0 (4) Zn2—N2B—C14B—C13B 5.4 (8)
C12A—C13A—C14A—N2A 5.6 (8) C16B—N2B—C14B—C15B −1.1 (9)
C12A—C13A—C14A—C15A −172.0 (5) Zn2—N2B—C14B—C15B −175.2 (5)
C14A—N2A—C16A—C17A −108.3 (6) C12B—C13B—C14B—N2B −3.8 (9)
Zn1—N2A—C16A—C17A 73.6 (5) C12B—C13B—C14B—C15B 176.7 (6)
C18A—O6A—C17A—C16A −176.4 (5) C14B—N2B—C16B—C17B 145.5 (6)
N2A—C16A—C17A—O6A 71.1 (6) Zn2—N2B—C16B—C17B −39.9 (7)
C3B—O3B—C2B—C1B 175.8 (7) C18B—O6B—C17B—C16B −179.9 (5)
C3B—O3B—C2D—C1D 101.5 (11) Zn2—O6B—C17B—C16B −46.9 (5)
Zn2—O1B—C3B—O3B −172.2 (4) N2B—C16B—C17B—O6B 61.7 (7)
Zn2—O1B—C3B—C4B 7.7 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6A—H6AB···O3Bi 0.98 2.63 3.568 (8) 161
C15A—H15A···O6A 0.98 2.64 3.396 (7) 134
C15A—H15C···O3Aii 0.98 2.65 3.369 (7) 131
C18A—H18A···O3Aiii 0.98 2.60 3.304 (8) 129
C8B—H8BA···O2B 0.99 2.60 3.279 (7) 126

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+1/2, z+1/2.

Funding Statement

This work was funded by National Science Foundation, Directorate for Mathematical and Physical Sciences grant CHE-0619278.

References

  1. Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Barreca, D., Bekermann, D., Comini, E., Devi, A., Fischer, R. A., Gasparotto, A., Maccato, C., Sberveglieri, G. & Tondello, E. (2010). Sens. Actuators B Chem. 149, 1–7.
  3. Bekermann, D., Gasparotto, A., Barreca, D., Bovo, L., Devi, A., Fischer, R. A., Lebedev, O. I., Maccato, C., Tondello, E. & Van Tendeloo, G. (2010b). Cryst. Growth Des. 10, 2011–2018.
  4. Bekermann, D., Rogalla, D., Becker, H.-W., Winter, M., Fischer, R. A. & Devi, A. (2010a). Eur. J. Inorg. Chem. pp. 1366–1372.
  5. Cosham, S. D., Kociok-Köhn, G., Johnson, A. L., Hamilton, J. A., Hill, M. S., Molloy, K. C. & Castaing, R. (2015). Eur. J. Inorg. Chem. pp. 4362–4372.
  6. Das, M. & Sarkar, D. (2017). Ceram. Int. 43, 11123–11131.
  7. Galstyan, V., Comini, E., Baratto, C., Faglia, G. & Sberveglieri, G. (2015). Ceram. Int. 41, 14239–14244.
  8. Ganesh, R. S., Durgadevi, E., Navaneethan, M., Patil, V. L., Ponnusamy, S., Muthamizhchelvan, C., Kawasaki, S., Patil, P. S. & Hayakawa, Y. (2017). J. Alloys Compd. 721, 182–190.
  9. Gbemigun, O. O., Butcher, R. J. & Matthews, J. S. (2019). J. Chem. Crystallogr. 49, 80–86.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hong, K. S., Kim, J. W., Bae, J. S., Hong, T. E., Jeong, E. D., Jin, J. S., Ha, M. G. & Kim, J. P. (2017). Physica B, 504, 103–108.
  12. Malandrino, G., Blandino, M., Perdicaro, L. M. S., Fragalà, I. L., Rossi, P. & Dapporto, P. (2005). Inorg. Chem. 44, 9684–9689. [DOI] [PubMed]
  13. Manzi, J. A., Knapp, C. E., Parkin, I. P. & Carmalt, C. J. (2015). Eur. J. Inorg. Chem. pp. 3658–3665.
  14. Matthews, J. S., Onakoya, O. O., Ouattara, T. S. & Butcher, R. J. (2006). Dalton Trans. pp. 3806–3811. [DOI] [PubMed]
  15. Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.
  16. Onakoya, O. O., Johnson, K. O., Butcher, R. J. & Matthews, J. S. (2011). Acta Cryst. E67, m1692. [DOI] [PMC free article] [PubMed]
  17. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  18. Sato, H., Minami, T., Miyata, T., Takata, S. & Ishii, M. (1994). Thin Solid Films, 246, 65–70.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Smith, F. (1983). Appl. Phys. Lett. 43, 1108–1110.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001475/hb8009sup1.cif

e-78-00317-sup1.cif (637.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001475/hb8009Isup2.hkl

e-78-00317-Isup2.hkl (682.1KB, hkl)

CCDC reference: 2150564

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES