Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 10;78(Pt 3):313–316. doi: 10.1107/S2056989022001359

Crystal structure of tris­(4,7-diphenyl-1,10-phenanthroline-κ2 N,N′)cobalt(III) tris­(hexa­fluoro­phosphate) monohydrate

Asma Mani a,b, Jamel Eddine Belgaied a, Gilles Gasser b, Olivier Blacque c,*
PMCID: PMC8900514  PMID: 35371554

The title compound acts as a potential photosensitizer in photodynamic therapy against tumoral cells. It co-crystallizes with one solvent mol­ecule of water. In the crystal, inter­molecular π–π stacking inter­actions, C—H⋯π, C—H⋯F, and O—H⋯F and inter­actions are present.

Keywords: crystal structure, cobalt(III) complexes, bathophenanthroline, photodynamic therapy, photodynamic therapy

Abstract

The title compound, [Co(C72H48N6)](PF6)3·H2O, crystallizes with one tripositive complex mol­ecule, three hexa­fluoro­phosphate anions and one solvent mol­ecule of water in the asymmetric unit. The N6 coordination set around the central CoIII atom defines a distorted octa­hedral environment. Four fluorine atoms of one hexa­fluoro­phosphate anion are disordered over two sets of positions with site-occupancy factors of 0.697 (5) and 0.303 (5). In the crystal, inter­molecular π–π stacking inter­actions, C—H⋯π, C—H⋯F and O—H⋯F and inter­actions are present.

Chemical context

Over the years, metal complexes with polypyridyl ligands have been investigated as photosensitizers in photodynamic therapy (PDT) against cancer. RuII remains undoubtedly the most studied metal for this purpose due to its tunable photophysical properties (Caspar et al., 2006; Howerton et al., 2012; Heinemann et al., 2017; Monro et al., 2019; McFarland et al., 2020). graphic file with name e-78-00313-scheme1.jpg

Inspired by the exciting results reported with RuII, we were motivated to develop new metal-based complexes with similar structures. Among the transition metals, cobalt is commonly known for its potential to coordinate with chelate ligands like amino-acid compounds (Otter & Hartshorn, 2004) and polypyridyl derivative ligands. The resulting compounds were used in different fields of research. A series of CoIII complexes based on substituted 3-(pyridine-2-yl)-triazine ligands (Wang et al., 2004), or bis­(1,10-phenanthroline), bis­(2,2′-bi­pyridine) and derivatized imidazole-phenanthroline ligands were developed (Nagababu et al., 2008). These compounds were found to cleave calf thymus DNA (Zhang et al., 2001).

Cobalt complexes are not only used for biological purposes. For example, a series of substituted polypyridine ligands, acting in a bidentate or tridentate manner, coordinating to CoII were investigated as electron-transfer mediators in dye-sensitized solar cells (Sapp et al., 2002). Tris(2,2′-bipyrid­yl)-based ligands were also used to design redox stable CoII/III complexes for redox flow batteries (Yang et al., 2018).

Encouraged by these results, our team aimed at developing new cobalt complexes. Here we report on the synthesis and crystal structure of [tris­(4,7-diphenyl-1,10-phenanthroline) cobalt(III)] tris (hexa­fluoro­phosphate) monohydrate, [CoIII(C72H48N6)]3+(PF6 )3·H2O.

Structural commentary

The shape of the cobalt complex in the title compound is pseudo­octa­hedral (Fig. 1). The cobalt(III) atom is coordinated by six nitro­gen atoms from three dip ligands (dip = 4,7-diphenyl-1,10-phenanthroline). The Co—N bond lengths are in the range 1.934 (3)–1.954 (3) Å (Table 1) and correlate well with literature values observed for CoIII species. Indeed, the average Co—N bond length is 2.128 Å in CoI cations (three hits in the Cambridge Structural Database (CSD; Groom et al., 2016), 2.115 Å in CoII cations (106 hits), and 1.952 Å in CoIII cations (28 hits) in reported Co(phen)3 n+ (phen = phenanthroline) species. The bond angles between the axially bound ligand atoms are in the range 175.62 (13)–176.52 (13)° while the equatorial bond angles fall in the range 83.36 (12)–94.01 (13)°. The phenanthroline moieties (14 non-hydrogen atoms) of the dip ligands are almost planar according to the r.m.s. deviations calculated as 0.026 (N1^N2 moiety), 0.057 (N5^N6) and 0.106 (N3^N4) Å. As expected, the dihedral angles between the mean planes of the dip ligands are relatively close to 90° being 78.97 (5), 81.30 (4) and 86.09 (5)°. The phenyl rings substituting each phenanthroline ligand in para positions to the nitro­gen atoms exhibit an inter­mediate orientation (45–60°) relative to the mean plane of the phenanthroline ring. The dihedral angles between the mean planes are 65.91 (13) and 46.44 (13)° within the N1^N2 ligand, 50.37 (12) and 60.35 (14)° within the N3^N4 ligand, and 54.66 (14) and 42.35 (14)° within the N5^N6 ligand.

Figure 1.

Figure 1

The mol­ecular structure of the tris­(4,7-diphenyl-1,10-phenanthroline)cobalt(III) cation of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Table 1. Selected geometric parameters (Å, °).

Co1—N1 1.950 (3) Co1—N4 1.942 (3)
Co1—N2 1.954 (3) Co1—N5 1.941 (3)
Co1—N3 1.934 (3) Co1—N6 1.940 (3)
       
Cg1⋯Cg2i 3.707 (3)    
       
N1—Co1—N2 83.72 (13) N5—Co1—N1 88.67 (13)
N3—Co1—N1 175.62 (13) N5—Co1—N2 93.26 (12)
N3—Co1—N2 92.66 (13) N5—Co1—N4 176.52 (13)
N3—Co1—N4 84.01 (13) N6—Co1—N1 93.44 (13)
N3—Co1—N5 94.01 (13) N6—Co1—N2 175.65 (13)
N3—Co1—N6 90.31 (13) N6—Co1—N4 93.77 (13)
N4—Co1—N1 93.48 (13) N6—Co1—N5 83.36 (12)
N4—Co1—N2 89.70 (13)    

Symmetry code: (i) Inline graphic .

Supra­molecular features

In the crystal, the complex cationic species inter­act with each other through π–π stacking inter­actions, forming chains extending perpendicular to the the b axis [Cg1⋯Cg2(1 + x, Inline graphic  − y, Inline graphic  + z) centroid-to-centroid distance of 3.707 (3) Å with Cg1 being the centroid of atoms C19–C24 and Cg2 the centroid of atoms C67–C72; Fig. 2, Table 2] and C—H⋯π inter­actions, forming layers parallel to the bc plane (Fig. 3, Table 2). Weak C—H⋯F and classical O—H⋯F inter­molecular hydrogen bonds link the anionic hexa­fluoro­phosphate species (acceptors) to the tricationic mol­ecules and to the solvent water mol­ecules (donors). These inter­actions form chains along the a axis (Fig. 4). The most significant inter­actions for which C⋯F < 3.35 Å and C—H⋯F > 125°, and O⋯F < 3.00 Å and O–H⋯F > 125° are complied in Table 2.

Figure 2.

Figure 2

A view of the crystal packing showing π–π stacking inter­actions forming chains extending perpendicular to the b axis.

Table 2. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of atoms C19–C24, C67–C72, C37–C42 and N5/C49–C53, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯F7ii 0.95 2.46 3.300 (5) 148
C10—H10⋯F9ii 0.95 2.33 3.173 (5) 148
C25—H25⋯F1 0.95 2.45 3.204 (5) 136
C42—H42⋯F15B iii 0.95 2.36 3.096 (7) 134
C48—H48⋯F7 0.95 2.39 3.328 (6) 172
C49—H49⋯F18A ii 0.95 2.13 2.850 (9) 132
C58—H58⋯F12 0.95 2.26 2.963 (5) 130
O1—H1A⋯F17A 0.87 (1) 2.25 (7) 2.965 (17) 139 (9)
O1—H1A⋯F17B 0.87 (1) 2.19 (8) 2.817 (10) 128 (8)
O1—H1B⋯F11 0.87 (1) 2.28 (7) 2.977 (7) 137 (8)
C17—H17⋯Cg3iv 0.95 2.80 3.525 (6) 134
C46—H46⋯Cg4iii 0.95 2.72 3.670 (6) 177
C63—H63⋯Cg5v 0.95 2.59 3.466 (5) 154

Symmetry codes: (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Figure 3.

Figure 3

A view of the crystal packing along the a axis. The C—H⋯π hydrogen bonds are shown as dashed lines.

Figure 4.

Figure 4

A view of the crystal packing showing C—H⋯F and O—H⋯F inter­molecular hydrogen bonds forming chains along the a axis. For clarity, only the major occupancy component of the disordered PF6 anion is shown.

Database survey

A search of the CSD (version 5.43, last updated November 2021; Groom et al., 2016) for similar M(dip)3 n+ compounds gave three hits: two compounds with RuII as the central metal cation (n = 2; CSD refcodes LAKCIN: Alatrash & Macdonnell, 2020; DOWREM: Goldstein et al., 1986) and one compound with NiII (n = 2; refcode EYAHUI: Hadadzadeh et al., 2011).

Synthesis and crystallization

[Tris(4,7-diphenyl-1,10-phenanthroline)cobalt(III)] tris(hexa­fluoro­phosphate) was obtained following the proc­edure previously described (McLaurin et al., 2009). The experimental protocol used for the synthesis has two steps: Firstly, the synthesis of the [bis­(4,7-diphenyl-1,10-phenanthroline)cobalt(III) dichloride] chloride was carried out by the reaction of (4,7-diphenyl-1,10-phenanthroline) with cobalt(II) dichlor­ide in methanol at reflux. The obtained compound was oxidized with chlorine gas made in situ to convert CoII to CoIII. Finally, the substitution of the dichloride group for the bidentate ligand (4,7-diphenyl-1,10-phenanthroline) was performed in ethyl­ene glycol at reflux. After cooling to room temperature, ammonium hexa­fluoro­phosphate was added to obtain a dark-brown precipitate. The final complex was then isolated by filtration, washed with water and diethyl ether and dried under vacuum. Slow diffusion between methanol and diethyl ether of the aceto­nitrile solution of the obtained powder gave orange needles of the title compound suitable for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The C—H hydrogen atoms were positioned geometrically with C—H = 0.95 Å and refined with U iso(H) = 1.2U eq(C). The O—H hydrogen atoms were located in a difference-Fourier map, but their positional and isotropic displacement parameters were restrained with the SHELXL DFIX command and with U iso(H) = 1.5U eq(O), respectively. Four fluorine atoms of one hexa­fluoro­phosphate anion (P3 as the central atom) are disordered over two sets of positions with refined site-occupancy factors of 0.697 (5) and 0.303 (5). The corresponding P—F bond lengths and F—P—F bond angles were restrained with the DFIX and DANG commands while the displacement parameters were restrained with the SIMU command.

Table 3. Experimental details.

Crystal data
Chemical formula [Co(C24H16N2)3](PF6)3·H2O
M r 1509.02
Crystal system, space group Monoclinic, P21/c
Temperature (K) 160
a, b, c (Å) 11.23448 (10), 25.0698 (2), 23.3956 (2)
β (°) 96.9903 (8)
V3) 6540.29 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.66
Crystal size (mm) 0.18 × 0.12 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, Pilatus 200K
Absorption correction Analytical [(CrysAlis PRO; Rigaku OD (2019) based on expressions derived by Clark & Reid, 1995]
T min, T max 0.595, 0.929
No. of measured, independent and observed [I > 2σ(I)] reflections 71503, 13335, 11500
R int 0.040
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.080, 0.243, 1.04
No. of reflections 13335
No. of parameters 953
No. of restraints 272
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.88, −1.05

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001359/wm5634sup1.cif

e-78-00313-sup1.cif (2.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001359/wm5634Isup2.hkl

CCDC reference: 2149884

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Co(C24H16N2)3](PF6)3·H2O F(000) = 3064
Mr = 1509.02 Dx = 1.533 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 11.23448 (10) Å Cell parameters from 32214 reflections
b = 25.0698 (2) Å θ = 2.6–78.7°
c = 23.3956 (2) Å µ = 3.66 mm1
β = 96.9903 (8)° T = 160 K
V = 6540.29 (10) Å3 Plate, yellow
Z = 4 0.18 × 0.12 × 0.02 mm

Data collection

XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer 13335 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 11500 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.040
Detector resolution: 5.8140 pixels mm-1 θmax = 74.5°, θmin = 2.6°
ω scans h = −14→13
Absorption correction: analytical [(CrysAlisPro; Rigaku OD (2019) based on expressions derived by Clark & Reid, 1995] k = −31→31
Tmin = 0.595, Tmax = 0.929 l = −29→26
71503 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.080 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.243 w = 1/[σ2(Fo2) + (0.1493P)2 + 10.0383P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.002
13335 reflections Δρmax = 1.88 e Å3
953 parameters Δρmin = −1.05 e Å3
272 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.4968 (4) 0.63319 (16) 0.71887 (18) 0.0419 (8)
H1 0.436429 0.642234 0.688364 0.050*
C2 0.4754 (4) 0.59200 (17) 0.75643 (18) 0.0447 (9)
H2 0.400029 0.574379 0.751734 0.054*
C3 0.5613 (4) 0.57648 (15) 0.79997 (17) 0.0401 (8)
C4 0.6716 (3) 0.60482 (14) 0.80685 (16) 0.0366 (7)
C5 0.6857 (3) 0.64682 (14) 0.76893 (15) 0.0337 (7)
C6 0.7914 (3) 0.67862 (14) 0.77523 (15) 0.0330 (7)
C7 0.8836 (3) 0.66881 (14) 0.81965 (15) 0.0344 (7)
C8 0.9882 (3) 0.70185 (15) 0.82297 (16) 0.0372 (8)
C9 0.9894 (3) 0.74058 (15) 0.78113 (17) 0.0392 (8)
H9 1.057717 0.762959 0.781641 0.047*
C10 0.8936 (3) 0.74789 (15) 0.73821 (16) 0.0371 (8)
H10 0.898217 0.775162 0.710376 0.044*
C11 0.7676 (4) 0.59493 (15) 0.85110 (17) 0.0420 (8)
H11 0.760653 0.566427 0.877238 0.050*
C12 0.8689 (4) 0.62497 (15) 0.85710 (17) 0.0410 (8)
H12 0.931331 0.616638 0.886880 0.049*
C13 0.5409 (4) 0.53348 (16) 0.84122 (18) 0.0430 (9)
C14 0.6087 (4) 0.48711 (17) 0.84560 (19) 0.0476 (9)
H14 0.666919 0.481392 0.819985 0.057*
C15 0.5927 (4) 0.44903 (19) 0.8869 (2) 0.0558 (11)
H15 0.638969 0.417219 0.889383 0.067*
C16 0.5082 (5) 0.4578 (2) 0.9246 (2) 0.0623 (13)
H16 0.497500 0.432103 0.953341 0.075*
C17 0.4402 (5) 0.5034 (2) 0.9205 (2) 0.0612 (13)
H17 0.383720 0.509189 0.946977 0.073*
C18 0.4524 (4) 0.54113 (19) 0.8785 (2) 0.0530 (10)
H18 0.402162 0.571714 0.874737 0.064*
C19 1.0915 (3) 0.69433 (15) 0.86768 (17) 0.0398 (8)
C20 1.2076 (4) 0.69364 (18) 0.8510 (2) 0.0498 (10)
H20 1.218902 0.698542 0.811734 0.060*
C21 1.3058 (4) 0.6857 (2) 0.8924 (2) 0.0597 (12)
H21 1.384291 0.685222 0.881279 0.072*
C22 1.2903 (5) 0.67864 (19) 0.9492 (2) 0.0616 (13)
H22 1.357999 0.672767 0.977012 0.074*
C23 1.1762 (5) 0.68000 (18) 0.9662 (2) 0.0552 (11)
H23 1.166012 0.675357 1.005603 0.066*
C24 1.0770 (4) 0.68816 (16) 0.92563 (18) 0.0448 (9)
H24 0.999071 0.689531 0.937390 0.054*
C25 0.7630 (4) 0.78075 (15) 0.59100 (17) 0.0393 (8)
H25 0.776432 0.748309 0.571790 0.047*
C26 0.8000 (4) 0.82847 (17) 0.56893 (17) 0.0417 (8)
H26 0.836290 0.827849 0.534316 0.050*
C27 0.7860 (3) 0.87685 (16) 0.59549 (16) 0.0376 (8)
C28 0.7286 (3) 0.87611 (15) 0.64690 (15) 0.0355 (7)
C29 0.6894 (3) 0.82666 (15) 0.66521 (15) 0.0336 (7)
C30 0.6204 (3) 0.82295 (14) 0.71241 (15) 0.0336 (7)
C31 0.5873 (3) 0.86886 (15) 0.74036 (15) 0.0353 (7)
C32 0.5039 (3) 0.86268 (16) 0.78164 (16) 0.0385 (8)
C33 0.4640 (4) 0.81197 (18) 0.79079 (17) 0.0448 (9)
H33 0.406076 0.806748 0.816649 0.054*
C34 0.5064 (4) 0.76813 (17) 0.76310 (17) 0.0417 (8)
H34 0.479814 0.733505 0.772105 0.050*
C35 0.7016 (4) 0.92207 (16) 0.67916 (16) 0.0411 (8)
H35 0.732044 0.955821 0.669557 0.049*
C36 0.6333 (4) 0.91869 (15) 0.72329 (16) 0.0404 (8)
H36 0.615865 0.950239 0.743172 0.048*
C37 0.8235 (3) 0.92742 (16) 0.57065 (17) 0.0406 (8)
C38 0.7885 (4) 0.93826 (17) 0.51282 (18) 0.0452 (9)
H38 0.746110 0.912285 0.488768 0.054*
C39 0.8163 (5) 0.98768 (19) 0.4904 (2) 0.0546 (11)
H39 0.791980 0.995228 0.450898 0.066*
C40 0.8775 (5) 1.0252 (2) 0.5241 (2) 0.0642 (13)
H40 0.893511 1.059098 0.508530 0.077*
C41 0.9166 (5) 1.0136 (2) 0.5815 (2) 0.0694 (14)
H41 0.961487 1.039373 0.604837 0.083*
C42 0.8908 (4) 0.9650 (2) 0.6047 (2) 0.0553 (11)
H42 0.918661 0.957125 0.643728 0.066*
C43 0.4570 (4) 0.91008 (17) 0.80923 (17) 0.0438 (9)
C44 0.5344 (4) 0.94603 (19) 0.84093 (18) 0.0497 (10)
H44 0.617986 0.938852 0.847674 0.060*
C45 0.4885 (5) 0.9920 (2) 0.8623 (2) 0.0669 (14)
H45 0.540387 1.015941 0.884830 0.080*
C46 0.3678 (6) 1.0033 (2) 0.8512 (3) 0.0749 (16)
H46 0.337699 1.035581 0.865191 0.090*
C47 0.2904 (5) 0.9684 (3) 0.8202 (3) 0.0775 (17)
H47 0.207405 0.976544 0.812452 0.093*
C48 0.3352 (4) 0.9214 (2) 0.8003 (2) 0.0599 (12)
H48 0.281748 0.896444 0.780217 0.072*
C49 0.8241 (3) 0.64466 (15) 0.63394 (16) 0.0369 (8)
H49 0.883090 0.655760 0.664172 0.044*
C50 0.8531 (3) 0.60596 (15) 0.59594 (16) 0.0370 (8)
H50 0.931940 0.591600 0.600143 0.044*
C51 0.7700 (3) 0.58771 (14) 0.55201 (15) 0.0328 (7)
C52 0.6528 (3) 0.61036 (14) 0.54691 (15) 0.0316 (7)
C53 0.6319 (3) 0.64999 (13) 0.58581 (15) 0.0308 (7)
C54 0.5186 (3) 0.67625 (14) 0.58226 (15) 0.0327 (7)
C55 0.4255 (3) 0.66234 (14) 0.53978 (15) 0.0329 (7)
C56 0.3169 (3) 0.69295 (15) 0.53654 (17) 0.0373 (8)
C57 0.3126 (4) 0.73284 (17) 0.57683 (19) 0.0442 (9)
H57 0.242483 0.754196 0.575696 0.053*
C58 0.4091 (3) 0.74269 (16) 0.61940 (18) 0.0424 (9)
H58 0.401972 0.770082 0.646843 0.051*
C59 0.5533 (3) 0.59306 (15) 0.50671 (16) 0.0357 (7)
H59 0.563429 0.563724 0.482060 0.043*
C60 0.4445 (3) 0.61795 (15) 0.50324 (16) 0.0354 (7)
H60 0.380459 0.605677 0.476192 0.042*
C61 0.8004 (3) 0.54451 (15) 0.51347 (16) 0.0358 (7)
C62 0.8472 (3) 0.49669 (16) 0.53789 (18) 0.0410 (8)
H62 0.861949 0.493119 0.578564 0.049*
C63 0.8717 (4) 0.45475 (17) 0.5028 (2) 0.0485 (10)
H63 0.902871 0.422302 0.519458 0.058*
C64 0.8514 (4) 0.45979 (19) 0.4442 (2) 0.0509 (10)
H64 0.864681 0.430264 0.420356 0.061*
C65 0.8114 (4) 0.5080 (2) 0.41955 (19) 0.0542 (11)
H65 0.802035 0.512000 0.378877 0.065*
C66 0.7852 (4) 0.55008 (18) 0.45419 (17) 0.0453 (9)
H66 0.756653 0.582820 0.437249 0.054*
C67 0.2124 (3) 0.68412 (15) 0.49285 (18) 0.0393 (8)
C68 0.2249 (4) 0.67567 (16) 0.43524 (18) 0.0425 (8)
H68 0.302622 0.674836 0.423196 0.051*
C69 0.1243 (4) 0.66842 (18) 0.3950 (2) 0.0515 (10)
H69 0.133435 0.662434 0.355684 0.062*
C70 0.0104 (4) 0.66996 (19) 0.4125 (2) 0.0551 (11)
H70 −0.058344 0.664926 0.385150 0.066*
C71 −0.0030 (4) 0.67879 (17) 0.4697 (2) 0.0536 (11)
H71 −0.081008 0.680011 0.481433 0.064*
C72 0.0967 (3) 0.68585 (16) 0.5098 (2) 0.0453 (9)
H72 0.086903 0.691887 0.549084 0.054*
Co1 0.65174 (5) 0.71899 (2) 0.67893 (2) 0.03151 (17)
N1 0.6003 (3) 0.66029 (12) 0.72480 (13) 0.0348 (6)
N2 0.7953 (3) 0.71751 (11) 0.73518 (13) 0.0333 (6)
N3 0.7088 (3) 0.77952 (12) 0.63882 (13) 0.0343 (6)
N4 0.5829 (3) 0.77309 (12) 0.72446 (13) 0.0350 (6)
N5 0.7153 (3) 0.66689 (12) 0.62928 (13) 0.0317 (6)
N6 0.5105 (3) 0.71465 (12) 0.62244 (14) 0.0356 (6)
F1 0.7023 (3) 0.70768 (14) 0.47885 (13) 0.0702 (8)
F2 0.5998 (3) 0.78510 (16) 0.47147 (16) 0.0821 (10)
F3 0.7786 (3) 0.77811 (14) 0.43789 (14) 0.0705 (9)
F4 0.6076 (3) 0.78566 (14) 0.37517 (14) 0.0766 (10)
F5 0.7095 (3) 0.70887 (17) 0.38305 (15) 0.0810 (10)
F6 0.5304 (3) 0.71560 (14) 0.41707 (13) 0.0715 (9)
P1 0.65426 (9) 0.74674 (5) 0.42702 (5) 0.0482 (3)
F7 0.1732 (3) 0.82570 (15) 0.72944 (19) 0.0954 (12)
F8 0.1590 (2) 0.90313 (11) 0.67956 (13) 0.0646 (8)
F9 −0.0012 (2) 0.84994 (12) 0.68175 (14) 0.0641 (7)
F10 0.0829 (4) 0.85907 (17) 0.60049 (16) 0.0907 (11)
F11 0.0985 (3) 0.78177 (13) 0.6499 (2) 0.0893 (12)
F12 0.2617 (3) 0.83455 (14) 0.6485 (2) 0.1071 (14)
P2 0.12975 (10) 0.84315 (5) 0.66478 (6) 0.0546 (3)
F13 0.0178 (3) 0.52703 (16) 0.67741 (13) 0.0883 (10)
F14 0.1488 (5) 0.5855 (2) 0.7846 (2) 0.1456 (16)
F15A −0.0113 (13) 0.5394 (7) 0.7751 (6) 0.118 (3) 0.303 (5)
F15B 0.0464 (8) 0.5084 (3) 0.7714 (3) 0.1140 (18) 0.697 (5)
F16A 0.1522 (16) 0.5012 (5) 0.7440 (7) 0.121 (2) 0.303 (5)
F16B 0.2034 (5) 0.5305 (3) 0.7229 (3) 0.1017 (16) 0.697 (5)
F17A 0.1890 (11) 0.5803 (7) 0.6993 (6) 0.118 (3) 0.303 (5)
F17B 0.1091 (8) 0.6030 (3) 0.6892 (3) 0.1148 (18) 0.697 (5)
F18A 0.0146 (12) 0.6121 (4) 0.7185 (5) 0.113 (2) 0.303 (5)
F18B −0.0489 (6) 0.5801 (3) 0.7374 (3) 0.1184 (18) 0.697 (5)
P3 0.08027 (17) 0.55560 (6) 0.73172 (6) 0.0755 (5)
O1 0.2529 (5) 0.6951 (3) 0.7055 (3) 0.1140 (19)
H1A 0.235 (8) 0.666 (2) 0.722 (4) 0.171*
H1B 0.186 (5) 0.705 (4) 0.685 (4) 0.171*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0364 (19) 0.043 (2) 0.047 (2) −0.0070 (16) 0.0041 (16) −0.0024 (16)
C2 0.038 (2) 0.045 (2) 0.051 (2) −0.0085 (17) 0.0065 (16) −0.0037 (18)
C3 0.047 (2) 0.0334 (18) 0.0419 (19) −0.0061 (15) 0.0133 (16) −0.0050 (15)
C4 0.0432 (19) 0.0307 (17) 0.0366 (17) −0.0028 (15) 0.0080 (15) −0.0044 (14)
C5 0.0342 (17) 0.0308 (16) 0.0370 (17) 0.0017 (13) 0.0077 (14) −0.0049 (13)
C6 0.0337 (17) 0.0295 (16) 0.0360 (17) 0.0021 (13) 0.0057 (13) −0.0055 (13)
C7 0.0355 (17) 0.0304 (16) 0.0374 (17) 0.0010 (14) 0.0051 (14) −0.0056 (14)
C8 0.0363 (18) 0.0357 (18) 0.0390 (18) 0.0025 (15) 0.0019 (14) −0.0074 (15)
C9 0.0357 (18) 0.0365 (19) 0.045 (2) −0.0051 (15) 0.0047 (15) −0.0021 (15)
C10 0.0364 (18) 0.0341 (18) 0.0404 (19) −0.0044 (14) 0.0037 (15) −0.0006 (14)
C11 0.052 (2) 0.0317 (18) 0.042 (2) −0.0030 (16) 0.0038 (17) 0.0031 (15)
C12 0.047 (2) 0.0338 (18) 0.0404 (19) −0.0001 (16) −0.0003 (16) 0.0009 (15)
C13 0.045 (2) 0.0393 (19) 0.045 (2) −0.0108 (16) 0.0089 (16) −0.0042 (16)
C14 0.048 (2) 0.044 (2) 0.051 (2) −0.0096 (18) 0.0052 (18) 0.0020 (18)
C15 0.056 (3) 0.048 (2) 0.062 (3) −0.013 (2) −0.002 (2) 0.008 (2)
C16 0.069 (3) 0.064 (3) 0.052 (3) −0.029 (3) 0.000 (2) 0.015 (2)
C17 0.071 (3) 0.063 (3) 0.053 (3) −0.026 (3) 0.021 (2) −0.006 (2)
C18 0.059 (3) 0.047 (2) 0.056 (2) −0.013 (2) 0.020 (2) −0.0057 (19)
C19 0.0374 (19) 0.0333 (18) 0.047 (2) −0.0022 (15) −0.0012 (16) −0.0043 (15)
C20 0.039 (2) 0.047 (2) 0.063 (3) 0.0004 (17) 0.0015 (18) −0.006 (2)
C21 0.040 (2) 0.053 (3) 0.082 (3) 0.0034 (19) −0.005 (2) −0.014 (2)
C22 0.052 (3) 0.045 (2) 0.079 (3) 0.004 (2) −0.025 (2) −0.005 (2)
C23 0.064 (3) 0.044 (2) 0.053 (2) −0.004 (2) −0.013 (2) 0.0004 (19)
C24 0.045 (2) 0.0359 (19) 0.051 (2) −0.0025 (16) −0.0055 (17) −0.0027 (16)
C25 0.041 (2) 0.041 (2) 0.0380 (19) 0.0063 (15) 0.0094 (15) −0.0003 (15)
C26 0.043 (2) 0.046 (2) 0.0382 (19) 0.0017 (16) 0.0099 (15) −0.0009 (16)
C27 0.0348 (18) 0.0404 (19) 0.0370 (18) 0.0005 (15) 0.0019 (14) 0.0011 (15)
C28 0.0334 (17) 0.0374 (18) 0.0350 (17) 0.0018 (14) 0.0009 (14) 0.0006 (14)
C29 0.0307 (16) 0.0369 (18) 0.0328 (16) 0.0041 (14) 0.0023 (13) −0.0019 (14)
C30 0.0319 (17) 0.0356 (18) 0.0328 (16) 0.0021 (14) 0.0014 (13) −0.0008 (14)
C31 0.0346 (17) 0.0388 (19) 0.0317 (16) 0.0038 (14) 0.0015 (13) −0.0038 (14)
C32 0.0368 (18) 0.044 (2) 0.0345 (17) 0.0033 (15) 0.0017 (14) −0.0065 (15)
C33 0.042 (2) 0.054 (2) 0.040 (2) −0.0024 (18) 0.0118 (16) −0.0048 (17)
C34 0.042 (2) 0.0412 (19) 0.043 (2) −0.0034 (16) 0.0110 (16) −0.0015 (16)
C35 0.048 (2) 0.0366 (19) 0.0388 (19) 0.0003 (16) 0.0033 (16) −0.0009 (15)
C36 0.049 (2) 0.0347 (18) 0.0377 (18) 0.0037 (16) 0.0041 (16) −0.0033 (15)
C37 0.0382 (19) 0.041 (2) 0.044 (2) −0.0007 (15) 0.0093 (15) −0.0009 (16)
C38 0.051 (2) 0.044 (2) 0.043 (2) 0.0030 (18) 0.0130 (17) 0.0009 (17)
C39 0.071 (3) 0.048 (2) 0.048 (2) 0.005 (2) 0.020 (2) 0.0078 (19)
C40 0.085 (4) 0.049 (3) 0.064 (3) −0.008 (2) 0.027 (3) 0.000 (2)
C41 0.079 (4) 0.062 (3) 0.070 (3) −0.029 (3) 0.019 (3) −0.009 (3)
C42 0.057 (3) 0.056 (3) 0.053 (2) −0.015 (2) 0.010 (2) −0.002 (2)
C43 0.045 (2) 0.049 (2) 0.0397 (19) 0.0013 (17) 0.0107 (16) −0.0102 (17)
C44 0.050 (2) 0.058 (3) 0.041 (2) 0.000 (2) 0.0060 (17) −0.0137 (19)
C45 0.072 (3) 0.067 (3) 0.065 (3) −0.012 (3) 0.022 (3) −0.031 (3)
C46 0.076 (4) 0.066 (3) 0.087 (4) 0.005 (3) 0.028 (3) −0.034 (3)
C47 0.057 (3) 0.082 (4) 0.096 (4) 0.016 (3) 0.022 (3) −0.028 (3)
C48 0.046 (2) 0.067 (3) 0.068 (3) 0.001 (2) 0.014 (2) −0.025 (2)
C49 0.0300 (17) 0.0394 (19) 0.0405 (18) 0.0048 (14) 0.0010 (14) −0.0018 (15)
C50 0.0284 (16) 0.0383 (18) 0.0446 (19) 0.0084 (14) 0.0057 (14) 0.0016 (15)
C51 0.0300 (16) 0.0328 (17) 0.0361 (17) 0.0053 (13) 0.0067 (13) 0.0044 (14)
C52 0.0283 (16) 0.0328 (16) 0.0340 (16) 0.0057 (13) 0.0045 (13) 0.0040 (13)
C53 0.0281 (16) 0.0286 (16) 0.0357 (17) 0.0041 (13) 0.0036 (13) 0.0044 (13)
C54 0.0298 (16) 0.0297 (16) 0.0390 (17) 0.0045 (13) 0.0063 (13) −0.0001 (13)
C55 0.0258 (15) 0.0329 (17) 0.0396 (18) 0.0059 (13) 0.0023 (13) 0.0037 (14)
C56 0.0287 (17) 0.0361 (18) 0.047 (2) 0.0056 (14) 0.0031 (14) 0.0035 (15)
C57 0.0332 (18) 0.044 (2) 0.054 (2) 0.0123 (16) −0.0005 (16) −0.0041 (18)
C58 0.0354 (19) 0.042 (2) 0.049 (2) 0.0125 (16) 0.0021 (16) −0.0072 (17)
C59 0.0330 (17) 0.0353 (18) 0.0380 (18) 0.0062 (14) 0.0013 (14) −0.0015 (14)
C60 0.0279 (16) 0.0373 (18) 0.0398 (18) 0.0039 (14) −0.0007 (13) −0.0002 (15)
C61 0.0280 (16) 0.0392 (19) 0.0404 (18) 0.0073 (14) 0.0050 (14) −0.0025 (15)
C62 0.0371 (19) 0.0384 (19) 0.048 (2) 0.0066 (15) 0.0083 (16) 0.0017 (16)
C63 0.041 (2) 0.039 (2) 0.067 (3) 0.0078 (17) 0.0133 (19) −0.0022 (19)
C64 0.0326 (19) 0.055 (2) 0.066 (3) 0.0083 (18) 0.0083 (18) −0.018 (2)
C65 0.043 (2) 0.074 (3) 0.045 (2) 0.018 (2) 0.0034 (17) −0.012 (2)
C66 0.040 (2) 0.054 (2) 0.042 (2) 0.0165 (18) 0.0045 (16) −0.0006 (17)
C67 0.0291 (17) 0.0308 (17) 0.056 (2) 0.0043 (14) −0.0011 (15) 0.0028 (16)
C68 0.0334 (18) 0.043 (2) 0.049 (2) 0.0037 (15) −0.0016 (16) 0.0079 (17)
C69 0.049 (2) 0.048 (2) 0.054 (2) 0.0029 (19) −0.0098 (19) 0.0081 (19)
C70 0.039 (2) 0.049 (2) 0.072 (3) −0.0013 (18) −0.016 (2) 0.013 (2)
C71 0.0287 (19) 0.040 (2) 0.089 (3) 0.0037 (16) −0.002 (2) 0.006 (2)
C72 0.0306 (18) 0.041 (2) 0.064 (3) 0.0064 (15) 0.0042 (17) −0.0010 (18)
Co1 0.0292 (3) 0.0306 (3) 0.0345 (3) 0.0026 (2) 0.0030 (2) −0.0013 (2)
N1 0.0307 (14) 0.0323 (15) 0.0411 (16) 0.0006 (12) 0.0029 (12) −0.0025 (12)
N2 0.0321 (15) 0.0323 (15) 0.0356 (15) −0.0016 (11) 0.0049 (12) −0.0019 (11)
N3 0.0327 (15) 0.0353 (16) 0.0349 (15) 0.0038 (12) 0.0034 (12) −0.0009 (12)
N4 0.0345 (15) 0.0353 (15) 0.0349 (15) 0.0010 (12) 0.0035 (12) −0.0010 (12)
N5 0.0263 (13) 0.0314 (14) 0.0370 (15) 0.0038 (11) 0.0024 (11) 0.0007 (12)
N6 0.0314 (15) 0.0331 (15) 0.0422 (16) 0.0067 (12) 0.0046 (12) −0.0014 (12)
F1 0.0608 (17) 0.083 (2) 0.0634 (17) −0.0028 (15) −0.0056 (14) 0.0286 (15)
F2 0.0568 (18) 0.109 (3) 0.078 (2) 0.0160 (17) −0.0011 (16) −0.0121 (19)
F3 0.0454 (15) 0.094 (2) 0.0692 (18) −0.0200 (14) −0.0024 (13) 0.0168 (16)
F4 0.0611 (18) 0.095 (2) 0.0685 (19) −0.0068 (16) −0.0116 (15) 0.0352 (17)
F5 0.0593 (18) 0.115 (3) 0.0678 (19) 0.0129 (18) 0.0040 (15) −0.0164 (18)
F6 0.0462 (15) 0.102 (2) 0.0642 (18) −0.0228 (15) 0.0000 (13) 0.0158 (16)
P1 0.0321 (5) 0.0658 (7) 0.0457 (6) −0.0021 (5) 0.0007 (4) 0.0134 (5)
F7 0.073 (2) 0.074 (2) 0.130 (3) −0.0179 (17) −0.029 (2) 0.026 (2)
F8 0.0610 (17) 0.0442 (15) 0.090 (2) −0.0024 (12) 0.0151 (15) −0.0051 (13)
F9 0.0478 (14) 0.0667 (17) 0.0801 (19) 0.0022 (13) 0.0170 (13) 0.0018 (14)
F10 0.097 (3) 0.106 (3) 0.073 (2) −0.022 (2) 0.0282 (19) −0.0089 (19)
F11 0.079 (2) 0.0545 (18) 0.140 (3) −0.0101 (15) 0.037 (2) −0.0263 (19)
F12 0.0606 (19) 0.0581 (18) 0.212 (4) 0.0066 (15) 0.055 (2) −0.008 (2)
P2 0.0403 (6) 0.0423 (6) 0.0830 (8) 0.0009 (4) 0.0152 (5) −0.0074 (5)
F13 0.095 (2) 0.111 (2) 0.0591 (17) 0.024 (2) 0.0099 (16) 0.0028 (17)
F14 0.194 (4) 0.137 (3) 0.098 (3) −0.002 (3) −0.015 (3) −0.031 (3)
F15A 0.143 (5) 0.126 (5) 0.085 (4) 0.022 (5) 0.019 (4) 0.003 (4)
F15B 0.144 (4) 0.125 (4) 0.073 (3) 0.020 (3) 0.013 (3) 0.028 (3)
F16A 0.142 (5) 0.122 (5) 0.095 (4) 0.025 (4) 0.001 (4) 0.002 (4)
F16B 0.092 (3) 0.113 (4) 0.096 (3) 0.012 (3) −0.004 (3) −0.015 (3)
F17A 0.133 (5) 0.120 (5) 0.093 (4) −0.012 (5) −0.020 (4) 0.008 (4)
F17B 0.146 (4) 0.091 (3) 0.110 (3) −0.013 (3) 0.025 (3) −0.006 (3)
F18A 0.138 (5) 0.104 (4) 0.098 (4) 0.026 (4) 0.017 (4) 0.004 (4)
F18B 0.147 (4) 0.127 (4) 0.085 (3) 0.061 (3) 0.031 (3) −0.005 (3)
P3 0.1056 (12) 0.0701 (9) 0.0491 (7) 0.0314 (8) 0.0027 (7) −0.0029 (6)
O1 0.097 (4) 0.114 (4) 0.140 (5) 0.022 (3) 0.053 (4) 0.037 (4)

Geometric parameters (Å, º)

C1—H1 0.9500 C44—C45 1.381 (7)
C1—C2 1.395 (6) C45—H45 0.9500
C1—N1 1.339 (5) C45—C46 1.379 (8)
C2—H2 0.9500 C46—H46 0.9500
C2—C3 1.371 (6) C46—C47 1.377 (9)
C3—C4 1.421 (5) C47—H47 0.9500
C3—C13 1.483 (5) C47—C48 1.385 (7)
C4—C5 1.398 (5) C48—H48 0.9500
C4—C11 1.423 (6) C49—H49 0.9500
C5—C6 1.424 (5) C49—C50 1.381 (5)
C5—N1 1.363 (5) C49—N5 1.336 (5)
C6—C7 1.396 (5) C50—H50 0.9500
C6—N2 1.357 (5) C50—C51 1.380 (5)
C7—C8 1.432 (5) C51—C52 1.426 (5)
C7—C12 1.428 (5) C51—C61 1.476 (5)
C8—C9 1.380 (6) C52—C53 1.386 (5)
C8—C19 1.477 (5) C52—C59 1.437 (5)
C9—H9 0.9500 C53—C54 1.427 (5)
C9—C10 1.391 (5) C53—N5 1.363 (4)
C10—H10 0.9500 C54—C55 1.396 (5)
C10—N2 1.336 (5) C54—N6 1.356 (5)
C11—H11 0.9500 C55—C56 1.435 (5)
C11—C12 1.357 (6) C55—C60 1.435 (5)
C12—H12 0.9500 C56—C57 1.379 (6)
C13—C14 1.387 (6) C56—C67 1.476 (5)
C13—C18 1.413 (6) C57—H57 0.9500
C14—H14 0.9500 C57—C58 1.402 (6)
C14—C15 1.385 (6) C58—H58 0.9500
C15—H15 0.9500 C58—N6 1.334 (5)
C15—C16 1.390 (8) C59—H59 0.9500
C16—H16 0.9500 C59—C60 1.365 (5)
C16—C17 1.372 (8) C60—H60 0.9500
C17—H17 0.9500 C61—C62 1.402 (5)
C17—C18 1.383 (7) C61—C66 1.384 (5)
C18—H18 0.9500 C62—H62 0.9500
C19—C20 1.406 (6) C62—C63 1.382 (6)
C19—C24 1.394 (6) C63—H63 0.9500
C20—H20 0.9500 C63—C64 1.367 (7)
C20—C21 1.391 (7) C64—H64 0.9500
C21—H21 0.9500 C64—C65 1.390 (7)
C21—C22 1.372 (8) C65—H65 0.9500
C22—H22 0.9500 C65—C66 1.384 (6)
C22—C23 1.388 (8) C66—H66 0.9500
C23—H23 0.9500 C67—C68 1.388 (6)
C23—C24 1.388 (6) C67—C72 1.406 (5)
C24—H24 0.9500 C68—H68 0.9500
C25—H25 0.9500 C68—C69 1.392 (6)
C25—C26 1.387 (6) C69—H69 0.9500
C25—N3 1.338 (5) C69—C70 1.391 (7)
C26—H26 0.9500 C70—H70 0.9500
C26—C27 1.381 (6) C70—C71 1.381 (8)
C27—C28 1.432 (5) C71—H71 0.9500
C27—C37 1.478 (5) C71—C72 1.383 (6)
C28—C29 1.400 (5) C72—H72 0.9500
C28—C35 1.430 (5) Co1—N1 1.950 (3)
C29—C30 1.428 (5) Co1—N2 1.954 (3)
C29—N3 1.363 (5) Co1—N3 1.934 (3)
C30—C31 1.396 (5) Co1—N4 1.942 (3)
C30—N4 1.359 (5) Co1—N5 1.941 (3)
C31—C32 1.434 (5) Co1—N6 1.940 (3)
C31—C36 1.427 (5) F1—P1 1.600 (3)
C32—C33 1.373 (6) F2—P1 1.592 (4)
C32—C43 1.479 (5) F3—P1 1.596 (3)
C33—H33 0.9500 F4—P1 1.595 (3)
C33—C34 1.389 (6) F5—P1 1.581 (4)
C34—H34 0.9500 F6—P1 1.588 (3)
C34—N4 1.327 (5) F7—P2 1.593 (4)
C35—H35 0.9500 F8—P2 1.569 (3)
C35—C36 1.362 (6) F9—P2 1.579 (3)
C36—H36 0.9500 F10—P2 1.583 (4)
C37—C38 1.389 (6) F11—P2 1.607 (3)
C37—C42 1.394 (6) F12—P2 1.590 (3)
C38—H38 0.9500 F13—P3 1.550 (4)
C38—C39 1.396 (6) F14—P3 1.567 (4)
C39—H39 0.9500 F15A—P3 1.583 (9)
C39—C40 1.359 (7) F15B—P3 1.580 (6)
C40—H40 0.9500 F16A—P3 1.593 (9)
C40—C41 1.392 (8) F16B—P3 1.557 (6)
C41—H41 0.9500 F17A—P3 1.636 (9)
C41—C42 1.380 (7) F17B—P3 1.608 (6)
C42—H42 0.9500 F18A—P3 1.610 (7)
C43—C44 1.400 (6) F18B—P3 1.596 (5)
C43—C48 1.389 (6) O1—H1A 0.872 (5)
C44—H44 0.9500 O1—H1B 0.870 (5)
Cg1···Cg2i 3.707 (3)
C2—C1—H1 119.2 C53—C52—C59 117.8 (3)
N1—C1—H1 119.2 C52—C53—C54 120.9 (3)
N1—C1—C2 121.6 (4) N5—C53—C52 123.8 (3)
C1—C2—H2 119.4 N5—C53—C54 115.3 (3)
C3—C2—C1 121.3 (4) C55—C54—C53 120.8 (3)
C3—C2—H2 119.4 N6—C54—C53 114.9 (3)
C2—C3—C4 117.8 (4) N6—C54—C55 124.3 (3)
C2—C3—C13 122.7 (4) C54—C55—C56 117.5 (3)
C4—C3—C13 119.4 (4) C54—C55—C60 117.7 (3)
C3—C4—C11 124.7 (4) C60—C55—C56 124.8 (3)
C5—C4—C3 118.0 (4) C55—C56—C67 123.7 (3)
C5—C4—C11 117.3 (3) C57—C56—C55 116.9 (3)
C4—C5—C6 120.9 (3) C57—C56—C67 119.4 (3)
N1—C5—C4 122.9 (3) C56—C57—H57 119.2
N1—C5—C6 116.2 (3) C56—C57—C58 121.7 (3)
C7—C6—C5 120.8 (3) C58—C57—H57 119.2
N2—C6—C5 115.3 (3) C57—C58—H58 119.1
N2—C6—C7 123.9 (3) N6—C58—C57 121.8 (4)
C6—C7—C8 117.9 (3) N6—C58—H58 119.1
C6—C7—C12 117.5 (3) C52—C59—H59 119.3
C12—C7—C8 124.6 (3) C60—C59—C52 121.3 (3)
C7—C8—C19 122.3 (3) C60—C59—H59 119.3
C9—C8—C7 116.6 (3) C55—C60—H60 119.5
C9—C8—C19 121.2 (4) C59—C60—C55 121.1 (3)
C8—C9—H9 119.0 C59—C60—H60 119.5
C8—C9—C10 122.1 (4) C62—C61—C51 118.8 (3)
C10—C9—H9 119.0 C66—C61—C51 121.9 (3)
C9—C10—H10 119.2 C66—C61—C62 119.3 (4)
N2—C10—C9 121.6 (3) C61—C62—H62 120.0
N2—C10—H10 119.2 C63—C62—C61 120.0 (4)
C4—C11—H11 119.0 C63—C62—H62 120.0
C12—C11—C4 122.0 (4) C62—C63—H63 119.9
C12—C11—H11 119.0 C64—C63—C62 120.2 (4)
C7—C12—H12 119.3 C64—C63—H63 119.9
C11—C12—C7 121.5 (4) C63—C64—H64 119.9
C11—C12—H12 119.3 C63—C64—C65 120.2 (4)
C14—C13—C3 122.0 (4) C65—C64—H64 119.9
C14—C13—C18 119.3 (4) C64—C65—H65 120.0
C18—C13—C3 118.6 (4) C66—C65—C64 120.0 (4)
C13—C14—H14 119.6 C66—C65—H65 120.0
C15—C14—C13 120.8 (4) C61—C66—C65 120.0 (4)
C15—C14—H14 119.6 C61—C66—H66 120.0
C14—C15—H15 120.3 C65—C66—H66 120.0
C14—C15—C16 119.4 (5) C68—C67—C56 122.0 (3)
C16—C15—H15 120.3 C68—C67—C72 119.0 (4)
C15—C16—H16 119.8 C72—C67—C56 119.0 (4)
C17—C16—C15 120.4 (4) C67—C68—H68 119.8
C17—C16—H16 119.8 C67—C68—C69 120.5 (4)
C16—C17—H17 119.5 C69—C68—H68 119.8
C16—C17—C18 121.1 (5) C68—C69—H69 120.1
C18—C17—H17 119.5 C70—C69—C68 119.8 (5)
C13—C18—H18 120.5 C70—C69—H69 120.1
C17—C18—C13 119.0 (5) C69—C70—H70 119.9
C17—C18—H18 120.5 C71—C70—C69 120.2 (4)
C20—C19—C8 118.7 (4) C71—C70—H70 119.9
C24—C19—C8 121.9 (4) C70—C71—H71 119.9
C24—C19—C20 119.4 (4) C70—C71—C72 120.2 (4)
C19—C20—H20 120.3 C72—C71—H71 119.9
C21—C20—C19 119.4 (5) C67—C72—H72 119.8
C21—C20—H20 120.3 C71—C72—C67 120.3 (4)
C20—C21—H21 119.7 C71—C72—H72 119.8
C22—C21—C20 120.7 (5) N1—Co1—N2 83.72 (13)
C22—C21—H21 119.7 N3—Co1—N1 175.62 (13)
C21—C22—H22 119.9 N3—Co1—N2 92.66 (13)
C21—C22—C23 120.3 (4) N3—Co1—N4 84.01 (13)
C23—C22—H22 119.9 N3—Co1—N5 94.01 (13)
C22—C23—H23 120.0 N3—Co1—N6 90.31 (13)
C22—C23—C24 120.0 (5) N4—Co1—N1 93.48 (13)
C24—C23—H23 120.0 N4—Co1—N2 89.70 (13)
C19—C24—H24 119.9 N5—Co1—N1 88.67 (13)
C23—C24—C19 120.1 (4) N5—Co1—N2 93.26 (12)
C23—C24—H24 119.9 N5—Co1—N4 176.52 (13)
C26—C25—H25 119.4 N6—Co1—N1 93.44 (13)
N3—C25—H25 119.4 N6—Co1—N2 175.65 (13)
N3—C25—C26 121.3 (3) N6—Co1—N4 93.77 (13)
C25—C26—H26 118.8 N6—Co1—N5 83.36 (12)
C27—C26—C25 122.3 (4) C1—N1—C5 118.3 (3)
C27—C26—H26 118.8 C1—N1—Co1 129.6 (3)
C26—C27—C28 117.0 (3) C5—N1—Co1 112.1 (2)
C26—C27—C37 121.5 (3) C6—N2—Co1 112.7 (2)
C28—C27—C37 121.4 (3) C10—N2—C6 118.0 (3)
C29—C28—C27 117.3 (3) C10—N2—Co1 129.4 (3)
C29—C28—C35 117.2 (3) C25—N3—C29 118.2 (3)
C35—C28—C27 125.4 (3) C25—N3—Co1 129.4 (3)
C28—C29—C30 121.0 (3) C29—N3—Co1 112.3 (2)
N3—C29—C28 123.8 (3) C30—N4—Co1 112.0 (2)
N3—C29—C30 115.2 (3) C34—N4—C30 118.0 (3)
C31—C30—C29 120.6 (3) C34—N4—Co1 130.0 (3)
N4—C30—C29 115.5 (3) C49—N5—C53 118.0 (3)
N4—C30—C31 123.7 (3) C49—N5—Co1 129.2 (3)
C30—C31—C32 117.3 (3) C53—N5—Co1 112.7 (2)
C30—C31—C36 117.7 (3) C54—N6—Co1 113.2 (2)
C36—C31—C32 124.9 (3) C58—N6—C54 117.8 (3)
C31—C32—C43 120.2 (4) C58—N6—Co1 129.0 (3)
C33—C32—C31 117.2 (3) F2—P1—F1 89.8 (2)
C33—C32—C43 122.4 (4) F2—P1—F3 89.8 (2)
C32—C33—H33 119.2 F2—P1—F4 90.6 (2)
C32—C33—C34 121.5 (4) F3—P1—F1 88.44 (17)
C34—C33—H33 119.2 F4—P1—F1 179.46 (19)
C33—C34—H34 119.0 F4—P1—F3 91.15 (17)
N4—C34—C33 122.1 (4) F5—P1—F1 90.1 (2)
N4—C34—H34 119.0 F5—P1—F2 179.5 (2)
C28—C35—H35 119.1 F5—P1—F3 89.7 (2)
C36—C35—C28 121.7 (4) F5—P1—F4 89.5 (2)
C36—C35—H35 119.1 F5—P1—F6 90.9 (2)
C31—C36—H36 119.2 F6—P1—F1 91.10 (17)
C35—C36—C31 121.5 (4) F6—P1—F2 89.6 (2)
C35—C36—H36 119.2 F6—P1—F3 179.26 (18)
C38—C37—C27 119.4 (4) F6—P1—F4 89.32 (17)
C38—C37—C42 119.6 (4) F7—P2—F11 88.6 (2)
C42—C37—C27 121.1 (4) F8—P2—F7 91.27 (19)
C37—C38—H38 120.3 F8—P2—F9 91.02 (16)
C37—C38—C39 119.3 (4) F8—P2—F10 90.2 (2)
C39—C38—H38 120.3 F8—P2—F11 179.4 (2)
C38—C39—H39 119.4 F8—P2—F12 90.37 (18)
C40—C39—C38 121.1 (4) F9—P2—F7 88.7 (2)
C40—C39—H39 119.4 F9—P2—F10 90.0 (2)
C39—C40—H40 120.2 F9—P2—F11 88.40 (18)
C39—C40—C41 119.6 (5) F9—P2—F12 178.3 (2)
C41—C40—H40 120.2 F10—P2—F7 178.0 (2)
C40—C41—H41 119.8 F10—P2—F11 89.8 (2)
C42—C41—C40 120.5 (5) F10—P2—F12 91.0 (3)
C42—C41—H41 119.8 F12—P2—F7 90.2 (3)
C37—C42—H42 120.1 F12—P2—F11 90.2 (2)
C41—C42—C37 119.8 (5) F13—P3—F14 176.9 (3)
C41—C42—H42 120.1 F13—P3—F15A 98.2 (7)
C44—C43—C32 121.1 (4) F13—P3—F15B 91.1 (3)
C48—C43—C32 119.6 (4) F13—P3—F16A 85.5 (7)
C48—C43—C44 119.1 (4) F13—P3—F16B 91.4 (3)
C43—C44—H44 120.2 F13—P3—F17A 94.8 (6)
C45—C44—C43 119.6 (4) F13—P3—F17B 86.5 (3)
C45—C44—H44 120.2 F13—P3—F18A 95.6 (4)
C44—C45—H45 119.8 F13—P3—F18B 85.4 (3)
C46—C45—C44 120.4 (5) F14—P3—F15A 84.9 (7)
C46—C45—H45 119.8 F14—P3—F15B 91.4 (4)
C45—C46—H46 119.6 F14—P3—F16A 94.4 (7)
C47—C46—C45 120.8 (5) F14—P3—F17A 82.0 (6)
C47—C46—H46 119.6 F14—P3—F17B 91.1 (4)
C46—C47—H47 120.4 F14—P3—F18A 84.3 (4)
C46—C47—C48 119.1 (5) F14—P3—F18B 96.6 (3)
C48—C47—H47 120.4 F15A—P3—F16A 91.2 (6)
C43—C48—H48 119.5 F15A—P3—F17A 166.9 (9)
C47—C48—C43 121.0 (5) F15A—P3—F18A 91.7 (8)
C47—C48—H48 119.5 F15B—P3—F17B 177.3 (4)
C50—C49—H49 119.2 F15B—P3—F18B 87.3 (4)
N5—C49—H49 119.1 F16A—P3—F17A 91.0 (9)
N5—C49—C50 121.7 (3) F16A—P3—F18A 176.7 (9)
C49—C50—H50 119.3 F16B—P3—F14 86.5 (3)
C51—C50—C49 121.4 (3) F16B—P3—F15B 93.3 (4)
C51—C50—H50 119.3 F16B—P3—F17B 88.1 (4)
C50—C51—C52 117.7 (3) F16B—P3—F18B 176.8 (3)
C50—C51—C61 120.8 (3) F18A—P3—F17A 85.9 (5)
C52—C51—C61 121.4 (3) F18B—P3—F17B 91.2 (4)
C51—C52—C59 124.8 (3) H1A—O1—H1B 104.3 (13)
C53—C52—C51 117.3 (3)
C1—C2—C3—C4 1.9 (6) C33—C32—C43—C44 126.5 (5)
C1—C2—C3—C13 179.0 (4) C33—C32—C43—C48 −58.2 (6)
C2—C1—N1—C5 −0.2 (6) C33—C34—N4—C30 0.3 (6)
C2—C1—N1—Co1 −179.7 (3) C33—C34—N4—Co1 −178.3 (3)
C2—C3—C4—C5 0.2 (5) C35—C28—C29—C30 3.0 (5)
C2—C3—C4—C11 177.6 (4) C35—C28—C29—N3 −179.9 (3)
C2—C3—C13—C14 118.2 (5) C36—C31—C32—C33 176.6 (4)
C2—C3—C13—C18 −64.2 (5) C36—C31—C32—C43 1.2 (6)
C3—C4—C5—C6 176.8 (3) C37—C27—C28—C29 176.1 (3)
C3—C4—C5—N1 −2.4 (5) C37—C27—C28—C35 0.1 (6)
C3—C4—C11—C12 −176.9 (4) C37—C38—C39—C40 0.4 (7)
C3—C13—C14—C15 176.1 (4) C38—C37—C42—C41 3.3 (7)
C3—C13—C18—C17 −174.3 (4) C38—C39—C40—C41 2.1 (8)
C4—C3—C13—C14 −64.8 (5) C39—C40—C41—C42 −1.8 (9)
C4—C3—C13—C18 112.8 (5) C40—C41—C42—C37 −0.9 (8)
C4—C5—C6—C7 −0.3 (5) C42—C37—C38—C39 −3.1 (6)
C4—C5—C6—N2 178.9 (3) C43—C32—C33—C34 178.0 (4)
C4—C5—N1—C1 2.4 (5) C43—C44—C45—C46 −1.9 (8)
C4—C5—N1—Co1 −177.9 (3) C44—C43—C48—C47 2.7 (8)
C4—C11—C12—C7 1.0 (6) C44—C45—C46—C47 1.9 (10)
C5—C4—C11—C12 0.5 (6) C45—C46—C47—C48 0.4 (10)
C5—C6—C7—C8 179.1 (3) C46—C47—C48—C43 −2.7 (10)
C5—C6—C7—C12 1.8 (5) C48—C43—C44—C45 −0.4 (7)
C5—C6—N2—C10 −178.6 (3) C49—C50—C51—C52 0.3 (5)
C5—C6—N2—Co1 0.0 (4) C49—C50—C51—C61 −177.0 (3)
C6—C5—N1—C1 −176.8 (3) C50—C49—N5—C53 0.5 (5)
C6—C5—N1—Co1 2.9 (4) C50—C49—N5—Co1 176.9 (3)
C6—C7—C8—C9 −0.7 (5) C50—C51—C52—C53 1.4 (5)
C6—C7—C8—C19 −179.0 (3) C50—C51—C52—C59 −174.8 (3)
C6—C7—C12—C11 −2.1 (6) C50—C51—C61—C62 53.0 (5)
C7—C6—N2—C10 0.6 (5) C50—C51—C61—C66 −126.4 (4)
C7—C6—N2—Co1 179.2 (3) C51—C52—C53—C54 177.5 (3)
C7—C8—C9—C10 0.8 (6) C51—C52—C53—N5 −2.3 (5)
C7—C8—C19—C20 132.8 (4) C51—C52—C59—C60 −177.9 (4)
C7—C8—C19—C24 −47.5 (5) C51—C61—C62—C63 177.3 (4)
C8—C7—C12—C11 −179.3 (4) C51—C61—C66—C65 −178.0 (4)
C8—C9—C10—N2 −0.3 (6) C52—C51—C61—C62 −124.1 (4)
C8—C19—C20—C21 −178.9 (4) C52—C51—C61—C66 56.4 (5)
C8—C19—C24—C23 178.6 (4) C52—C53—C54—C55 0.5 (5)
C9—C8—C19—C20 −45.5 (5) C52—C53—C54—N6 −179.2 (3)
C9—C8—C19—C24 134.3 (4) C52—C53—N5—C49 1.4 (5)
C9—C10—N2—C6 −0.5 (5) C52—C53—N5—Co1 −175.6 (3)
C9—C10—N2—Co1 −178.8 (3) C52—C59—C60—C55 −0.1 (6)
C11—C4—C5—C6 −0.9 (5) C53—C52—C59—C60 5.8 (5)
C11—C4—C5—N1 180.0 (3) C53—C54—C55—C56 −175.9 (3)
C12—C7—C8—C9 176.5 (4) C53—C54—C55—C60 5.2 (5)
C12—C7—C8—C19 −1.9 (6) C53—C54—N6—C58 176.3 (3)
C13—C3—C4—C5 −177.0 (3) C53—C54—N6—Co1 −5.5 (4)
C13—C3—C4—C11 0.5 (6) C54—C53—N5—C49 −178.4 (3)
C13—C14—C15—C16 −0.6 (7) C54—C53—N5—Co1 4.6 (4)
C14—C13—C18—C17 3.4 (7) C54—C55—C56—C57 −1.6 (5)
C14—C15—C16—C17 0.9 (7) C54—C55—C56—C67 177.9 (3)
C15—C16—C17—C18 1.1 (8) C54—C55—C60—C59 −5.4 (5)
C16—C17—C18—C13 −3.2 (7) C55—C54—N6—C58 −3.4 (6)
C18—C13—C14—C15 −1.6 (6) C55—C54—N6—Co1 174.7 (3)
C19—C8—C9—C10 179.2 (4) C55—C56—C57—C58 −0.8 (6)
C19—C20—C21—C22 0.0 (7) C55—C56—C67—C68 −43.7 (6)
C20—C19—C24—C23 −1.7 (6) C55—C56—C67—C72 138.2 (4)
C20—C21—C22—C23 −0.9 (7) C56—C55—C60—C59 175.8 (4)
C21—C22—C23—C24 0.5 (7) C56—C57—C58—N6 1.2 (7)
C22—C23—C24—C19 0.8 (6) C56—C67—C68—C69 −178.9 (4)
C24—C19—C20—C21 1.3 (6) C56—C67—C72—C71 178.7 (4)
C25—C26—C27—C28 −1.3 (6) C57—C56—C67—C68 135.8 (4)
C25—C26—C27—C37 −178.6 (4) C57—C56—C67—C72 −42.3 (5)
C26—C25—N3—C29 0.7 (6) C57—C58—N6—C54 0.8 (6)
C26—C25—N3—Co1 −178.7 (3) C57—C58—N6—Co1 −177.0 (3)
C26—C27—C28—C29 −1.3 (5) C59—C52—C53—C54 −6.0 (5)
C26—C27—C28—C35 −177.3 (4) C59—C52—C53—N5 174.2 (3)
C26—C27—C37—C38 48.8 (5) C60—C55—C56—C57 177.2 (4)
C26—C27—C37—C42 −132.9 (4) C60—C55—C56—C67 −3.2 (6)
C27—C28—C29—C30 −173.4 (3) C61—C51—C52—C53 178.7 (3)
C27—C28—C29—N3 3.8 (5) C61—C51—C52—C59 2.4 (5)
C27—C28—C35—C36 171.4 (4) C61—C62—C63—C64 0.4 (6)
C27—C37—C38—C39 175.2 (4) C62—C61—C66—C65 2.6 (6)
C27—C37—C42—C41 −174.9 (5) C62—C63—C64—C65 3.1 (7)
C28—C27—C37—C38 −128.4 (4) C63—C64—C65—C66 −3.8 (7)
C28—C27—C37—C42 49.9 (6) C64—C65—C66—C61 1.0 (7)
C28—C29—C30—C31 1.9 (5) C66—C61—C62—C63 −3.3 (6)
C28—C29—C30—N4 177.1 (3) C67—C56—C57—C58 179.7 (4)
C28—C29—N3—C25 −3.5 (5) C67—C68—C69—C70 0.4 (6)
C28—C29—N3—Co1 176.0 (3) C68—C67—C72—C71 0.5 (6)
C28—C35—C36—C31 1.3 (6) C68—C69—C70—C71 0.2 (7)
C29—C28—C35—C36 −4.6 (6) C69—C70—C71—C72 −0.4 (7)
C29—C30—C31—C32 171.2 (3) C70—C71—C72—C67 0.0 (6)
C29—C30—C31—C36 −5.1 (5) C72—C67—C68—C69 −0.7 (6)
C29—C30—N4—C34 −171.9 (3) N1—C1—C2—C3 −2.0 (6)
C29—C30—N4—Co1 7.0 (4) N1—C5—C6—C7 178.9 (3)
C30—C29—N3—C25 173.8 (3) N1—C5—C6—N2 −1.9 (4)
C30—C29—N3—Co1 −6.6 (4) N2—C6—C7—C8 0.0 (5)
C30—C31—C32—C33 0.6 (5) N2—C6—C7—C12 −177.4 (3)
C30—C31—C32—C43 −174.8 (3) N3—C25—C26—C27 1.7 (6)
C30—C31—C36—C35 3.6 (6) N3—C29—C30—C31 −175.5 (3)
C31—C30—N4—C34 3.2 (5) N3—C29—C30—N4 −0.3 (5)
C31—C30—N4—Co1 −177.9 (3) N4—C30—C31—C32 −3.7 (5)
C31—C32—C33—C34 2.7 (6) N4—C30—C31—C36 −180.0 (3)
C31—C32—C43—C44 −58.4 (5) N5—C49—C50—C51 −1.3 (6)
C31—C32—C43—C48 117.0 (5) N5—C53—C54—C55 −179.7 (3)
C32—C31—C36—C35 −172.4 (4) N5—C53—C54—N6 0.6 (5)
C32—C33—C34—N4 −3.3 (6) N6—C54—C55—C56 3.8 (5)
C32—C43—C44—C45 175.0 (4) N6—C54—C55—C60 −175.1 (3)
C32—C43—C48—C47 −172.8 (5)

Symmetry code: (i) x+1, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3 and Cg4 are the centroids of atoms C19–C24, C67–C72, C37–C42 and N5/C49–C53, respectively.

D—H···A D—H H···A D···A D—H···A
C1—H1···O1 0.95 2.52 3.132 (7) 122
C2—H2···F17A 0.95 2.54 3.344 (14) 143
C9—H9···F7ii 0.95 2.46 3.300 (5) 148
C10—H10···F9ii 0.95 2.33 3.173 (5) 148
C10—H10···F11ii 0.95 2.80 3.383 (5) 120
C25—H25···F1 0.95 2.45 3.204 (5) 136
C26—H26···F3 0.95 2.59 3.297 (5) 132
C42—H42···F15Biii 0.95 2.36 3.096 (7) 134
C48—H48···F7 0.95 2.39 3.328 (6) 172
C48—H48···F8 0.95 2.59 3.278 (6) 130
C49—H49···F18Aii 0.95 2.13 2.850 (9) 132
C50—H50···F13ii 0.95 2.53 3.180 (5) 126
C50—H50···F17Bii 0.95 2.72 3.392 (10) 129
C57—H57···F11 0.95 2.61 3.349 (5) 135
C58—H58···F12 0.95 2.26 2.963 (5) 130
O1—H1A···F17A 0.87 (1) 2.25 (7) 2.965 (17) 139 (9)
O1—H1A···F17B 0.87 (1) 2.19 (8) 2.817 (10) 128 (8)
O1—H1B···F11 0.87 (1) 2.28 (7) 2.977 (7) 137 (8)
C17—H17···Cg3iv 0.95 2.80 3.525 (6) 134
C46—H46···Cg4iii 0.95 2.72 3.670 (6) 177
C63—H63···Cg5v 0.95 2.59 3.466 (5) 154

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, y−1/2, −z+3/2; (v) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by University of Carthage; Tunisian Ministry of Higher Education and Scientific Research.

References

  1. Alatrash, N. & Macdonnell, F. (2020). CSD Communication (refcode: LAKCIN). CCDC, Cambridge, England.
  2. Caspar, R., Cordier, C., Waern, J. B., Guyard-Duhayon, C., Gruselle, M., Le Floch, P. & Amouri, H. (2006). Inorg. Chem. 45, 4071–4078. [DOI] [PubMed]
  3. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Goldstein, B. M., Barton, J. K. & Berman, H. M. (1986). Inorg. Chem. 25, 842–847.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hadadzadeh, H., Mansouri, G., Rezvani, A., Khavasi, H. R., Skelton, B. W., Makha, M. & Charati, F. R. (2011). Polyhedron, 30, 2535–2543.
  8. Heinemann, F., Karges, J. & Gasser, G. (2017). Acc. Chem. Res. 50, 2727–2736. [DOI] [PubMed]
  9. Howerton, B. S., Heidary, D. K. & Glazer, E. C. (2012). J. Am. Chem. Soc. 134, 8324–8327. [DOI] [PubMed]
  10. McFarland, S. A., Mandel, A., Dumoulin-White, R. & Gasser, G. (2020). Curr. Opin. Chem. Biol. 56, 23–27. [DOI] [PMC free article] [PubMed]
  11. McLaurin, E. J., Greytak, A. B., Bawendi, M. G. & Nocera, D. G. (2009). J. Am. Chem. Soc. 131, 12994–13001. [DOI] [PMC free article] [PubMed]
  12. Monro, S., Colón, K. L., Yin, H., Roque, J., Konda, P., Gujar, S., Thummel, R. P., Lilge, L., Cameron, C. G. & McFarland, S. A. (2019). Chem. Rev. 119, 797–828. [DOI] [PMC free article] [PubMed]
  13. Nagababu, P., Shilpa, M., Satyanarayana, S., Latha, J. N. L., Karthikeyan, K. S. & Rajesh, M. (2008). Transition Met. Chem. 33, 1027–1033.
  14. Otter, C. A. & Hartshorn, R. M. (2004). Dalton Trans. pp. 150–156. [DOI] [PubMed]
  15. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Sapp, S. A., Elliott, C. M., Contado, C., Caramori, S. & Bignozzi, C. A. (2002). J. Am. Chem. Soc. 124, 11215–11222. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Wang, X.-L., Chao, H., Li, H., Hong, X.-L., Liu, Y.-J., Tan, L.-F. & Ji, L.-N. (2004). J. Inorg. Biochem. 98, 1143–1150. [DOI] [PubMed]
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Yang, C., Nikiforidis, G., Park, J. Y., Choi, J., Luo, Y., Zhang, L., Wang, S.-C., Chan, Y.-T., Lim, J., Hou, Z., Baik, M.-H., Lee, Y. & Byon, H. R. (2018). Adv. Energy Mater. 8, 1702897.
  22. Zhang, Q.-L., Liu, J.-G., Chao, H., Xue, G.-Q. & Ji, L.-N. (2001). J. Inorg. Biochem. 83, 49–55. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001359/wm5634sup1.cif

e-78-00313-sup1.cif (2.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001359/wm5634Isup2.hkl

CCDC reference: 2149884

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES