Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 3;78(Pt 3):270–274. doi: 10.1107/S2056989022001074

Synthesis and crystal structure of poly[[di-μ3-tetra­thio­anti­monato-tris­[(cyclam)cobalt(II)]] aceto­nitrile disolvate dihydrate] (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)

Christian Näther a, Felix Danker a, Wolfgang Bensch a,*
PMCID: PMC8900515  PMID: 35371547

In the crystal structure of the title compound, the [SbS4]3− anions are linked by the Co(cyclam) complex cations into rings, which are further connected into layers that are linked by inter­molecular hydrogen bonding via the water solvate mol­ecules and are arranged in such a way that cavities are formed, in which the disordered aceto­nitrile solvate mol­ecules are located.

Keywords: crystal structure, cobalt thio­anti­monate, layered structure, hydrogen bonding

Abstract

Reaction of Co(ClO4)2·6H2O with cyclam (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) and Na3SbS4·9H2O (Schlippesches salt) in a mixture of aceto­nitrile and water leads to the formation of crystals of the title compound with the composition {[Co3(SbS4)2(C10H24N4)3]·2CH3CN·2H2O} n or {[(Co-cyclam)3(SbS4)2]·2(aceto­nitrile)·2H2O} n . The crystal structure of the title compound consists of three crystallographically independent [Co-cyclam]2+ cations, which are located on centers of inversion, one [SbS4]3− anion, one water and one aceto­nitrile mol­ecule that occupy general positions. The aceto­nitrile mol­ecule is disordered over two orientations and was refined using a split model. The CoII cations are coordinated by four N atoms of the cyclam ligand and two trans-S atoms of the tetra­thio­anti­monate anion within slightly distorted octa­hedra. The unique [SbS4]3− anion is coordinated to all three crystallographically independent CoII cations and this unit, with its symmetry-related counterparts, forms rings composed of six Co-cyclam cations and six tetra­thio­anti­monate anions that are further condensed into layers. These layers are perfectly stacked onto each other so that channels are formed in which acetontrile solvate mol­ecules that are hydrogen bonded to the anions are embedded. The water solvate mol­ecules are located between the layers and are connected to the cyclam ligands and the [SbS4]3− anions via inter­molecular N—H⋯O and O—H⋯S hydrogen bonding.

Chemical context

Inorganic–organic chalcogenidometallates are an important class of compounds and many such compounds have been reported in the literature (Sheldrick & Wachhold, 1988; Bensch et al., 1997; Dehnen & Melullis, 2007; Wang et al., 2016; Zhou, 2016; Zhu & Dai, 2017; Nie et al., 2017). A large part of this family of compounds consists of thio­anti­monates, which exhibit a variety of coordination numbers that can lead to networks of different dimensionality (Jia et al., 2004; Powell et al., 2005; Spetzler et al., 2004; Zhang et al., 2007; Liu & Zhou, 2011; Engelke et al., 2004; Puls et al., 2006). Moreover, some of them have potential for applications, for example in the field of superionic conductors (Zhou et al., 2019) or as photoconductive materials (Pienack et al., 2008a ). For these reasons, we have explored such compounds over many years (Schaefer et al., 2003; Stähler et al., 2001; Schur et al., 1998, 2001; Kiebach et al., 2004; Spetzler et al., 2004; Lühmann et al., 2008; Pienack et al., 2008b ). In the beginning, we synthesized new thio­anti­monates using elemental anti­mony, sulfur and amine mol­ecules under solvothermal conditions but later we found that many of these compounds are also available under solvothermal conditions if Schlippesches salt (Na3SbS4·9H2O) or NaSbS3 are used as reactants (Anderer et al., 2014, 2016; Danker et al., 2020). In this case, different SbS x species are present in solution, because Schlippesches salt is unstable and forms different reactive species such as [SbS3O]3−, HS, [S2O3]2− or [SbS4]3− anions (Rammelsberg, 1841; Long & Bowen, 1970; Mosselmanns et al., 2000; Planer-Friedrich & Scheinost, 2011; Planer-Friedrich & Wilson, 2012; Anderer et al., 2014). In addition, a variety of complex redox and condensation reactions occur, generating polymeric thio­anti­monate(III) anions, which are found in the structures of the reaction products. To prevent the reduction of SbV to SbIII, a different synthesis strategy is required and the reaction temperature must be reduced to slow down the decomposition of Schlippesches salt. Using an aqueous solution of Na3SbS4·9H2O and adding a solution of late transition-metal cations leads to immediate precipitation of sulfides or hydroxides, even when chelating amine mol­ecules are added. To solve the problem we developed a two-solution strategy: an organic solution contains the transition-metal cations and the chelating amine mol­ecule and a second solution comprises Schlippesches salt. In the organic solution, the transition-metal complex is already generated in situ and mixing the two solutions leads to nucleation and successive growth of the product. A challenge is the integration of transition-metal cations into a thio­anti­monate(V) network, despite the [SbS4]3− anion offering four possible binding sites. In the course of this project we became inter­ested in cyclam (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne), which is a tetra­dentate ligand. This means that in an octa­hedral coordination of a transition-metal cation, two coordination sites are provided to which thio­anti­monate(V) anions can coordinate, which, depending on the nature of the anion, can lead to the formation of the desired thio­anti­monate(V) networks. graphic file with name e-78-00270-scheme1.jpg

In this context, we have reported on two new polymeric thio­anti­monates with the composition [(Cu-cyclam)3(SbS4)2]·20H2O and [(Zn-cyclam)3(SbS4)2]·8H2O (Danker et al., 2021). In the crystal structure of the Cu compound, the copper cations are sixfold coordinated by the four N atoms of the cyclam ligand and two trans-sulfur atoms of the [SbS4]3− anions within slightly distorted octa­hedra. The copper cations are linked by the anions into rings by corner-sharing SbS4 and CuN4S2 units, which are condensed into layers. These layers are stacked in such a way that large pores are formed. Between the layers, water mol­ecules are embedded. At first glance, the arrangement of the building blocks in the crystal structure of the Zn compound looks similar, but in this case the ZnII cation is disordered above and below the N4 plane in a 1:1 ratio, which means that it is in a fivefold coordination of the four N atoms of the cyclam ligand and one S atom of the [SbS4]3− anions in a square-pyramidal geometry. The structural difference between the Cu and Zn coordinations was reproduced by DFT calculations (Danker et al., 2021). In the course of our systematic work we tried to prepare a similar compound with cobalt using the same synthetic approach. This led to crystals of the title compound, which were characterized by single-crystal X-ray diffraction.

Structural commentary

The asymmetric unit of the title compound consists of three crystallographically independent CoII cations and three independent cyclam ligands that are located on centers of inversion, as well as one [SbS4]3− anion, one water and one aceto­nitrile mol­ecule that occupy general positions (Fig. 1). The aceto­nitrile mol­ecule is disordered over two orientations and was refined using a split model (see Refinement). The CoII cations are six-coordinate being bound to the four N atoms of cyclam ligand that are located in the equatorial plane and two trans-S atoms of two inversion-related tetra­thio­anti­monate anions that occupy the apical positions (Fig. 2). The Co—N bond lengths are very similar for the three crystallographically independent CoII cations whereas significant differences are found for the Co—S bond lengths (Table 1). These changes, however, do not correlate with the Sb—S distances (Table 1). The angles around the Co centers prove that the octa­hedra are slightly distorted (see supporting information). The cyclam ligands are in the trans-III(S,S,R,R) configuration, which is the most stable arrangement for the first row transition-metal cation-centered cyclam complexes (Bosnich et al., 1965).

Figure 1.

Figure 1

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. The hydrogen atoms are omitted for clarity and the disordering of the aceto­nitrile ligands is shown with full and open bonds. Symmetry codes for the generation of equivalent atoms: (i) −x + 1, −y, −z + 2; (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 2, −y, −z + 1.

Figure 2.

Figure 2

Crystal structure of the title compound with a view of the coordination sphere of the three crystallographically independent Co cations.

Table 1. Selected bond lengths (Å).

Sb1—S4 2.3195 (13) S1—Co1 2.7258 (12)
Sb1—S1 2.3200 (12) S2—Co2 2.6932 (11)
Sb1—S3 2.3221 (12) S3—Co3 2.7821 (12)
Sb1—S2 2.3382 (11)    

The Sb—S bond lengths in the tetra­thio­anti­monate anion (Table 1) are comparable and correspond to those observed in other compounds with this anion. From the S—Sb—S bond angles it is obvious that the tetra­hedron is only slightly distorted (see supporting information). The [SbS4]3− anion shows the rare tridentate coordination mode and is linked to each of the three crystallographically independent CoII cations and with inversion-related counterparts, forming rings composed of six [SbS4]3− anions and six [Co(cyclam]2+ cations (Fig. 3). These rings are condensed into layers parallel to the bc plane (Fig. 4). This layer topology is identical to that in [Cu(cyclam)3[SbS4)2]·20H2O but the two compounds are not isotypic (Danker et al., 2021). The layers are stacked perfectly onto each other, forming channels extending along the a-axis direction (Fig. 5).

Figure 3.

Figure 3

Crystal structure of the title compound with a view of an 24-membered ring composed of six Co cations and six [SbS4]3− anions.

Figure 4.

Figure 4

Crystal structure of the title compound with a view of the Co3(SbS4)2 network along the crystallographic a axis. The cyclam ligands are not shown for clarity.

Figure 5.

Figure 5

Crystal structure of the title compound with a view in the a-axis direction with inter­molecular hydrogen bonding shown as dashed lines. The disorder of the aceto­nitrile mol­ecules is omitted for clarity.

Supra­molecular features

Within the channels are embedded aceto­nitrile solvate mol­ecules that are disordered and hydrogen bonded to the tetra­thio­anti­monate anion (Fig. 5). The C—H⋯S angles are close to linear, indicating that this is a significant inter­action (Table 2). Water mol­ecules are located between the layers and are connected to the [SbS4]3− anions via inter­molecular O—H⋯S hydrogen bonding, which is classed as strong because the angles are close to linearity and relatively short H⋯S distances are observed (Table 2). These water mol­ecules also act as acceptors for N—H⋯O hydrogen bonding to the cyclam ligands (Table 2). The layers are linked by additional C—H⋯S and N—H⋯S hydrogen bonds between the cyclam ligands and the tetra­thio­anti­monate anions. There are additional H⋯S contacts but at distances close to van der Waals contacts with angles ranging between about 110 and 125°.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 1.00 2.48 3.442 (4) 161
C1—H1B⋯S4ii 0.99 2.95 3.858 (5) 152
N2—H2⋯S4 1.00 2.49 3.448 (4) 159
N11—H11⋯O1iii 1.00 2.23 3.151 (6) 153
N12—H12⋯S3iv 1.00 2.43 3.378 (4) 157
N21—H21⋯O1 1.00 2.08 2.920 (6) 141
N22—H22⋯S1 1.00 2.35 3.290 (4) 156
O1—H1C⋯S2iii 0.84 2.49 3.276 (4) 157
O1—H1D⋯S4v 0.84 2.46 3.280 (4) 166
C32—H32B⋯S4 0.98 2.81 3.71 (4) 154
C32′—H32F⋯S4 0.98 2.88 3.85 (5) 172

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Database survey

A search for structures of cobalt-centered cylam complexes in the Cambridge Structural Database (CSD version 5.42, last update November 2020; Groom et al., 2016) gave 152 hits, in four of which the cobalt cations are in an N4S2 coordination. In one of these structures (Refcode: NIMVIQ; Zeisler et al., 2013), a thio­stannate acts as anion but none of them contains thio­anti­monate anions. The same results are obtained if the search is expanded to any transition-metal cation. Therefore, only the Cu and Zn compounds mentioned above have been published (Danker et al., 2021).

However, 21 structures with CoII and tetra­thio­anti­monate anions have been published and in two of these structures, the cobalt cations are linked to a tetra­thio­anti­monate anion, viz. [Co(di­ethyl­enetri­amine)2][Co(tris­(2-amino­meth­yl)amine)SbS4]2·4H2O (Engelke et al., 2008) and [Co(di­ethyl­enetri­am­ine)2][Co(tris­(2-amino­meth­yl)amine)SbS4]2·0.5H2O (Lich­te, et al., 2009).

Synthesis and crystallization

Synthesis of Na3SbS4·9H2O

Na3SbS4·9H2O was synthesized by adding 16.6 g (0.213 mol) of Na2xH2O (technical grade, purchased from Acros Organics) to 58 mL of demineralized water. This solution was heated to 323 K for 1 h. Afterwards, 19.6 g (0.058 mol) of Sb2S3 (98%, purchased from Alfa Aesar) and 3.69 g (0.115 mol) of sulfur (min. 99%, purchased from Alfa Aesar) were added and the reaction mixture was heated to 343 K for 6 h. The reaction mixture was filtered and the filtrate was stored overnight, leading to the formation of slightly yellow crystals, which were filtered off, washed with small amounts of water and dried under vacuum (yield about 30% based on Sb2S3).

Synthesis of the title compound

16 mg (0.044 mmol) of Co(ClO4)2·6H2O (purchased from Alfa Aesar) and 16 mg (0.08 mmol) of cyclam (purchased from Strem Chemicals) were dissolved in 2 mL of aceto­nitrile (purchased from Merck). To this solution, a solution of 50 mg (0.14 mmol) of Na3SbS4·9H2O dissolved in 1 mL of H2O was added. Within 3d a few colorless crystals of the title compound were obtained, which were always contaminated with an additional and unknown phase that is amorphous to X-rays. This additional phase is also present if the reaction conditions are varied slightly. Therefore, one of the colorless crystals was selected for structure determination.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were refined anisotropically. The C- and N-bound H atoms were located in the difference map but were positioned with ideal­ized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with U iso(H) = 1.2U eq(C,N) (1.5 for methyl H atoms) using a riding model. The O-bound H atoms were located in the difference map, their bond lengths were set to ideal values and finally they were refined isotrop­ically with U iso(H) = 1.5U eq(O) using a riding model. The acetontrile mol­ecule is disordered over two orientations and was refined using a split model (ratio: 1:1) with restraints for the geometry and the components of the anisotropic displacement parameters.

Table 3. Experimental details.

Crystal data
Chemical formula [Co3(SbS4)2(C10H24N4)3]·2C2H3N·2H2O
M r 1395.90
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 200
a, b, c (Å) 8.7292 (3), 12.9680 (5), 13.8936 (5)
α, β, γ (°) 66.218 (3), 77.035 (3), 83.321 (3)
V3) 1401.93 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.16
Crystal size (mm) 0.15 × 0.10 × 0.07
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-RED and X-SHAPE; Stoe, 2008)
T min, T max 0.649, 0.774
No. of measured, independent and observed [I > 2σ(I)] reflections 15304, 6098, 5078
R int 0.030
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.126, 1.06
No. of reflections 6098
No. of parameters 321
No. of restraints 87
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −1.56

Computer programs: X-AREA (Stoe, 2008), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001074/mw2184sup1.cif

e-78-00270-sup1.cif (529.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001074/mw2184Isup2.hkl

e-78-00270-Isup2.hkl (484.7KB, hkl)

CCDC reference: 2146891

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support by the state of Schleswig-Holstein is gratefully acknowledged.

supplementary crystallographic information

Crystal data

[Co3(SbS4)2(C10H24N4)3]·2C2H3N·2H2O Z = 1
Mr = 1395.90 F(000) = 711
Triclinic, P1 Dx = 1.653 Mg m3
a = 8.7292 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.9680 (5) Å Cell parameters from 15304 reflections
c = 13.8936 (5) Å θ = 1.6–27.0°
α = 66.218 (3)° µ = 2.16 mm1
β = 77.035 (3)° T = 200 K
γ = 83.321 (3)° Block, red
V = 1401.93 (9) Å3 0.15 × 0.10 × 0.07 mm

Data collection

Stoe IPDS-2 diffractometer 5078 reflections with I > 2σ(I)
ω scans Rint = 0.030
Absorption correction: numerical (X-Red and X-Shape; Stoe, 2008) θmax = 27.0°, θmin = 1.6°
Tmin = 0.649, Tmax = 0.774 h = −11→11
15304 measured reflections k = −16→16
6098 independent reflections l = −17→17

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.084P)2 + 0.1597P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126 (Δ/σ)max = 0.047
S = 1.06 Δρmax = 0.81 e Å3
6098 reflections Δρmin = −1.56 e Å3
321 parameters Extinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
87 restraints Extinction coefficient: 0.0136 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Sb1 0.73888 (3) 0.19084 (2) 0.69041 (2) 0.03283 (12)
S1 0.64905 (15) 0.01167 (10) 0.80137 (9) 0.0414 (3)
S2 0.51359 (13) 0.30840 (9) 0.67415 (9) 0.0380 (3)
S3 0.86596 (14) 0.19636 (10) 0.52265 (9) 0.0416 (3)
S4 0.90553 (14) 0.24527 (12) 0.76901 (10) 0.0461 (3)
Co1 0.500000 0.000000 1.000000 0.0350 (2)
N1 0.6290 (4) −0.1388 (3) 1.0629 (3) 0.0392 (8)
H1 0.583701 −0.171109 1.141506 0.047*
C1 0.7871 (6) −0.1025 (5) 1.0528 (4) 0.0461 (11)
H1A 0.847663 −0.085872 0.979114 0.055*
H1B 0.843932 −0.162998 1.103578 0.055*
C2 0.7700 (6) 0.0016 (5) 1.0773 (4) 0.0465 (11)
H2A 0.720658 −0.016978 1.153611 0.056*
H2B 0.874555 0.032869 1.063722 0.056*
N2 0.6701 (5) 0.0849 (3) 1.0071 (3) 0.0391 (8)
H2 0.736736 0.114228 0.933522 0.047*
C3 0.6268 (7) 0.1831 (4) 1.0369 (4) 0.0465 (11)
H3A 0.723689 0.218535 1.033103 0.056*
H3B 0.567730 0.157340 1.111845 0.056*
C4 0.5275 (7) 0.2697 (4) 0.9642 (4) 0.0502 (12)
H4A 0.584251 0.290889 0.889012 0.060*
H4B 0.515488 0.338203 0.980459 0.060*
C5 0.3653 (6) 0.2311 (4) 0.9738 (4) 0.0462 (11)
H5A 0.309991 0.205729 1.049576 0.055*
H5B 0.304013 0.295721 0.930767 0.055*
Co2 0.500000 0.500000 0.500000 0.0342 (2)
N11 0.3450 (4) 0.4238 (3) 0.4693 (3) 0.0375 (8)
H11 0.350102 0.342674 0.518595 0.045*
C11 0.1850 (5) 0.4666 (4) 0.5023 (4) 0.0422 (10)
H11A 0.105455 0.411439 0.515475 0.051*
H11B 0.160604 0.538662 0.445200 0.051*
C12 0.1825 (5) 0.4840 (4) 0.6041 (4) 0.0422 (10)
H12A 0.083455 0.523577 0.622556 0.051*
H12B 0.188964 0.410337 0.664261 0.051*
N12 0.3180 (4) 0.5518 (3) 0.5857 (3) 0.0370 (8)
H12 0.291146 0.630110 0.537533 0.044*
C13 0.3355 (6) 0.5600 (4) 0.6854 (4) 0.0433 (10)
H13A 0.348209 0.483093 0.739725 0.052*
H13B 0.238416 0.594863 0.713526 0.052*
C14 0.4744 (7) 0.6285 (5) 0.6695 (5) 0.0500 (12)
H14A 0.471829 0.639111 0.736564 0.060*
H14B 0.464296 0.703873 0.612383 0.060*
C15 0.6317 (6) 0.5751 (4) 0.6397 (4) 0.0435 (10)
H15A 0.717003 0.616669 0.643320 0.052*
H15B 0.637578 0.496295 0.691914 0.052*
Co3 1.000000 0.000000 0.500000 0.0441 (2)
N21 0.8192 (5) −0.0196 (3) 0.4448 (3) 0.0409 (9)
H21 0.851395 −0.081969 0.418885 0.049*
C21 0.6910 (6) −0.0636 (5) 0.5384 (5) 0.0480 (11)
H21A 0.610940 −0.097814 0.520863 0.058*
H21B 0.639594 −0.001829 0.559812 0.058*
C22 0.7616 (6) −0.1511 (4) 0.6284 (4) 0.0484 (12)
H22A 0.680551 −0.178519 0.694862 0.058*
H22B 0.805027 −0.216022 0.609610 0.058*
N22 0.8886 (5) −0.0960 (3) 0.6442 (3) 0.0401 (9)
H22 0.833782 −0.042725 0.677357 0.048*
C23 0.9780 (7) −0.1761 (4) 0.7226 (4) 0.0477 (12)
H23A 1.027418 −0.235259 0.696736 0.057*
H23B 0.904885 −0.213090 0.791464 0.057*
C24 1.1039 (7) −0.1201 (5) 0.7413 (4) 0.0549 (13)
H24A 1.148426 −0.175116 0.802670 0.066*
H24B 1.055165 −0.056814 0.761253 0.066*
C25 1.2359 (6) −0.0757 (5) 0.6455 (4) 0.0496 (12)
H25A 1.320806 −0.049907 0.666612 0.060*
H25B 1.279912 −0.137189 0.621601 0.060*
O1 0.7600 (5) −0.1823 (3) 0.3619 (3) 0.0554 (9)
H1C 0.704099 −0.205901 0.333522 0.08 (2)*
H1D 0.850839 −0.202701 0.339072 0.10 (3)*
N31 0.748 (3) 0.4588 (19) 1.0545 (11) 0.116 (7) 0.5
C31 0.815 (5) 0.457 (4) 0.9743 (13) 0.101 (7) 0.5
C32 0.908 (4) 0.469 (4) 0.8707 (12) 0.090 (7) 0.5
H32A 0.899961 0.547550 0.820009 0.135* 0.5
H32B 0.869880 0.419111 0.844728 0.135* 0.5
H32C 1.018580 0.449588 0.876821 0.135* 0.5
N31' 0.814 (3) 0.4114 (18) 1.0734 (10) 0.112 (7) 0.5
C31' 0.833 (5) 0.452 (4) 0.9817 (11) 0.093 (7) 0.5
C32' 0.854 (5) 0.488 (4) 0.8670 (12) 0.122 (12) 0.5
H32D 0.943593 0.537807 0.831978 0.183* 0.5
H32E 0.758528 0.529186 0.843259 0.183* 0.5
H32F 0.873030 0.422251 0.847836 0.183* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sb1 0.03142 (17) 0.03401 (17) 0.02939 (17) −0.00144 (10) −0.00454 (10) −0.00920 (11)
S1 0.0463 (6) 0.0347 (5) 0.0360 (6) −0.0044 (4) 0.0013 (5) −0.0103 (5)
S2 0.0336 (5) 0.0376 (5) 0.0357 (6) 0.0022 (4) −0.0059 (4) −0.0085 (4)
S3 0.0441 (6) 0.0424 (6) 0.0312 (5) 0.0026 (5) −0.0021 (4) −0.0111 (5)
S4 0.0384 (6) 0.0608 (7) 0.0406 (6) −0.0107 (5) −0.0073 (5) −0.0189 (6)
Co1 0.0331 (4) 0.0364 (4) 0.0342 (4) −0.0022 (3) −0.0069 (3) −0.0119 (3)
N1 0.0383 (19) 0.041 (2) 0.0338 (19) 0.0015 (16) −0.0068 (15) −0.0103 (16)
C1 0.036 (2) 0.055 (3) 0.044 (3) 0.002 (2) −0.0090 (19) −0.016 (2)
C2 0.038 (2) 0.061 (3) 0.039 (3) −0.008 (2) −0.0099 (19) −0.016 (2)
N2 0.040 (2) 0.045 (2) 0.0311 (18) −0.0077 (16) −0.0064 (15) −0.0122 (16)
C3 0.060 (3) 0.043 (3) 0.041 (3) −0.014 (2) −0.007 (2) −0.018 (2)
C4 0.065 (3) 0.040 (2) 0.040 (3) −0.010 (2) 0.000 (2) −0.013 (2)
C5 0.053 (3) 0.038 (2) 0.038 (2) 0.003 (2) −0.001 (2) −0.011 (2)
Co2 0.0295 (4) 0.0378 (4) 0.0331 (4) −0.0022 (3) −0.0049 (3) −0.0118 (3)
N11 0.0363 (19) 0.0381 (19) 0.0348 (19) −0.0025 (15) −0.0086 (15) −0.0095 (16)
C11 0.032 (2) 0.047 (3) 0.044 (3) −0.0011 (18) −0.0105 (19) −0.013 (2)
C12 0.030 (2) 0.042 (2) 0.043 (3) −0.0043 (17) −0.0024 (18) −0.006 (2)
N12 0.0352 (18) 0.0370 (18) 0.0337 (19) 0.0011 (15) −0.0061 (15) −0.0093 (15)
C13 0.044 (2) 0.048 (3) 0.035 (2) 0.003 (2) −0.0039 (19) −0.016 (2)
C14 0.057 (3) 0.050 (3) 0.046 (3) −0.004 (2) −0.008 (2) −0.022 (2)
C15 0.049 (3) 0.043 (2) 0.043 (3) −0.003 (2) −0.015 (2) −0.017 (2)
Co3 0.0412 (5) 0.0448 (5) 0.0438 (5) −0.0033 (4) −0.0067 (4) −0.0149 (4)
N21 0.0363 (19) 0.042 (2) 0.046 (2) 0.0010 (16) −0.0086 (16) −0.0195 (18)
C21 0.035 (2) 0.055 (3) 0.058 (3) −0.004 (2) −0.006 (2) −0.027 (3)
C22 0.046 (3) 0.044 (3) 0.052 (3) −0.009 (2) 0.003 (2) −0.020 (2)
N22 0.042 (2) 0.0364 (19) 0.037 (2) −0.0024 (16) −0.0023 (16) −0.0117 (16)
C23 0.056 (3) 0.039 (2) 0.037 (2) 0.003 (2) −0.002 (2) −0.009 (2)
C24 0.067 (3) 0.060 (3) 0.042 (3) 0.011 (3) −0.020 (3) −0.022 (2)
C25 0.044 (3) 0.058 (3) 0.051 (3) 0.007 (2) −0.019 (2) −0.023 (2)
O1 0.054 (2) 0.060 (2) 0.061 (2) −0.0025 (18) −0.0136 (19) −0.031 (2)
N31 0.150 (16) 0.126 (13) 0.073 (4) −0.026 (10) 0.011 (6) −0.052 (5)
C31 0.141 (15) 0.097 (11) 0.071 (4) −0.041 (10) 0.014 (6) −0.045 (5)
C32 0.117 (15) 0.094 (14) 0.066 (4) −0.033 (11) 0.002 (6) −0.041 (7)
N31' 0.162 (19) 0.106 (13) 0.070 (3) −0.046 (12) −0.019 (5) −0.026 (5)
C31' 0.114 (13) 0.100 (13) 0.070 (3) −0.052 (11) −0.017 (5) −0.026 (5)
C32' 0.18 (3) 0.12 (2) 0.070 (3) −0.07 (2) −0.020 (6) −0.026 (5)

Geometric parameters (Å, º)

Sb1—S4 2.3195 (13) N12—H12 1.0000
Sb1—S1 2.3200 (12) C13—C14 1.510 (8)
Sb1—S3 2.3221 (12) C13—H13A 0.9900
Sb1—S2 2.3382 (11) C13—H13B 0.9900
S1—Co1 2.7258 (12) C14—C15 1.514 (7)
S2—Co2 2.6932 (11) C14—H14A 0.9900
S3—Co3 2.7821 (12) C14—H14B 0.9900
Co1—N2i 1.990 (4) C15—H15A 0.9900
Co1—N2 1.990 (4) C15—H15B 0.9900
Co1—N1 1.993 (4) Co3—N22 1.976 (4)
Co1—N1i 1.993 (4) Co3—N22iii 1.976 (4)
N1—C1 1.468 (6) Co3—N21 1.985 (4)
N1—C5i 1.470 (7) Co3—N21iii 1.985 (4)
N1—H1 1.0000 N21—C21 1.472 (7)
C1—C2 1.504 (8) N21—C25iii 1.488 (6)
C1—H1A 0.9900 N21—H21 1.0000
C1—H1B 0.9900 C21—C22 1.506 (8)
C2—N2 1.481 (6) C21—H21A 0.9900
C2—H2A 0.9900 C21—H21B 0.9900
C2—H2B 0.9900 C22—N22 1.486 (7)
N2—C3 1.476 (6) C22—H22A 0.9900
N2—H2 1.0000 C22—H22B 0.9900
C3—C4 1.511 (8) N22—C23 1.468 (6)
C3—H3A 0.9900 N22—H22 1.0000
C3—H3B 0.9900 C23—C24 1.506 (9)
C4—C5 1.517 (8) C23—H23A 0.9900
C4—H4A 0.9900 C23—H23B 0.9900
C4—H4B 0.9900 C24—C25 1.510 (8)
C5—H5A 0.9900 C24—H24A 0.9900
C5—H5B 0.9900 C24—H24B 0.9900
Co2—N11ii 1.975 (4) C25—H25A 0.9900
Co2—N11 1.975 (4) C25—H25B 0.9900
Co2—N12 1.985 (4) O1—H1C 0.8400
Co2—N12ii 1.985 (4) O1—H1D 0.8400
N11—C15ii 1.475 (6) N31—C31 1.145 (15)
N11—C11 1.486 (6) C31—C32 1.442 (17)
N11—H11 1.0000 C32—H32A 0.9800
C11—C12 1.514 (7) C32—H32B 0.9800
C11—H11A 0.9900 C32—H32C 0.9800
C11—H11B 0.9900 N31'—C31' 1.145 (15)
C12—N12 1.470 (6) C31'—C32' 1.442 (16)
C12—H12A 0.9900 C32'—H32D 0.9800
C12—H12B 0.9900 C32'—H32E 0.9800
N12—C13 1.474 (6) C32'—H32F 0.9800
S4—Sb1—S1 109.86 (5) H12A—C12—H12B 108.4
S4—Sb1—S3 110.64 (5) C12—N12—C13 111.3 (4)
S1—Sb1—S3 110.81 (5) C12—N12—Co2 108.0 (3)
S4—Sb1—S2 110.32 (5) C13—N12—Co2 119.6 (3)
S1—Sb1—S2 105.36 (4) C12—N12—H12 105.6
S3—Sb1—S2 109.73 (4) C13—N12—H12 105.6
Sb1—S1—Co1 112.07 (5) Co2—N12—H12 105.6
Sb1—S2—Co2 122.01 (4) N12—C13—C14 112.7 (4)
Sb1—S3—Co3 119.94 (5) N12—C13—H13A 109.0
N2i—Co1—N2 180.00 (19) C14—C13—H13A 109.0
N2i—Co1—N1 93.50 (17) N12—C13—H13B 109.0
N2—Co1—N1 86.50 (17) C14—C13—H13B 109.0
N2i—Co1—N1i 86.50 (17) H13A—C13—H13B 107.8
N2—Co1—N1i 93.50 (17) C13—C14—C15 113.7 (4)
N1—Co1—N1i 180.0 C13—C14—H14A 108.8
N2i—Co1—S1 89.02 (12) C15—C14—H14A 108.8
N2—Co1—S1 90.98 (12) C13—C14—H14B 108.8
N1—Co1—S1 88.50 (12) C15—C14—H14B 108.8
N1i—Co1—S1 91.50 (12) H14A—C14—H14B 107.7
N2i—Co1—S1i 90.98 (12) N11ii—C15—C14 111.5 (4)
N2—Co1—S1i 89.02 (12) N11ii—C15—H15A 109.3
N1—Co1—S1i 91.50 (12) C14—C15—H15A 109.3
N1i—Co1—S1i 88.50 (12) N11ii—C15—H15B 109.3
S1—Co1—S1i 180.0 C14—C15—H15B 109.3
C1—N1—C5i 111.8 (4) H15A—C15—H15B 108.0
C1—N1—Co1 107.1 (3) N22—Co3—N22iii 180.00 (19)
C5i—N1—Co1 119.1 (3) N22—Co3—N21 86.93 (17)
C1—N1—H1 106.0 N22iii—Co3—N21 93.07 (17)
C5i—N1—H1 106.0 N22—Co3—N21iii 93.07 (17)
Co1—N1—H1 106.0 N22iii—Co3—N21iii 86.93 (17)
N1—C1—C2 108.2 (4) N21—Co3—N21iii 180.0
N1—C1—H1A 110.1 N22—Co3—S3iii 87.74 (11)
C2—C1—H1A 110.1 N22iii—Co3—S3iii 92.26 (11)
N1—C1—H1B 110.1 N21—Co3—S3iii 87.89 (12)
C2—C1—H1B 110.1 N21iii—Co3—S3iii 92.11 (12)
H1A—C1—H1B 108.4 N22—Co3—S3 92.26 (11)
N2—C2—C1 107.9 (4) N22iii—Co3—S3 87.74 (11)
N2—C2—H2A 110.1 N21—Co3—S3 92.11 (12)
C1—C2—H2A 110.1 N21iii—Co3—S3 87.89 (12)
N2—C2—H2B 110.1 S3iii—Co3—S3 180.00 (5)
C1—C2—H2B 110.1 C21—N21—C25iii 111.9 (4)
H2A—C2—H2B 108.4 C21—N21—Co3 106.4 (3)
C3—N2—C2 111.7 (4) C25iii—N21—Co3 119.8 (3)
C3—N2—Co1 118.9 (3) C21—N21—H21 105.9
C2—N2—Co1 107.0 (3) C25iii—N21—H21 105.9
C3—N2—H2 106.2 Co3—N21—H21 105.9
C2—N2—H2 106.2 N21—C21—C22 107.7 (4)
Co1—N2—H2 106.2 N21—C21—H21A 110.2
N2—C3—C4 112.0 (4) C22—C21—H21A 110.2
N2—C3—H3A 109.2 N21—C21—H21B 110.2
C4—C3—H3A 109.2 C22—C21—H21B 110.2
N2—C3—H3B 109.2 H21A—C21—H21B 108.5
C4—C3—H3B 109.2 N22—C22—C21 107.0 (4)
H3A—C3—H3B 107.9 N22—C22—H22A 110.3
C3—C4—C5 114.6 (4) C21—C22—H22A 110.3
C3—C4—H4A 108.6 N22—C22—H22B 110.3
C5—C4—H4A 108.6 C21—C22—H22B 110.3
C3—C4—H4B 108.6 H22A—C22—H22B 108.6
C5—C4—H4B 108.6 C23—N22—C22 112.3 (4)
H4A—C4—H4B 107.6 C23—N22—Co3 119.9 (3)
N1i—C5—C4 112.6 (4) C22—N22—Co3 106.9 (3)
N1i—C5—H5A 109.1 C23—N22—H22 105.6
C4—C5—H5A 109.1 C22—N22—H22 105.6
N1i—C5—H5B 109.1 Co3—N22—H22 105.6
C4—C5—H5B 109.1 N22—C23—C24 112.5 (4)
H5A—C5—H5B 107.8 N22—C23—H23A 109.1
N11ii—Co2—N11 180.0 C24—C23—H23A 109.1
N11ii—Co2—N12 93.73 (16) N22—C23—H23B 109.1
N11—Co2—N12 86.27 (16) C24—C23—H23B 109.1
N11ii—Co2—N12ii 86.27 (16) H23A—C23—H23B 107.8
N11—Co2—N12ii 93.73 (16) C23—C24—C25 113.8 (5)
N12—Co2—N12ii 180.0 C23—C24—H24A 108.8
N11ii—Co2—S2ii 86.16 (11) C25—C24—H24A 108.8
N11—Co2—S2ii 93.84 (11) C23—C24—H24B 108.8
N12—Co2—S2ii 91.31 (11) C25—C24—H24B 108.8
N12ii—Co2—S2ii 88.69 (11) H24A—C24—H24B 107.7
N11ii—Co2—S2 93.84 (11) N21iii—C25—C24 111.6 (4)
N11—Co2—S2 86.16 (11) N21iii—C25—H25A 109.3
N12—Co2—S2 88.69 (11) C24—C25—H25A 109.3
N12ii—Co2—S2 91.31 (11) N21iii—C25—H25B 109.3
S2ii—Co2—S2 180.0 C24—C25—H25B 109.3
C15ii—N11—C11 111.4 (4) H25A—C25—H25B 108.0
C15ii—N11—Co2 118.1 (3) H1C—O1—H1D 102.1
C11—N11—Co2 108.6 (3) N31—C31—C32 172 (5)
C15ii—N11—H11 106.0 C31—C32—H32A 109.4
C11—N11—H11 106.0 C31—C32—H32B 109.5
Co2—N11—H11 106.0 H32A—C32—H32B 109.5
N11—C11—C12 107.6 (4) C31—C32—H32C 109.5
N11—C11—H11A 110.2 H32A—C32—H32C 109.5
C12—C11—H11A 110.2 H32B—C32—H32C 109.5
N11—C11—H11B 110.2 N31'—C31'—C32' 172 (5)
C12—C11—H11B 110.2 C31'—C32'—H32D 109.5
H11A—C11—H11B 108.5 C31'—C32'—H32E 109.5
N12—C12—C11 108.2 (4) H32D—C32'—H32E 109.5
N12—C12—H12A 110.1 C31'—C32'—H32F 109.4
C11—C12—H12A 110.1 H32D—C32'—H32F 109.5
N12—C12—H12B 110.1 H32E—C32'—H32F 109.5
C11—C12—H12B 110.1

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S2i 1.00 2.48 3.442 (4) 161
C1—H1B···S4iv 0.99 2.95 3.858 (5) 152
N2—H2···S4 1.00 2.49 3.448 (4) 159
N11—H11···O1v 1.00 2.23 3.151 (6) 153
N12—H12···S3ii 1.00 2.43 3.378 (4) 157
N21—H21···O1 1.00 2.08 2.920 (6) 141
N22—H22···S1 1.00 2.35 3.290 (4) 156
O1—H1C···S2v 0.84 2.49 3.276 (4) 157
O1—H1D···S4iii 0.84 2.46 3.280 (4) 166
C32—H32B···S4 0.98 2.81 3.71 (4) 154
C32′—H32F···S4 0.98 2.88 3.85 (5) 172

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y, −z+1; (iv) −x+2, −y, −z+2; (v) −x+1, −y, −z+1.

References

  1. Anderer, C., Delwa de Alarcón, N., Näther, C. & Bensch, W. (2014). Chem. Eur. J. 20, 16953–16959. [DOI] [PubMed]
  2. Anderer, C., Näther, C. & Bensch, W. (2016). Cryst. Growth Des. 16, 3802–3810.
  3. Bensch, W., Näther, C. & Schur, M. (1997). Chem. Commun. pp. 1773–1774.
  4. Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.
  5. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107–18117. [DOI] [PubMed]
  7. Danker, F., Näther, C. & Bensch, W. (2020). Acta Cryst. E76, 32–37. [DOI] [PMC free article] [PubMed]
  8. Dehnen, S. & Melullis, M. (2007). Coord. Chem. Rev. 251, 1259–1280.
  9. Engelke, L., Näther, C., Leisner, P. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 2959–2965.
  10. Engelke, L., Stähler, R., Schur, M., Näther, C., Bensch, W., Pöttgen, R. & Möller, M. H. (2004). Z. Naturforsch. B. 59, 869–876.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Jia, D. X., Zhang, Y., Dai, J., Zhu, Q. Y. & Gu, X. M. (2004). J. Solid State Chem. 177, 2477–2483.
  13. Kiebach, R., Studt, F., Näther, C. & Bensch, W. (2004). Eur. J. Inorg. Chem. pp. 2553–2556.
  14. Lichte, J., Lühmann, H., Näther, C. & Bensch, W. (2009). Z. Anorg. Allg. Chem. 635, 2021–2026.
  15. Liu, X. & Zhou, J. (2011). Inorg. Chem. Commun. 14, 1268–1289.
  16. Long, G. G. & Bowen, L. H. (1970). Inorg. Nucl. Chem. Lett. 6, 837–842.
  17. Lühmann, H., Rejai, Z., Möller, K., Leisner, P., Ordolff, M. E., Näther, C. & Bensch, W. (2008). Z. Anorg. Allg. Chem. 634, 1687–1695.
  18. Mosselmans, J. F. W., Helz, G. R., Pattrick, R. A., Charnock, J. M. & Vaughan, D. H. (2000). Appl. Geochem. 15, 879–889.
  19. Nie, L., Liu, G., Xie, J., Lim, T. T., Armatas, G. S., Xu, R. & Zhang, Q. (2017). Inorg. Chem. Front, 4, 945–959.
  20. Pienack, N., Lehmann, S., Lühmann, H., El-Madani, M., Näther, C. & Bensch, W. (2008b). Z. Anorg. Allg. Chem. 634, 2323–2329.
  21. Pienack, N., Puls, A., Näther, C. & Bensch, W. (2008a). Inorg. Chem. 47, 9606–9611. [DOI] [PubMed]
  22. Planer-Friedrich, B. & Scheinost, A. C. (2011). Environ. Sci. Technol. 45, 6855–6863. [DOI] [PubMed]
  23. Planer-Friedrich, B. & Wilson, N. (2012). Chem. Geol. 322–323, 1–10.
  24. Powell, A. V., Thun, J. & Chippindale, A. M. (2005). J. Solid State Chem. 178, 3414–3419.
  25. Puls, A., Näther, C. & Bensch, W. (2006). Z. Anorg. Allg. Chem. 632, 1239–1243.
  26. Rammelsberg, C. F. (1841). Ann. Phys. Chem. 52, 207.
  27. Schaefer, M., Näther, C. & Bensch, W. (2003). Solid State Sci. 5, 1135–1139.
  28. Schur, M., Näther, C. & Bensch, W. (2001). Z. Naturforsch. Teil B. 56, 79–84.
  29. Schur, M., Rijnberk, H., Näther, C. & Bensch, W. (1998). Polyhedron, 18, 101–107.
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Sheldrick, W. S. & Wachhold, M. (1988). Coord. Chem. Rev. 176, 211–322.
  33. Spetzler, V., Rijnberk, H., Näther, C. & Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 142–148.
  34. Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27. [DOI] [PubMed]
  35. Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
  36. Wang, K. Y., Feng, M. L., Huang, X. Y. & Li, J. (2016). Coord. Chem. Rev. 322, 41–68.
  37. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  38. Zeisler, C., Näther, C. & Bensch, W. (2013). CrystEngComm, 15, 8874–8876.
  39. Zhang, M., Sheng, T. L., Huang, X. H., Fu, R. B., Wang, X., Hu, S. H., Xiang, C. & Wu, X. T. (2007). Eur. J. Inorg. Chem. pp. 1606–1612.
  40. Zhou, J. (2016). Coord. Chem. Rev. 315, 112–134.
  41. Zhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. (2019). J. Am. Chem. Soc. 141, 19002–19013. [DOI] [PubMed]
  42. Zhu, Q. Y. & Dai, J. (2017). Coord. Chem. Rev. 330, 95–109.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001074/mw2184sup1.cif

e-78-00270-sup1.cif (529.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001074/mw2184Isup2.hkl

e-78-00270-Isup2.hkl (484.7KB, hkl)

CCDC reference: 2146891

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES