Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 1;78(Pt 3):244–250. doi: 10.1107/S2056989022000524

Crystal structures of two dioxomolybdenum complexes stabilized by salan ligands featuring phenyl and cyclo­hexyl backbones

Tristhan Trieu-Tran a, Stephenie N Martinez a, Jacob P Brannon a, S Chantal E Stieber a, Alex John a,*
PMCID: PMC8900517  PMID: 35371549

Two cis-dioxomolybdenum complexes based on salan ligands with different backbones are reported. The salan ligands coordinate to the molybdenum center in a κ2 N2 O fashion, forming a distorted octa­hedral geometry. These complexes crystallized as di­methyl­formamide and methanol solvated species.

Keywords: crystal structure, molybdenum, salan ligand, cis-dioxo, DODH

Abstract

Two cis-dioxomolybdenum complexes based on salan ligands with different backbones are reported. The first complex, dioxido{2,2′-[l,2-phenyl­enebis(imino­methyl­ene)]bis­(phenolato)}molybdenum(VI) di­methyl­formamide disolvate, [Mo(C20H18N2O2)O2]·2C3H7NO (PhLMoO2, 1b), features a phenyl backbone, while the second complex, (6,6′-{[(cyclo­hexane-1,2-di­yl)bis(aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenolato))dioxidomolybdenum(VI) methanol disolvate, [Mo(C36H56N2O2)O2]·2CH3OH (CyLMoO2, 2b), is based on a cyclo­hexyl backbone. These complexes crystallized as solvated species, 1b·2DMF and 2b·2MeOH. The salan ligands PhLH2 (1a) and CyLH2 (2a) coordinate to the molybdenum center in these complexes 1b and 2b in a κ2 N2 O fashion, forming a distorted octa­hedral geometry. The Mo—N and Mo—O distances are 2.3475 (16) and 1.9567 (16) Å, respectively, in 1b while the corresponding measurements are Mo—N = 2.3412 (12) Å, and Mo—O = 1.9428 (10) Å for 2b. A key geometrical feature is that the N—Mo—N angle of 72.40 (4)° in CyLMoO2 is slightly less than that of the PhLMoO2 angle of 75.18 (6)°, which is attributed to the flexibility of the cyclo­hexane ring between the nitro­gen as compared to the rigid phenyl ring in the PhLMoO2.

Chemical context

Molybdenum centers are present in the active sites of various enzymes including nitro­genases, sulfite oxidase, xanthine oxidase, and DMSO reductase that catalyze two-electron redox processes (Hille et al., 2014; Enemark et al., 2004; Hille, 1996). This is attributed to the large number of stable oxidation states and coordination environments that can be achieved, as well as the solubility of molybdate salts in water. A majority of these enzymes are referred to as oxo-molybdenum enzymes due to the presence of at least one Mo=O moiety in the active site. The sulfite oxidase family of enzymes contains a cis-dioxo molybdenum(VI) (Ln MoO2) center in its active site (Hille et al., 2014). Apart from being studied as models to understand biological systems, oxomolybdenum complexes have also found utility in processes such as olefin metathesis, olefin epoxidation, cytotoxic studies, and cyclic ester polymerizations (Hossain et al. 2020; Mayilmurugan et al. 2013; Yang et al. 2007). Mononuclear molybdenum complexes are generally distinguished by stretching frequencies {u(O=Mo=O)} in the 910–950 cm−1 and 890–925 cm−1 regions, which are characteristic of a cis-MoO2 fragment (Chakravarthy & Chand, 2011). A variety of ligand architectures have been successful in stabilizing the oxomol­yb­denum core in these complexes (Ziegler et al. 2009; Subramanian et al. 1984; Rajan et al. 1983). Dioxomolybdenum complexes stabilized by salan ligands have been used extensively for various applications (Roy et al., 2017; Whiteoak et al., 2009). The modular nature for the synthesis of salan ligands allows for incorporation of steric and electronic variations in the ligand framework to tune the reactivity of the molybdenum center. We are exploring the utility of dioxomolybdenum complexes in catalyzing the de­oxy­dehydration (DODH) reaction with a focus on understanding ligand effects on catalytic activity. This work reports synthesis and crystal structures of two molybdenum complexes including a crystallographically uncharacterized complex, dioxido[2,2′-{l,2-phenyl­enebis(imino­methyl­ene)bis­(phenolato)]molyb­den­um(VI), PhLMoO2 (1b) (Rajan et al. 1983). The second is a known complex with a new unit cell, (Ziegler et al., 2009), 6,6′-{[(cyclo­hexane-1,2-di­yl)bis­(aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenolato))dioxidomolybdenum(VI), CyLMoO2 (2b). graphic file with name e-78-00244-scheme1.jpg

Structural commentary

The asymmetric unit of PhLMoO2 (1b) contains two mol­ecules of PhLMoO2 and four mol­ecules of di­methyl­formamide (DMF), as shown in Fig. 1. Fig. 2 shows one mol­ecule of PhLMoO2 with hydrogen atoms and solvent removed for clarity. In this system, the salan ligand PhLH2 (1a) coordinates to the molybdenum center in a κ2 N2 O fashion, forming a distorted octa­hedral geometry. The angles formed around the molybdenum core are 80.23 (6)° for O1—Mo01—N1, 157.78 (6)° for O1—Mo01—O2, 75.18 (6)° for N1—Mo01—N2, and 109.80 (7)° for O3—Mo01—O4. These angles are consistent with a system that is significantly distorted from octa­hedral geometry with bond angles resulting from the salan ligand ranging from 75.18 (6) to 84.38 (7)°, while the angle between the ‘oxo’ oxygens of 109.80 (7)° is close to the ideal tetra­hedral angle of 109.5°. Analogous bond angles in the second molecule in the unit cell are the same within 0.01 Å. The bond distances between the molybdenum center and ligand atoms for Mo01—N1 and Mo01—O1 are 2.3475 (16) and 1.9567 (16) Å, respectively. The notable bond distances from the salan ligand are O1—C1 at 1.377 (2) Å, N1—C7 at 1.486 (3) Å, C2—C7 at 1.515 (3) Å, N1—C8 at 1.389 (8) Å, and C8—C13 at 1.419 (3) Å. Analogous bond distances in the second molecule in the unit cell are the same within 0.01 Å as distances for O1—C1 and N1—C8, respectively. The other bond distances have variations of 0.2–0.3 Å, with N3—C27 at 1.519 (3) Å, C26—C27 at 1.490 (3) Å, and C28—C33 at 1.392 (3) Å.

Figure 1.

Figure 1

View of 2[PhLMoO2]·4[DMF] (1b) with 50% probability ellipsoids.

Figure 2.

Figure 2

View of one mol­ecule of PhLMoO2 (1b) with 50% probability ellipsoids. The DMF mol­ecule and H atoms are omitted for clarity.

The asymmetric unit of CyLMoO2 (2b) contains one mol­ecule of CyLMoO2 and two mol­ecules of methanol (MeOH) (Fig. 3). The salan ligand CyLH2 (2a) binds in the same κ2 N2 O fashion that complex 1b does. Fig. 4 shows CyLMoO2 with the hydrogen atoms removed for clarity. The complex also has a distorted octa­hedral geometry with angles of O3—Mo01—O1 at 96.36 (5)°, O1—Mo01—N1 at 76.73 (4)°, N1—Mo01—N2 at 72.40 (4)°, N2—Mo01—O2 at 78.91 (4)°, O2—Mo01—O4 at 100.19 (5)°, O2—Mo01—O3 at 94.58 (5)°. These angles are between 5 and 10° of the ideal 90° for octa­hedral geometry. The N1—Mo01—N2 angle at 72.40 (4)° is slightly less than that of the PhLMoO2 angle of 75.81 (6)°, which is attributed to the flexibility of the cyclo­hexane ring between the nitro­gen atoms compared to the rigid phenyl ring in the PhLMoO2. Metal–ligand bond distances are found for Mo01—O1 at 1.9428 (10) Å, Mo01—O2 at 1.9484 (10) Å, Mo01—O3 at 1.7125 (10) Å, Mo01—O4 at 1.7226 (11) Å, Mo01—N1 at 2.3412 (12) Å, and Mo01—N2 at 2.3384 (12) Å. Other ligand distances and bond lengths within the phenyl rings are consistent with analagous distances in PhLMoO2 (1b). The cylohexane bond distances are consistent with single C—C bonds. The bond lengths observed are not statistically different than those reported by Ziegler et al. (2009). There are a few statistically different angles, specifically around the molybdenum center where Table 1 shows the correlating bond angles. These bond-angle differences are most likely due to improved R1 of 2.78% as compared to the previously reported R1 of 5.5% and higher solvent disorder in the reported structure.

Figure 3.

Figure 3

View of one mol­ecule of cyLMoO2·2MeOH (2b) with 50% probability ellipsoids.

Figure 4.

Figure 4

View of one mol­ecule of cyLMoO2 (2b) with 50% probability ellipsoids. The MeOH mol­ecules and H atoms are omitted for clarity.

Table 1. Comparison of bond angles (°) between CyLMoO2 (2b) with R1 of 2.78% and reported structure from Ziegler et al. (2009) with R1 of 5.5%.

2b Angle Reported a Angle
O4—Mo01—O2 100.19 (5) O2—Mo1—O62 94.3 (2)
O2—Mo01—N2 78.91 (4) O62—Mo1—N2 86.4 (2)
N1—Mo01—N2 72.40 (4) N5—Mo1—N2 72.0 (2)
O1—Mo01—N1 76.73 (4) N5—Mo1—O12 82.7 (2)
O3—Mo01—O1 96.36 (5) O12—Mo1—O1 93.8 (2)
O3—Mo01—O4 108.55 (5) O2—Mo1—O1 107.6 (2)

Note: (a) Ziegler et al. (2009).

Supra­molecular features

PhLMoO2 (1b): A single mol­ecule of PhLMoO2 is hydrogen bonded to one disordered DMF mol­ecule, as shown in Fig. 5, with a distance of 2.03 Å for O11⋯H008 (Table 2). A second hydrogen bond interaction is between O9—H00D with a distance of 2.16 (3) Å. Corresponding hydrogen bond distances in the second molecule in the unit cell are similar. There are three formula units within the contents of the unit cell. Perpendic­ular π-stacking between PhLMoO2 mol­ecules is observed between C5 and the aryl ring centroid (C35–C39) with a distance of 4.597 Å.

Figure 5.

Figure 5

View of six mol­ecules of PhLMoO2 and five mol­ecules of DMF in the unit cell with 50% probability ellipsoids, highlighting inter­molecular distances. Distances between H atoms are listed without standard deviations because the H atoms were positionally fixed..

Table 2. Hydrogen-bond geometry (Å, °) for 1b .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H008⋯O11 1.00 2.03 2.958 (2) 154
N4—H009⋯O10 1.00 1.99 2.924 (3) 154
N1—H00D⋯O12 0.85 (3) 2.15 (3) 2.949 (3) 157 (2)
N3—H00E⋯O9 0.79 (3) 2.16 (3) 2.885 (3) 154 (3)

CyLMoO2 (2b): There are four mol­ecules of CyLMoO2 in the unit cell of this system and the complex is stabilized via hydrogen bonding to the solvent MeOH mol­ecule (1.94 Å for O4⋯H5A and 2.00 Å for O5⋯H2; Table 3), as seen in Fig. 6. There is no indication that there are π-stacking inter­actions between the two mol­ecules. In comparing the hydrogen bonding with the previously reported structure, the main difference is the formation of hydrogen-bonded tetra­mers containing two mol­ecules of 2b and two mol­ecules of methanol in the current structure. The previously reported structure had one resolved mol­ecule of methanol and one disordered oxygen atom, which form a hydrogen-bonded trimer with one mol­ecule of CyLMoO2 (Ziegler et al., 2009).

Table 3. Hydrogen-bond geometry (Å, °) for 2b .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O5i 1.00 2.00 2.9319 (16) 153
O5—H5A⋯O4 0.84 1.94 2.7837 (16) 177

Symmetry code: (i) Inline graphic .

Figure 6.

Figure 6

View of four mol­ecules of cyLMoO2 and six mol­ecules of methanol in the unit cell with 50% probability ellipsoids, highlighting inter­molecular distances. Distances between H atoms are listed without standard deviations because the H atoms were positionally fixed.

Database survey

A database search of the Cambridge Structural Database (CSD; Groom et al., 2016) (webCSD accessed September 22, 2021) and SciFinder (SciFinder, 2021) did not yield any exact matches to the crystal structure for PhLMoO2 (1b). There was a similar crystal structure found with the imine form of the ligand (Salen)MoO2. A search for CyLMoO2 (2b) in the CSD (webCSD accessed September 22, 2021) shows that there is a known structure of the mol­ecule with a different unit cell with accession code HUWGOW (Ziegler et al., 2009). The SciFinder search resulted in the same sources being found. The current structure for CyLMoO2 (2b) was solved in space group P 21/n compared with P31 for HUWGOW. The primary additional differences in the structures is an improved R1 of 2.78% and more clearly resolved methanol solvent, as compared to the previously reported R1 of 5.5% and more disordered methanol solvent (Ziegler et al., 2009).

Synthesis and crystallization

The salan ligands used for stabilizing [MoO2]2+ in the complexes PhLMoO2 (1b) (Rajan et al. 1983) and CyLMoO2 (2b) (Ziegler et al., 2009) were synthesized by the reductive amination of the corresponding salicyl­aldehyde and di­amine. The ligands PhLH2 (1a) and CyLH2 (2a) were synthesized as off-white solids in 86% and 58% yields, respectively. The reaction scheme is shown in Fig. 7. Both ligands were successfully characterized by NMR and IR spectroscopy. A salient feature in the 1H NMR spectra of both ligands as compared to the precursor salen compounds was the disappearance of the aldimine peak (∼8.50 ppm) and the appearance of the benzylic resonances ∼4.00 ppm. The molybdenum complexes PhLMoO2 (1b) and CyLMoO2 (2b) were synthesized in 86% and 42% yields, respectively, by the reaction of the corresponding ligands with MoO2(acac)2 in methanol or aceto­nitrile as solvent. Complexes 1b and 2b were also characterized by NMR and IR spectroscopy. Both complexes exhibited stretches {[(Mo=O) = 916 and 876 cm −1(1b); 903 and 875 cm−1 (2b)] characteristic of a cis-dioxo molybdenum core in the IR spectrum.

Figure 7.

Figure 7

Synthesis of the dioxomolybdenum complexes 1b and 2b.

Procedure for synthesis of ligands

PhLH2 (1a): To a solution of 1,2-phenyl­enedi­amine (0.764 g, 7.20 mmol) in methanol (ca 7 ml) was added a solution of salicyl­aldehyde (1.76 ml, 14.9 mmol) in methanol (ca 8 ml). The mixture was stirred for 6 h at room temperature. The orange precipitate that formed during this period was filtered and washed with methanol, then dried under high vacuum to yield the salophen product as an orange solid (2.19 g, 98%).1H NMR (CDCl3, 400 MHz, 300 K) δ 13.0 (s, 2H), 8.63 (s, 2H), 7.38 (d, 3 J HH = 8 Hz, 2H), 7.35–7.33 (m, 2H), 7.26–7.22 (m, 2H), 7.05 (d, 3 J HH = 8 Hz, 2H), 6.92 (t, 3 J HH = 8 Hz, 2H).

To a mixture of methanol (ca. 8 ml) and diethyl ether (ca 8 ml), was added salophen (1.52 g, 4.81 mmol) followed by NaBH4 (1.67 g, 44.4 mmol), and the reaction mixture was stirred at room temperature for 1 h. When the yellow color of the solution changed to colorless, it was transferred into a separatory funnel and DI H2O (ca 15 ml) was added followed by ethyl acetate (2 × ca 15 ml) for extraction. The organic solution was separated and combined, then washed with saturated NaCl solution (ca 20 ml). The organic layer was dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under vacuum to give a light-yellow solid, which was dried under high vacuum. The color of the solid changed to light brown after 2 h under high vacuum to yield the product (1.32 g, 86%).1H NMR (CDCl3, 400 MHz, 301 K) δ 7.24–7.19 (m, 4H), 6.96–6.94 (m, 4H), 6.89 (t, 3 J HH = 8 Hz, 2H), 6.86 (t, 3 J HH = 8 Hz, 2H), 4.40 (s, 4H).

CyLH2 (2a): A 100mL round-bottom flask was charged with trans-1,2-di­amino­cyclo­hexane (0.448 g, 4.38 mmol), methanol (ca. 16 mL), and 3,5-di-tert-butyl­salicyl­aldehyde (2.05 g, 17.5 mmol). The solution was stirred for 24 h at room temperature. The solution resulted in a bright-yellow precipitate. The precipitate was then collected by gravity filtration and washed with cold methanol. The precipitate was dried under high vacuum to remove any residual solvent and yield the salen product (3.85 g, 81%). 1H NMR (CDCl3, 400 MHz, 301 K) δ 13.6 (br, 2H), 8.33 (s, 2H), 7.34 (s, 2H), 7.02 (s, 2H), 3.37 (br, 2H), 1.98–1.77 (m, 4H), 1.40 (s, 18H), 1.33–1.29 (m, 4H), 1.24 (s, 18H).

A 100mL round-bottom flask was charged with the salen product (1.00 g, 2.00 mmol), methanol (ca 3 mL), and THF (ca 25 mL). NaBH4 (9 equivalents) was slowly added into the reaction mixture until the solution was colorless. The reaction was quenched with DI water (ca 20 mL), and the product was extracted with ethyl acetate (2 × ca 10 ml) using a separatory funnel. The combined organic layers were dried using anhydrous Na2SO4 and was concentrated under vacuum using the rotary evaporator. The product was then put under high vacuum overnight to ensure it was completely dry (0.577 g, 58%). 1H NMR (CDCl3, 400 MHz, 301 K) δ 7.22 (d, 4 J HH = 4 Hz, 2H), 6.87 (d, 4 J HH = 4 Hz, 2H), 4.05 (d, 2 J HH = 16 Hz, 2H), 3.90 (d, 2 J HH = 16 Hz, 2H), 2.51 (br, 2H), 2.19 (br, 2H), 1.72 (br, 2H), 1.44–1.41 (m, 2H), 1.38 (s, 18H), 1.28 (s, 18H), 1.23–1.20 (m, 4H).

Procedure for synthesis of molybdenum complexes

Dioxido[2,2′-{l,2-phenyl­enebis(imino­methyl­ene)}bis­(phen­o­lato)]molybdenum(VI) (PhLMoO2, 1b): To a solution of 1a (1.04 g, 3.29 mmol) in aceto­nitrile (ca 20 ml) was added MoO2(acac)2 (1.07 g, 3.30 mmol) and the mixture was stirred at room temperature for 10 min. The yellow precipitate that formed was filtered and then dried under vacuum to yield the complex as yellow solid (1.24 g, 86%).1H NMR (DMSO-d 6, 400 MHz, 301 K) δ 7.55 (d, 3 J HH = 8 Hz, 1H), 7.37–7.35 (m, 1H), 7.19–7.10 (m, 4H), 7.07–7.05 (m, 1H), 7.02–6.98 (m, 2H), 6.91 (d, 3 J HH = 8 Hz, 1H), 6.85–6.83 (m, 1H), 6.80 (d, 3 J HH = 8 Hz, 1H), 6.76–6.68 (m, 2H), 6.63 (d, 3 J HH = 8 Hz, 1H), 6.59 (d, 3 J HH = 8 Hz, 1H), 6.42 (d, 2 J HH = 12 Hz, 1H), 5.24 (d, 2 J HH = 16 Hz, 1H), 5.16 (d, 2 J HH = 16 Hz, 1H), 4.94 (d, 2 J HH = 16 Hz, 1H), 4.20 (d, 2 J HH = 12 Hz, 1H). 13C{1H} NMR (DMSO-d 6, 100 MHz, 301 K) δ 163.0, 160.2, 155.6, 148.0, 141.1, 130.5, 129.1, 129.0, 128.9, 128.0, 127.9, 125.9, 124.3, 122.9, 120.1, 119.2, 119.1, 118.9, 117.8, 115.3, 111.1, 53.7, 53.6. Selected IR (cm−1): 3127 υ(2° N—H); 916, 876 υ(Mo=O).

Crystals of PhLMoO2, 1b were grown by forming a supersaturated solution of the complex in DMF and layering with hexa­nes. The solution was placed in a refrigerator at 268 K for 1.5 months. Orange–yellow crystals were observed to grow and were collected for structural determination.

(6,6′-{[(Cyclo­hexane-1,2-di­yl)bis­(aza­nedi­yl)]bis­(methyl­ene)}bis­(2,4-di-tert-butyl­phenolato))dioxidomolybdenum(VI) (CyLMoO2, 2b): A round-bottom flask equipped with a magnetic stirring bar was charged with MoO2(acac)2 (0.165 g, 0.506 mmol) and methanol (ca. 10 mL). The solution was stirred, and 2a (0.27 g, 0.51 mmol) was added to the MoO2(acac)2 dissolved in methanol. The solution was stirred overnight when it turned orange. The solution was filtered, and the solvent removed by evaporation under vacuum to obtain an orange precipitate. The precipitate was triturated with methanol, producing an orange solid, which was separated by gravity filtration and was washed twice with cold methanol (0.108 g, 42%). 1H NMR (CDCl3, 400 MHz, 301 K) δ 7.26 (s, 2H), 6.86 (s, 2H), 5.28 (d, 2 J HH = 16 Hz, 2H), 4.18 (d, 2 J HH = 12 Hz, 2H), 2.34–2.28 (m, 4H), 1.43 (s, 18H), 1.30 (s, 18H), 1.19–1.17 (m, 4H), 0.88–0.85 (m, 4H). 13C{1H} NMR (CDCl3, 100 MHz, 301 K) δ 157.1, 152.1, 142.8, 142.3, 142.0, 138.0, 137.7, 137.6, 125.7, 125.4, 124.1, 124.0, 123.0, 122.9, 120.0, 119.6, 65.19, 58.9, 57.6, 53.4, 50.9, 50.5, 35.2, 35.1, 34.3, 34.2, 33.0, 31.6, 31.6, 31.5, 29.9, 29.9, 28.9, 24.5, 24.3, 24.1. Selected IR (cm−1): 903, 875 υ(Mo=O).

Crystals of CyLMoO2, 2b were grown by using a supersaturated solution of the complex dissolved in methanol and allowed to undergo slow evaporation over 2 d. A similar vial was also refrigerated where crystals were seen to form as well. The crystals from the slow evaporation set up were cropped and the orange–yellow crystals were used for structure determination.

Refinement

Crystal data, data collection, and refinement details are listed in Table 4. Hydrogen atoms were placed at ideal positions with C—H distances at 0.95 for CH and 0.99 Å for sp3 CH2 and CH3 using HFIX commands, and refined using a riding model with U iso(H) = 1.2U eq(C) for CH, CH2, and CH3. The structure for PhMoO2 (1b) was initially refined in the trigonal crystal system P3221; however, this resulted in the solvent DMF having a high level of disorder with many checkCIF errors.

Table 4. Experimental details.

  1b 2b
Crystal data
Chemical formula [Mo(C20H18N2O2)O2]·2C3H7NO [Mo(C36H56N2O2)O2]·2CH4O
M r 592.49 740.84
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/n
Temperature (K) 100 105
a, b, c (Å) 9.601, 12.860, 21.428 18.4889 (14), 10.9722 (8), 19.1517 (14)
α, β, γ (°) 91.44, 91.49, 93.22 90, 94.035 (2), 90
V3) 2639.8 3875.6 (5)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.54 0.38
Crystal size (mm) 0.34 × 0.29 × 0.29 0.2 × 0.18 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.664, 0.737 0.672, 0.750
No. of measured, independent and observed [I > 2σ(I)] reflections 146655, 7625, 6364 29075, 9532, 8724
R int 0.056 0.026
(sin θ/λ)max−1) 0.641 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.065, 1.06 0.028, 0.070, 1.07
No. of reflections 7625 9532
No. of parameters 683 440
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.38 0.52, −0.52

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015), SHELXL (Sheldrick, 2008), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 2b, 1b. DOI: 10.1107/S2056989022000524/tx2046sup1.cif

e-78-00244-sup1.cif (5.9MB, cif)

Structure factors: contains datablock(s) 2b. DOI: 10.1107/S2056989022000524/tx20462bsup3.hkl

e-78-00244-2bsup3.hkl (756.5KB, hkl)

Structure factors: contains datablock(s) 1b. DOI: 10.1107/S2056989022000524/tx20461bsup2.hkl

e-78-00244-1bsup2.hkl (605.5KB, hkl)

CCDC references: 2142074, 2142073

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Experimental work was carried out in the Chemistry & Biochemistry Department, College of Science at California State Polytechnic University in Pomona. AJ and SCES would like to acknowledge the Provost’s Teacher–Scholar award for facilitating research activities.

supplementary crystallographic information

(6,6'-{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b) . Crystal data

[Mo(C36H56N2O2)O2]·2CH4O F(000) = 1584
Mr = 740.84 Dx = 1.270 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 18.4889 (14) Å Cell parameters from 9945 reflections
b = 10.9722 (8) Å θ = 5.3–51.4°
c = 19.1517 (14) Å µ = 0.38 mm1
β = 94.035 (2)° T = 105 K
V = 3875.6 (5) Å3 Prism, clear yellow
Z = 4 0.2 × 0.18 × 0.1 mm

(6,6'-{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b) . Data collection

Bruker APEXII CCD diffractometer 8724 reflections with I > 2σ(I)
φ and ω scans Rint = 0.026
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 28.3°, θmin = 5.3°
Tmin = 0.672, Tmax = 0.750 h = −24→24
29075 measured reflections k = −14→14
9532 independent reflections l = −25→25

(6,6'-{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0277P)2 + 2.9594P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.002
9532 reflections Δρmax = 0.52 e Å3
440 parameters Δρmin = −0.52 e Å3
0 restraints

(6,6'-{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(6,6'-{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo01 0.59832 (2) 0.45373 (2) 0.68071 (2) 0.00996 (4)
O1 0.67906 (5) 0.43892 (9) 0.62159 (5) 0.01218 (19)
O3 0.64642 (6) 0.52033 (10) 0.75027 (6) 0.0154 (2)
O2 0.51926 (5) 0.39987 (10) 0.73535 (5) 0.01299 (19)
O4 0.55503 (6) 0.56653 (10) 0.63112 (6) 0.0166 (2)
N2 0.54408 (6) 0.30514 (11) 0.60679 (6) 0.0124 (2)
H2 0.562452 0.317877 0.559459 0.015*
N1 0.64967 (6) 0.26557 (11) 0.71382 (6) 0.0108 (2)
H1 0.621681 0.233132 0.752592 0.013*
O5 0.44789 (6) 0.68127 (12) 0.54536 (6) 0.0239 (3)
H5A 0.481126 0.646691 0.570127 0.036*
C22 0.46379 (8) 0.32549 (14) 0.59954 (7) 0.0142 (3)
H22A 0.442308 0.276831 0.559782 0.017*
H22B 0.453789 0.412566 0.589333 0.017*
C3 0.84869 (7) 0.31009 (13) 0.70189 (7) 0.0111 (3)
H3 0.864314 0.255829 0.738559 0.013*
C5 0.87410 (7) 0.43712 (13) 0.60581 (7) 0.0121 (3)
H5 0.908405 0.472482 0.577181 0.015*
C24 0.46022 (7) 0.32631 (13) 0.73127 (7) 0.0119 (3)
C1 0.75049 (7) 0.41320 (13) 0.63556 (7) 0.0102 (2)
C25 0.43157 (7) 0.28483 (13) 0.79316 (7) 0.0126 (3)
C2 0.77461 (7) 0.33656 (13) 0.69077 (7) 0.0108 (2)
C33 0.46569 (8) 0.32001 (14) 0.86602 (7) 0.0142 (3)
C4 0.89997 (7) 0.36090 (13) 0.66085 (7) 0.0118 (3)
C26 0.36957 (8) 0.21086 (14) 0.78600 (8) 0.0146 (3)
H26 0.348850 0.184092 0.827336 0.017*
C23 0.42907 (8) 0.28965 (14) 0.66554 (7) 0.0142 (3)
C9 0.74008 (9) 0.66304 (14) 0.55600 (9) 0.0201 (3)
H9A 0.697246 0.641207 0.580670 0.030*
H9B 0.725631 0.716410 0.516425 0.030*
H9C 0.775058 0.705636 0.588184 0.030*
C6 0.80076 (7) 0.46405 (12) 0.59066 (7) 0.0111 (2)
C15 0.72567 (7) 0.28252 (13) 0.74267 (7) 0.0110 (2)
H15A 0.745494 0.202582 0.758523 0.013*
H15B 0.725879 0.336533 0.784094 0.013*
C7 0.77512 (8) 0.54657 (13) 0.52888 (7) 0.0128 (3)
C10 0.83846 (8) 0.58516 (15) 0.48592 (8) 0.0170 (3)
H10A 0.820131 0.636333 0.446633 0.025*
H10B 0.861715 0.512455 0.467948 0.025*
H10C 0.873925 0.631277 0.515788 0.025*
C16 0.64240 (8) 0.17496 (13) 0.65555 (7) 0.0141 (3)
H16 0.672705 0.202504 0.617289 0.017*
C21 0.66673 (8) 0.04744 (13) 0.67866 (8) 0.0160 (3)
H21A 0.642144 0.024197 0.720976 0.019*
H21B 0.719628 0.047899 0.691019 0.019*
C27 0.33673 (8) 0.17452 (14) 0.72175 (8) 0.0157 (3)
C28 0.36837 (8) 0.21471 (14) 0.66180 (8) 0.0162 (3)
H28 0.347797 0.190093 0.617174 0.019*
C11 0.98156 (7) 0.33692 (13) 0.67445 (7) 0.0129 (3)
C36 0.54757 (8) 0.29016 (15) 0.87359 (8) 0.0194 (3)
H36A 0.555113 0.205208 0.860075 0.029*
H36B 0.565991 0.302178 0.922347 0.029*
H36C 0.573525 0.344170 0.843165 0.029*
C19 0.56900 (10) −0.04481 (15) 0.59694 (9) 0.0219 (3)
H19A 0.539944 −0.068313 0.636294 0.026*
H19B 0.559450 −0.104765 0.558777 0.026*
C20 0.64927 (9) −0.04664 (15) 0.62109 (9) 0.0224 (3)
H20A 0.678364 −0.029062 0.580807 0.027*
H20B 0.662703 −0.128871 0.638897 0.027*
C14 1.02015 (9) 0.45629 (15) 0.69599 (9) 0.0222 (3)
H14A 1.012181 0.516351 0.658365 0.033*
H14B 1.072247 0.441111 0.704617 0.033*
H14C 1.000677 0.487651 0.738759 0.033*
C34 0.43001 (10) 0.25202 (16) 0.92482 (8) 0.0229 (3)
H34A 0.378309 0.272408 0.923167 0.034*
H34B 0.453306 0.276340 0.970230 0.034*
H34C 0.435662 0.163973 0.918539 0.034*
C12 0.99721 (8) 0.24308 (14) 0.73274 (8) 0.0161 (3)
H12A 0.979753 0.274088 0.776503 0.024*
H12B 1.049566 0.228556 0.739032 0.024*
H12C 0.972342 0.166547 0.720004 0.024*
C8 0.72060 (9) 0.47859 (16) 0.47828 (8) 0.0193 (3)
H8A 0.677274 0.458088 0.502541 0.029*
H8B 0.742917 0.403623 0.462137 0.029*
H8C 0.706920 0.530810 0.437985 0.029*
C35 0.45589 (9) 0.45675 (14) 0.87842 (8) 0.0205 (3)
H35A 0.476047 0.502693 0.840440 0.031*
H35B 0.481207 0.479742 0.923160 0.031*
H35C 0.404140 0.475293 0.879611 0.031*
C17 0.56291 (8) 0.17702 (14) 0.62828 (8) 0.0144 (3)
H17 0.533304 0.155719 0.668282 0.017*
C13 1.01268 (8) 0.28886 (15) 0.60759 (8) 0.0186 (3)
H13A 0.987537 0.213576 0.592770 0.028*
H13B 1.064551 0.272195 0.616823 0.028*
H13C 1.005854 0.350083 0.570454 0.028*
C18 0.54628 (9) 0.08268 (15) 0.57084 (8) 0.0193 (3)
H18A 0.572711 0.103741 0.529292 0.023*
H18B 0.493712 0.083263 0.556814 0.023*
C29 0.26833 (8) 0.09489 (15) 0.71510 (9) 0.0185 (3)
C30 0.28065 (10) −0.01727 (16) 0.66956 (10) 0.0261 (4)
H30A 0.290396 0.009075 0.622240 0.039*
H30B 0.237252 −0.068785 0.667349 0.039*
H30C 0.322176 −0.063725 0.690021 0.039*
C37 0.40015 (9) 0.74080 (18) 0.58931 (9) 0.0263 (4)
H37A 0.356503 0.767075 0.561340 0.039*
H37B 0.424456 0.812034 0.611086 0.039*
H37C 0.386558 0.684354 0.625822 0.039*
C32 0.24605 (10) 0.04964 (19) 0.78619 (10) 0.0299 (4)
H32A 0.285986 0.003025 0.809534 0.045*
H32B 0.203172 −0.002637 0.779172 0.045*
H32C 0.234725 0.119593 0.815306 0.045*
C31 0.20611 (9) 0.17193 (17) 0.68148 (12) 0.0314 (4)
H31A 0.200184 0.245472 0.709543 0.047*
H31B 0.161139 0.124390 0.679387 0.047*
H31C 0.217224 0.195183 0.633999 0.047*
O0AA 0.78475 (9) 0.15803 (16) 0.53746 (9) 0.0475 (4)
H0AA 0.753457 0.134959 0.506334 0.071*
C38 0.83042 (13) 0.0590 (2) 0.55795 (13) 0.0447 (5)
H38A 0.809561 −0.016705 0.538274 0.067*
H38B 0.834867 0.053270 0.609140 0.067*
H38C 0.878466 0.071852 0.540644 0.067*

(6,6'-{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo01 0.00740 (6) 0.01008 (6) 0.01251 (6) 0.00059 (4) 0.00143 (4) 0.00055 (4)
O1 0.0078 (4) 0.0146 (5) 0.0143 (5) 0.0017 (4) 0.0018 (4) 0.0034 (4)
O3 0.0134 (5) 0.0137 (5) 0.0190 (5) −0.0010 (4) 0.0010 (4) −0.0023 (4)
O2 0.0102 (4) 0.0154 (5) 0.0135 (5) −0.0020 (4) 0.0023 (4) −0.0009 (4)
O4 0.0135 (5) 0.0168 (5) 0.0197 (5) 0.0044 (4) 0.0030 (4) 0.0037 (4)
N2 0.0099 (5) 0.0152 (6) 0.0119 (5) 0.0022 (5) 0.0000 (4) 0.0012 (4)
N1 0.0079 (5) 0.0117 (5) 0.0127 (5) −0.0015 (4) 0.0006 (4) 0.0002 (4)
O5 0.0216 (6) 0.0340 (7) 0.0158 (5) 0.0087 (5) −0.0007 (4) 0.0025 (5)
C22 0.0102 (6) 0.0187 (7) 0.0133 (6) −0.0004 (5) −0.0014 (5) 0.0016 (5)
C3 0.0104 (6) 0.0096 (6) 0.0131 (6) 0.0002 (5) −0.0002 (5) 0.0003 (5)
C5 0.0101 (6) 0.0122 (6) 0.0144 (6) −0.0018 (5) 0.0029 (5) 0.0005 (5)
C24 0.0072 (6) 0.0128 (6) 0.0156 (6) 0.0009 (5) 0.0004 (5) 0.0007 (5)
C1 0.0077 (6) 0.0100 (6) 0.0131 (6) −0.0003 (5) 0.0013 (5) −0.0009 (5)
C25 0.0104 (6) 0.0125 (6) 0.0148 (6) 0.0023 (5) 0.0006 (5) 0.0009 (5)
C2 0.0094 (6) 0.0099 (6) 0.0131 (6) −0.0020 (5) 0.0014 (5) −0.0002 (5)
C33 0.0157 (7) 0.0140 (7) 0.0130 (6) 0.0010 (5) 0.0022 (5) 0.0004 (5)
C4 0.0090 (6) 0.0114 (6) 0.0150 (6) −0.0002 (5) 0.0010 (5) −0.0013 (5)
C26 0.0113 (6) 0.0144 (7) 0.0185 (7) 0.0013 (5) 0.0042 (5) 0.0029 (5)
C23 0.0115 (6) 0.0178 (7) 0.0133 (6) 0.0002 (5) −0.0001 (5) 0.0022 (5)
C9 0.0236 (8) 0.0144 (7) 0.0231 (7) 0.0052 (6) 0.0068 (6) 0.0051 (6)
C6 0.0108 (6) 0.0097 (6) 0.0129 (6) −0.0004 (5) 0.0018 (5) 0.0004 (5)
C15 0.0083 (6) 0.0126 (6) 0.0120 (6) −0.0017 (5) −0.0004 (5) 0.0018 (5)
C7 0.0116 (6) 0.0133 (6) 0.0135 (6) 0.0002 (5) 0.0019 (5) 0.0028 (5)
C10 0.0149 (7) 0.0197 (7) 0.0166 (7) −0.0022 (6) 0.0035 (5) 0.0055 (6)
C16 0.0140 (6) 0.0130 (7) 0.0150 (6) 0.0000 (5) −0.0013 (5) −0.0017 (5)
C21 0.0157 (7) 0.0118 (7) 0.0197 (7) 0.0019 (5) −0.0041 (5) −0.0005 (5)
C27 0.0093 (6) 0.0157 (7) 0.0219 (7) −0.0005 (5) 0.0003 (5) 0.0025 (6)
C28 0.0123 (6) 0.0189 (7) 0.0169 (7) −0.0008 (6) −0.0028 (5) 0.0014 (6)
C11 0.0077 (6) 0.0140 (7) 0.0169 (6) 0.0000 (5) 0.0006 (5) 0.0010 (5)
C36 0.0177 (7) 0.0221 (8) 0.0177 (7) 0.0026 (6) −0.0039 (6) 0.0001 (6)
C19 0.0274 (8) 0.0155 (7) 0.0218 (7) −0.0022 (6) −0.0057 (6) −0.0017 (6)
C20 0.0258 (8) 0.0136 (7) 0.0269 (8) 0.0028 (6) −0.0046 (6) −0.0039 (6)
C14 0.0144 (7) 0.0178 (7) 0.0336 (9) −0.0045 (6) −0.0042 (6) −0.0005 (6)
C34 0.0301 (9) 0.0251 (8) 0.0138 (7) −0.0048 (7) 0.0042 (6) 0.0027 (6)
C12 0.0118 (6) 0.0191 (7) 0.0175 (7) 0.0027 (6) 0.0011 (5) 0.0035 (6)
C8 0.0168 (7) 0.0261 (8) 0.0145 (7) −0.0049 (6) −0.0012 (5) 0.0026 (6)
C35 0.0274 (8) 0.0161 (7) 0.0183 (7) 0.0028 (6) 0.0031 (6) −0.0010 (6)
C17 0.0141 (6) 0.0133 (7) 0.0156 (7) −0.0007 (5) −0.0006 (5) 0.0005 (5)
C13 0.0134 (7) 0.0242 (8) 0.0185 (7) 0.0046 (6) 0.0033 (5) 0.0037 (6)
C18 0.0236 (8) 0.0161 (7) 0.0171 (7) 0.0005 (6) −0.0068 (6) −0.0025 (6)
C29 0.0103 (6) 0.0180 (7) 0.0270 (8) −0.0030 (6) 0.0014 (6) 0.0012 (6)
C30 0.0221 (8) 0.0218 (8) 0.0345 (9) −0.0053 (7) 0.0031 (7) −0.0032 (7)
C37 0.0202 (8) 0.0358 (10) 0.0230 (8) −0.0026 (7) 0.0027 (6) −0.0067 (7)
C32 0.0226 (8) 0.0354 (10) 0.0324 (9) −0.0141 (8) 0.0084 (7) 0.0008 (8)
C31 0.0135 (7) 0.0230 (9) 0.0563 (12) −0.0015 (7) −0.0078 (8) 0.0031 (8)
O0AA 0.0424 (9) 0.0457 (9) 0.0550 (10) 0.0012 (8) 0.0073 (7) −0.0082 (8)
C38 0.0409 (12) 0.0465 (13) 0.0479 (13) 0.0002 (10) 0.0118 (10) 0.0003 (10)

(6,6'-{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b) . Geometric parameters (Å, º)

Mo01—O1 1.9428 (10) C27—C28 1.396 (2)
Mo01—O3 1.7125 (10) C27—C29 1.535 (2)
Mo01—O2 1.9484 (10) C28—H28 0.9500
Mo01—O4 1.7226 (11) C11—C14 1.534 (2)
Mo01—N2 2.3384 (12) C11—C12 1.531 (2)
Mo01—N1 2.3412 (12) C11—C13 1.534 (2)
O1—C1 1.3586 (16) C36—H36A 0.9800
O2—C24 1.3554 (17) C36—H36B 0.9800
N2—H2 1.0000 C36—H36C 0.9800
N2—C22 1.4979 (18) C19—H19A 0.9900
N2—C17 1.4989 (19) C19—H19B 0.9900
N1—H1 1.0000 C19—C20 1.523 (2)
N1—C15 1.4850 (17) C19—C18 1.534 (2)
N1—C16 1.4935 (18) C20—H20A 0.9900
O5—H5A 0.8400 C20—H20B 0.9900
O5—C37 1.421 (2) C14—H14A 0.9800
C22—H22A 0.9900 C14—H14B 0.9800
C22—H22B 0.9900 C14—H14C 0.9800
C22—C23 1.510 (2) C34—H34A 0.9800
C3—H3 0.9500 C34—H34B 0.9800
C3—C2 1.4016 (18) C34—H34C 0.9800
C3—C4 1.3902 (19) C12—H12A 0.9800
C5—H5 0.9500 C12—H12B 0.9800
C5—C4 1.4029 (19) C12—H12C 0.9800
C5—C6 1.3982 (19) C8—H8A 0.9800
C24—C25 1.407 (2) C8—H8B 0.9800
C24—C23 1.4057 (19) C8—H8C 0.9800
C1—C2 1.3992 (19) C35—H35A 0.9800
C1—C6 1.4238 (19) C35—H35B 0.9800
C25—C33 1.5396 (19) C35—H35C 0.9800
C25—C26 1.403 (2) C17—H17 1.0000
C2—C15 1.5117 (18) C17—C18 1.526 (2)
C33—C36 1.546 (2) C13—H13A 0.9800
C33—C34 1.538 (2) C13—H13B 0.9800
C33—C35 1.532 (2) C13—H13C 0.9800
C4—C11 1.5353 (19) C18—H18A 0.9900
C26—H26 0.9500 C18—H18B 0.9900
C26—C27 1.391 (2) C29—C30 1.535 (2)
C23—C28 1.389 (2) C29—C32 1.533 (2)
C9—H9A 0.9800 C29—C31 1.532 (2)
C9—H9B 0.9800 C30—H30A 0.9800
C9—H9C 0.9800 C30—H30B 0.9800
C9—C7 1.539 (2) C30—H30C 0.9800
C6—C7 1.5380 (19) C37—H37A 0.9800
C15—H15A 0.9900 C37—H37B 0.9800
C15—H15B 0.9900 C37—H37C 0.9800
C7—C10 1.537 (2) C32—H32A 0.9800
C7—C8 1.541 (2) C32—H32B 0.9800
C10—H10A 0.9800 C32—H32C 0.9800
C10—H10B 0.9800 C31—H31A 0.9800
C10—H10C 0.9800 C31—H31B 0.9800
C16—H16 1.0000 C31—H31C 0.9800
C16—C21 1.526 (2) O0AA—H0AA 0.8400
C16—C17 1.5250 (19) O0AA—C38 1.415 (3)
C21—H21A 0.9900 C38—H38A 0.9800
C21—H21B 0.9900 C38—H38B 0.9800
C21—C20 1.528 (2) C38—H38C 0.9800
O1—Mo01—O2 157.49 (4) C23—C28—H28 119.1
O1—Mo01—N2 84.45 (4) C27—C28—H28 119.1
O1—Mo01—N1 76.73 (4) C14—C11—C4 109.40 (12)
O3—Mo01—O1 96.36 (5) C12—C11—C4 111.84 (12)
O3—Mo01—O2 94.58 (5) C12—C11—C14 108.51 (12)
O3—Mo01—O4 108.55 (5) C12—C11—C13 108.34 (12)
O3—Mo01—N2 161.00 (5) C13—C11—C4 109.83 (11)
O3—Mo01—N1 89.26 (5) C13—C11—C14 108.87 (13)
O2—Mo01—N2 78.91 (4) C33—C36—H36A 109.5
O2—Mo01—N1 83.82 (4) C33—C36—H36B 109.5
O4—Mo01—O1 94.88 (5) C33—C36—H36C 109.5
O4—Mo01—O2 100.19 (5) H36A—C36—H36B 109.5
O4—Mo01—N2 90.24 (5) H36A—C36—H36C 109.5
O4—Mo01—N1 161.21 (5) H36B—C36—H36C 109.5
N2—Mo01—N1 72.40 (4) H19A—C19—H19B 108.1
C1—O1—Mo01 132.75 (9) C20—C19—H19A 109.6
C24—O2—Mo01 141.38 (9) C20—C19—H19B 109.6
Mo01—N2—H2 107.0 C20—C19—C18 110.46 (13)
C22—N2—Mo01 109.40 (9) C18—C19—H19A 109.6
C22—N2—H2 107.0 C18—C19—H19B 109.6
C22—N2—C17 112.01 (11) C21—C20—H20A 109.4
C17—N2—Mo01 113.97 (8) C21—C20—H20B 109.4
C17—N2—H2 107.0 C19—C20—C21 111.22 (14)
Mo01—N1—H1 107.1 C19—C20—H20A 109.4
C15—N1—Mo01 110.21 (8) C19—C20—H20B 109.4
C15—N1—H1 107.1 H20A—C20—H20B 108.0
C15—N1—C16 113.23 (11) C11—C14—H14A 109.5
C16—N1—Mo01 111.79 (8) C11—C14—H14B 109.5
C16—N1—H1 107.1 C11—C14—H14C 109.5
C37—O5—H5A 109.5 H14A—C14—H14B 109.5
N2—C22—H22A 109.4 H14A—C14—H14C 109.5
N2—C22—H22B 109.4 H14B—C14—H14C 109.5
N2—C22—C23 111.14 (11) C33—C34—H34A 109.5
H22A—C22—H22B 108.0 C33—C34—H34B 109.5
C23—C22—H22A 109.4 C33—C34—H34C 109.5
C23—C22—H22B 109.4 H34A—C34—H34B 109.5
C2—C3—H3 119.0 H34A—C34—H34C 109.5
C4—C3—H3 119.0 H34B—C34—H34C 109.5
C4—C3—C2 121.94 (13) C11—C12—H12A 109.5
C4—C5—H5 118.1 C11—C12—H12B 109.5
C6—C5—H5 118.1 C11—C12—H12C 109.5
C6—C5—C4 123.81 (13) H12A—C12—H12B 109.5
O2—C24—C25 119.56 (12) H12A—C12—H12C 109.5
O2—C24—C23 119.97 (13) H12B—C12—H12C 109.5
C23—C24—C25 120.45 (13) C7—C8—H8A 109.5
O1—C1—C2 121.83 (12) C7—C8—H8B 109.5
O1—C1—C6 117.81 (12) C7—C8—H8C 109.5
C2—C1—C6 120.33 (12) H8A—C8—H8B 109.5
C24—C25—C33 121.85 (13) H8A—C8—H8C 109.5
C26—C25—C24 117.26 (13) H8B—C8—H8C 109.5
C26—C25—C33 120.89 (13) C33—C35—H35A 109.5
C3—C2—C15 116.27 (12) C33—C35—H35B 109.5
C1—C2—C3 119.70 (12) C33—C35—H35C 109.5
C1—C2—C15 123.98 (12) H35A—C35—H35B 109.5
C25—C33—C36 111.60 (12) H35A—C35—H35C 109.5
C34—C33—C25 111.87 (12) H35B—C35—H35C 109.5
C34—C33—C36 107.23 (13) N2—C17—C16 107.91 (12)
C35—C33—C25 109.93 (12) N2—C17—H17 107.5
C35—C33—C36 108.59 (13) N2—C17—C18 114.02 (12)
C35—C33—C34 107.46 (13) C16—C17—H17 107.5
C3—C4—C5 116.99 (12) C16—C17—C18 112.17 (13)
C3—C4—C11 122.44 (12) C18—C17—H17 107.5
C5—C4—C11 120.57 (12) C11—C13—H13A 109.5
C25—C26—H26 118.2 C11—C13—H13B 109.5
C27—C26—C25 123.69 (13) C11—C13—H13C 109.5
C27—C26—H26 118.2 H13A—C13—H13B 109.5
C24—C23—C22 120.24 (13) H13A—C13—H13C 109.5
C28—C23—C22 120.05 (13) H13B—C13—H13C 109.5
C28—C23—C24 119.62 (13) C19—C18—H18A 109.6
H9A—C9—H9B 109.5 C19—C18—H18B 109.6
H9A—C9—H9C 109.5 C17—C18—C19 110.30 (12)
H9B—C9—H9C 109.5 C17—C18—H18A 109.6
C7—C9—H9A 109.5 C17—C18—H18B 109.6
C7—C9—H9B 109.5 H18A—C18—H18B 108.1
C7—C9—H9C 109.5 C30—C29—C27 110.44 (13)
C5—C6—C1 117.17 (12) C32—C29—C27 112.47 (13)
C5—C6—C7 121.74 (12) C32—C29—C30 107.76 (14)
C1—C6—C7 121.09 (12) C31—C29—C27 108.10 (13)
N1—C15—C2 113.51 (11) C31—C29—C30 109.91 (14)
N1—C15—H15A 108.9 C31—C29—C32 108.13 (15)
N1—C15—H15B 108.9 C29—C30—H30A 109.5
C2—C15—H15A 108.9 C29—C30—H30B 109.5
C2—C15—H15B 108.9 C29—C30—H30C 109.5
H15A—C15—H15B 107.7 H30A—C30—H30B 109.5
C9—C7—C8 109.99 (13) H30A—C30—H30C 109.5
C6—C7—C9 110.08 (12) H30B—C30—H30C 109.5
C6—C7—C8 110.57 (12) O5—C37—H37A 109.5
C10—C7—C9 107.85 (12) O5—C37—H37B 109.5
C10—C7—C6 111.63 (12) O5—C37—H37C 109.5
C10—C7—C8 106.62 (12) H37A—C37—H37B 109.5
C7—C10—H10A 109.5 H37A—C37—H37C 109.5
C7—C10—H10B 109.5 H37B—C37—H37C 109.5
C7—C10—H10C 109.5 C29—C32—H32A 109.5
H10A—C10—H10B 109.5 C29—C32—H32B 109.5
H10A—C10—H10C 109.5 C29—C32—H32C 109.5
H10B—C10—H10C 109.5 H32A—C32—H32B 109.5
N1—C16—H16 108.7 H32A—C32—H32C 109.5
N1—C16—C21 112.61 (11) H32B—C32—H32C 109.5
N1—C16—C17 106.26 (11) C29—C31—H31A 109.5
C21—C16—H16 108.7 C29—C31—H31B 109.5
C17—C16—H16 108.7 C29—C31—H31C 109.5
C17—C16—C21 111.73 (12) H31A—C31—H31B 109.5
C16—C21—H21A 109.3 H31A—C31—H31C 109.5
C16—C21—H21B 109.3 H31B—C31—H31C 109.5
C16—C21—C20 111.54 (12) C38—O0AA—H0AA 109.5
H21A—C21—H21B 108.0 O0AA—C38—H38A 109.5
C20—C21—H21A 109.3 O0AA—C38—H38B 109.5
C20—C21—H21B 109.3 O0AA—C38—H38C 109.5
C26—C27—C28 117.04 (13) H38A—C38—H38B 109.5
C26—C27—C29 122.83 (14) H38A—C38—H38C 109.5
C28—C27—C29 120.13 (13) H38B—C38—H38C 109.5
C23—C28—C27 121.89 (14)
Mo01—O1—C1—C2 31.67 (19) C1—C6—C7—C10 −177.16 (13)
Mo01—O1—C1—C6 −150.18 (10) C1—C6—C7—C8 −58.64 (17)
Mo01—O2—C24—C25 158.74 (11) C25—C24—C23—C22 −174.72 (13)
Mo01—O2—C24—C23 −19.8 (2) C25—C24—C23—C28 1.8 (2)
Mo01—N2—C22—C23 −73.12 (13) C25—C26—C27—C28 0.2 (2)
Mo01—N2—C17—C16 −38.13 (13) C25—C26—C27—C29 −179.20 (14)
Mo01—N2—C17—C18 −163.45 (10) C2—C3—C4—C5 −2.2 (2)
Mo01—N1—C15—C2 −61.41 (13) C2—C3—C4—C11 177.34 (13)
Mo01—N1—C16—C21 −172.68 (9) C2—C1—C6—C5 −2.0 (2)
Mo01—N1—C16—C17 −50.05 (12) C2—C1—C6—C7 178.87 (13)
O1—C1—C2—C3 178.24 (12) C33—C25—C26—C27 −179.11 (14)
O1—C1—C2—C15 −4.4 (2) C4—C3—C2—C1 2.1 (2)
O1—C1—C6—C5 179.79 (12) C4—C3—C2—C15 −175.52 (13)
O1—C1—C6—C7 0.69 (19) C4—C5—C6—C1 1.9 (2)
O2—C24—C25—C33 −0.4 (2) C4—C5—C6—C7 −178.97 (13)
O2—C24—C25—C26 178.78 (13) C26—C25—C33—C36 127.48 (15)
O2—C24—C23—C22 3.8 (2) C26—C25—C33—C34 7.33 (19)
O2—C24—C23—C28 −179.71 (13) C26—C25—C33—C35 −111.97 (16)
N2—C22—C23—C24 45.68 (19) C26—C27—C28—C23 −1.3 (2)
N2—C22—C23—C28 −130.82 (14) C26—C27—C29—C30 −126.65 (16)
N2—C17—C18—C19 178.60 (13) C26—C27—C29—C32 −6.2 (2)
N1—C16—C21—C20 172.29 (13) C26—C27—C29—C31 113.07 (17)
N1—C16—C17—N2 56.94 (14) C23—C24—C25—C33 178.13 (13)
N1—C16—C17—C18 −176.64 (12) C23—C24—C25—C26 −2.7 (2)
C22—N2—C17—C16 −163.01 (11) C6—C5—C4—C3 0.1 (2)
C22—N2—C17—C18 71.67 (16) C6—C5—C4—C11 −179.40 (13)
C22—C23—C28—C27 176.79 (14) C6—C1—C2—C3 0.1 (2)
C3—C2—C15—N1 −154.63 (12) C6—C1—C2—C15 177.52 (13)
C3—C4—C11—C14 −114.88 (15) C15—N1—C16—C21 62.12 (15)
C3—C4—C11—C12 5.36 (19) C15—N1—C16—C17 −175.25 (11)
C3—C4—C11—C13 125.68 (14) C16—N1—C15—C2 64.63 (15)
C5—C4—C11—C14 64.61 (17) C16—C21—C20—C19 −55.27 (18)
C5—C4—C11—C12 −175.14 (13) C16—C17—C18—C19 55.56 (18)
C5—C4—C11—C13 −54.82 (17) C21—C16—C17—N2 −179.87 (11)
C5—C6—C7—C9 −115.97 (15) C21—C16—C17—C18 −53.46 (17)
C5—C6—C7—C10 3.78 (19) C28—C27—C29—C30 53.95 (19)
C5—C6—C7—C8 122.30 (14) C28—C27—C29—C32 174.37 (15)
C24—C25—C33—C36 −53.41 (18) C28—C27—C29—C31 −66.33 (19)
C24—C25—C33—C34 −173.56 (13) C20—C19—C18—C17 −57.38 (18)
C24—C25—C33—C35 67.14 (17) C17—N2—C22—C23 54.25 (15)
C24—C25—C26—C27 1.7 (2) C17—C16—C21—C20 52.79 (17)
C24—C23—C28—C27 0.3 (2) C18—C19—C20—C21 57.58 (18)
C1—C2—C15—N1 27.90 (19) C29—C27—C28—C23 178.18 (14)
C1—C6—C7—C9 63.09 (17)

(6,6'-{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methylene)}bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O5i 1.00 2.00 2.9319 (16) 153
O5—H5A···O4 0.84 1.94 2.7837 (16) 177

Symmetry code: (i) −x+1, −y+1, −z+1.

Dioxido{2,2'-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate (1b). Crystal data

[Mo(C20H18N2O2)O2]·2C3H7NO Z = 4
Mr = 592.49 F(000) = 1224
Triclinic, P1 Dx = 1.491 Mg m3
a = 9.601 Å Mo Kα radiation, λ = 0.71073 Å
b = 12.860 Å Cell parameters from 9515 reflections
c = 21.428 Å θ = 2.3–49.3°
α = 91.44° µ = 0.54 mm1
β = 91.49° T = 100 K
γ = 93.22° Plate, yellow
V = 2639.8 Å3 0.34 × 0.29 × 0.29 mm

Dioxido{2,2'-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate (1b). Data collection

Bruker APEXII CCD diffractometer 6364 reflections with I > 2σ(I)
φ and ω scans Rint = 0.056
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 27.1°, θmin = 2.7°
Tmin = 0.664, Tmax = 0.737 h = −12→12
146655 measured reflections k = −16→16
7625 independent reflections l = −27→27

Dioxido{2,2'-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate (1b). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0214P)2 + 0.638P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
7625 reflections Δρmax = 0.35 e Å3
683 parameters Δρmin = −0.38 e Å3
0 restraints

Dioxido{2,2'-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate (1b). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Dioxido{2,2'-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate (1b). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo01 0.90908 (2) 0.88143 (2) 0.23791 (2) 0.01047 (6)
Mo02 0.40906 (2) 0.38140 (2) 0.26211 (2) 0.01045 (6)
O5 0.36926 (14) 0.42698 (12) 0.17689 (7) 0.0135 (3)
O1 0.86930 (14) 0.92696 (12) 0.32311 (7) 0.0134 (3)
O3 1.00613 (14) 0.98497 (13) 0.21447 (8) 0.0165 (3)
O8 0.51765 (15) 0.28410 (13) 0.23806 (8) 0.0152 (3)
O7 0.50605 (15) 0.48499 (13) 0.28555 (8) 0.0169 (3)
N2 0.72468 (16) 0.77486 (14) 0.26078 (8) 0.0098 (3)
H008 0.736567 0.755680 0.305460 0.012*
N4 0.22457 (16) 0.27483 (14) 0.23925 (9) 0.0103 (4)
H009 0.231199 0.252423 0.194450 0.012*
O4 1.01781 (15) 0.78420 (13) 0.26191 (8) 0.0152 (3)
O2 0.87093 (14) 0.83127 (13) 0.15364 (7) 0.0141 (3)
O6 0.37087 (14) 0.33128 (13) 0.34638 (7) 0.0141 (3)
N1 0.71375 (17) 0.97852 (14) 0.21773 (9) 0.0101 (3)
N3 0.21399 (17) 0.47869 (14) 0.28219 (9) 0.0101 (3)
O9 0.2105 (3) 0.59956 (16) 0.39734 (9) 0.0395 (5)
O10 0.29034 (18) 0.15986 (15) 0.12529 (8) 0.0235 (4)
O11 0.79013 (18) 0.65963 (14) 0.37463 (8) 0.0234 (4)
O12 0.7110 (3) 1.09959 (16) 0.10270 (9) 0.0388 (5)
C40 0.2694 (2) 0.27959 (17) 0.37595 (10) 0.0133 (4)
C33 0.09199 (19) 0.32526 (16) 0.24527 (10) 0.0097 (4)
N6 0.2294 (2) 0.00745 (18) 0.07856 (10) 0.0229 (4)
C13 0.59214 (19) 0.82531 (17) 0.25477 (10) 0.0100 (4)
N7 0.7296 (2) 0.50764 (18) 0.42150 (10) 0.0231 (5)
C2 0.6928 (2) 1.05716 (17) 0.32295 (11) 0.0132 (4)
C44 0.2062 (2) 0.0933 (2) 0.11184 (11) 0.0201 (5)
H00P 0.114108 0.101089 0.125731 0.024*
C20 0.7691 (2) 0.77942 (17) 0.12402 (10) 0.0138 (4)
C26 0.1928 (2) 0.55726 (17) 0.17703 (11) 0.0133 (4)
C35 0.1970 (2) 0.20156 (17) 0.34516 (11) 0.0138 (4)
C32 −0.0270 (2) 0.27625 (17) 0.22922 (10) 0.0124 (4)
H00T −0.028382 0.209159 0.209538 0.015*
C21 0.2697 (2) 0.48024 (18) 0.14646 (11) 0.0140 (4)
N5 0.2261 (2) 0.77472 (17) 0.40850 (10) 0.0223 (4)
C47 0.7060 (2) 0.5934 (2) 0.38822 (11) 0.0196 (5)
H00W 0.612568 0.601350 0.374316 0.024*
N8 0.7263 (2) 1.27474 (17) 0.09144 (10) 0.0223 (4)
C12 0.4730 (2) 0.77623 (17) 0.27093 (10) 0.0125 (4)
H00Y 0.473625 0.710632 0.290319 0.015*
C39 0.2388 (2) 0.3050 (2) 0.43809 (11) 0.0201 (5)
H00Z 0.291477 0.360886 0.458964 0.024*
C8 0.58707 (19) 0.92488 (16) 0.22796 (10) 0.0091 (4)
C29 −0.0390 (2) 0.47127 (17) 0.28501 (10) 0.0123 (4)
H011 −0.037498 0.538591 0.304393 0.015*
C19 0.7389 (2) 0.8050 (2) 0.06185 (12) 0.0203 (5)
H012 0.791590 0.859381 0.042563 0.024*
C15 0.6965 (2) 0.70132 (17) 0.15474 (11) 0.0142 (4)
C28 0.08690 (19) 0.42482 (17) 0.27184 (10) 0.0091 (4)
C41 0.1618 (3) 0.6874 (2) 0.39361 (12) 0.0283 (6)
H015 0.068263 0.689541 0.378304 0.034*
C9 0.4611 (2) 0.97132 (17) 0.21493 (10) 0.0125 (4)
H016 0.460785 1.037336 0.196026 0.015*
C1 0.7697 (2) 0.98025 (18) 0.35362 (11) 0.0138 (4)
C5 0.6467 (3) 1.0132 (2) 0.44922 (12) 0.0256 (6)
H018 0.630612 0.998654 0.491758 0.031*
C34 0.2286 (2) 0.17687 (17) 0.27776 (11) 0.0134 (4)
H01G 0.158999 0.123370 0.260434 0.016*
H01H 0.322041 0.148400 0.275457 0.016*
C23 0.1469 (3) 0.5132 (2) 0.05077 (12) 0.0258 (6)
H01I 0.130229 0.498464 0.007471 0.031*
C6 0.7459 (2) 0.9580 (2) 0.41654 (12) 0.0204 (5)
H01B 0.796107 0.906242 0.436774 0.024*
C50 0.6613 (3) 1.1871 (2) 0.10638 (12) 0.0282 (6)
H3AA 0.569131 1.190364 0.121161 0.034*
C25 0.0929 (2) 0.61129 (19) 0.14338 (11) 0.0189 (5)
H01J 0.041127 0.662013 0.164100 0.023*
C52 0.6615 (3) 1.3763 (2) 0.09717 (13) 0.0289 (6)
H4AA 0.655244 1.407393 0.055983 0.043*
H 0.718693 1.422943 0.125606 0.043*
HA 0.567704 1.365643 0.113700 0.043*
C3 0.5933 (2) 1.11153 (19) 0.35649 (12) 0.0194 (5)
H01F 0.541726 1.162479 0.336215 0.023*
C36 0.0928 (2) 0.1508 (2) 0.37725 (12) 0.0227 (5)
H01K 0.038307 0.096025 0.356264 0.027*
C43 0.1617 (3) 0.8762 (2) 0.40289 (13) 0.0286 (6)
H01V 0.066608 0.864836 0.385335 0.043*
H01X 0.217185 0.920818 0.375361 0.043*
H01 0.158583 0.910086 0.444276 0.043*
C14 0.7286 (2) 0.67698 (17) 0.22211 (11) 0.0132 (4)
H01A 0.658777 0.624167 0.236808 0.016*
H01C 0.822034 0.648551 0.225945 0.016*
C7 0.7171 (2) 1.07799 (17) 0.25468 (11) 0.0132 (4)
H01D 0.643980 1.122212 0.238363 0.016*
H01E 0.808727 1.116005 0.250437 0.016*
C27 0.2171 (2) 0.57802 (17) 0.24528 (11) 0.0134 (4)
H01L 0.144556 0.623135 0.260818 0.016*
H01M 0.308883 0.616118 0.252287 0.016*
C22 0.2461 (2) 0.4580 (2) 0.08324 (11) 0.0201 (5)
H01Q 0.296160 0.406416 0.062409 0.024*
C38 0.1364 (3) 0.2525 (2) 0.46952 (12) 0.0268 (6)
H01S 0.118153 0.270242 0.511713 0.032*
C18 0.6362 (3) 0.7523 (2) 0.03063 (12) 0.0273 (6)
H01N 0.614082 0.767239 −0.011561 0.033*
C16 0.5928 (2) 0.6508 (2) 0.12279 (12) 0.0221 (5)
H01O 0.538427 0.597338 0.142117 0.027*
C17 0.5624 (3) 0.6753 (2) 0.06102 (13) 0.0294 (6)
H01P 0.487821 0.637301 0.039190 0.035*
C37 0.0627 (3) 0.1754 (2) 0.43895 (13) 0.0293 (6)
H01T −0.010064 0.137342 0.459158 0.035*
C4 0.5703 (3) 1.0908 (2) 0.41929 (12) 0.0278 (6)
H01R 0.504234 1.127999 0.441810 0.033*
C46 0.3651 (3) −0.0174 (2) 0.05437 (13) 0.0305 (6)
H1AA 0.357558 −0.026473 0.008834 0.046*
HB 0.394488 −0.082007 0.072697 0.046*
HC 0.434179 0.039525 0.065371 0.046*
C24 0.0704 (3) 0.5906 (2) 0.08077 (12) 0.0271 (6)
H01U 0.004413 0.627654 0.057686 0.032*
C42 0.3670 (3) 0.7719 (2) 0.43037 (14) 0.0314 (6)
H0AA 0.372846 0.789365 0.475180 0.047*
HD 0.425537 0.822557 0.407903 0.047*
HE 0.399668 0.701912 0.423092 0.047*
C51 0.8669 (3) 1.2720 (2) 0.06964 (14) 0.0310 (6)
H5AA 0.902116 1.203125 0.076874 0.046*
HF 0.926724 1.325264 0.092367 0.046*
HG 0.867536 1.285745 0.024869 0.046*
C11 0.3464 (2) 0.82277 (18) 0.25892 (11) 0.0153 (4)
H01W 0.261648 0.787886 0.270639 0.018*
C48 0.6238 (4) 0.4321 (3) 0.43236 (16) 0.0491 (9)
H2AA 0.613110 0.425094 0.477441 0.074*
HH 0.647881 0.365190 0.413854 0.074*
HI 0.535937 0.452815 0.413397 0.074*
C30 −0.1581 (2) 0.42067 (18) 0.27025 (11) 0.0157 (5)
H01Y −0.244489 0.449657 0.279109 0.019*
C31 −0.1535 (2) 0.32303 (18) 0.24115 (11) 0.0156 (5)
H01Z −0.238872 0.286402 0.228821 0.019*
C49 0.8649 (3) 0.4826 (2) 0.44569 (13) 0.0300 (6)
H02D 0.933605 0.539377 0.437160 0.045*
H02E 0.892550 0.417988 0.425468 0.045*
H02F 0.860619 0.473340 0.490867 0.045*
C45 0.1239 (4) −0.0683 (3) 0.06749 (17) 0.0505 (9)
H02A 0.149070 −0.133015 0.087006 0.076*
H02B 0.110078 −0.080595 0.022377 0.076*
H02C 0.037358 −0.045270 0.085225 0.076*
C10 0.3417 (2) 0.92073 (18) 0.22967 (11) 0.0158 (5)
H022 0.254780 0.949711 0.220761 0.019*
H00D 0.711 (3) 0.996 (2) 0.1797 (14) 0.024 (8)*
H00E 0.207 (3) 0.493 (2) 0.3179 (14) 0.015 (7)*

Dioxido{2,2'-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate (1b). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo01 0.00439 (8) 0.00933 (10) 0.01750 (10) −0.00061 (6) 0.00009 (6) −0.00087 (7)
Mo02 0.00428 (8) 0.00942 (10) 0.01748 (10) −0.00056 (6) −0.00076 (6) 0.00006 (7)
O5 0.0091 (6) 0.0138 (8) 0.0178 (8) 0.0011 (6) 0.0010 (6) 0.0020 (6)
O1 0.0087 (6) 0.0138 (8) 0.0175 (8) 0.0013 (6) −0.0016 (6) −0.0029 (6)
O3 0.0082 (6) 0.0153 (8) 0.0254 (9) −0.0046 (6) 0.0021 (6) −0.0019 (7)
O8 0.0081 (6) 0.0142 (8) 0.0235 (8) 0.0008 (6) 0.0000 (6) 0.0017 (7)
O7 0.0084 (6) 0.0169 (8) 0.0248 (9) −0.0037 (6) −0.0035 (6) 0.0011 (7)
N2 0.0056 (7) 0.0088 (9) 0.0148 (9) −0.0011 (7) −0.0022 (6) −0.0003 (7)
N4 0.0060 (7) 0.0090 (9) 0.0158 (9) 0.0001 (7) 0.0017 (6) −0.0022 (7)
O4 0.0076 (6) 0.0140 (8) 0.0237 (8) 0.0006 (6) −0.0014 (6) −0.0030 (7)
O2 0.0093 (6) 0.0152 (8) 0.0175 (8) −0.0041 (6) 0.0021 (6) −0.0007 (6)
O6 0.0085 (6) 0.0155 (8) 0.0175 (8) −0.0043 (6) −0.0038 (6) 0.0003 (6)
N1 0.0086 (7) 0.0100 (9) 0.0115 (9) −0.0008 (7) 0.0018 (6) 0.0010 (7)
N3 0.0084 (7) 0.0092 (9) 0.0123 (9) −0.0013 (7) −0.0025 (7) −0.0028 (7)
O9 0.0747 (15) 0.0213 (10) 0.0206 (10) −0.0087 (11) −0.0054 (10) −0.0046 (8)
O10 0.0253 (8) 0.0227 (9) 0.0220 (9) −0.0024 (8) 0.0047 (7) −0.0052 (7)
O11 0.0260 (8) 0.0214 (9) 0.0221 (9) −0.0029 (7) −0.0064 (7) 0.0034 (7)
O12 0.0738 (15) 0.0221 (10) 0.0194 (10) −0.0091 (10) 0.0019 (10) 0.0024 (8)
C40 0.0110 (8) 0.0126 (10) 0.0165 (11) 0.0010 (8) −0.0008 (8) 0.0035 (8)
C33 0.0077 (8) 0.0099 (10) 0.0117 (10) 0.0008 (8) 0.0009 (7) 0.0004 (8)
N6 0.0258 (10) 0.0234 (11) 0.0184 (11) −0.0088 (9) 0.0065 (8) −0.0060 (9)
C13 0.0089 (8) 0.0097 (10) 0.0114 (10) 0.0014 (8) −0.0011 (7) −0.0011 (8)
N7 0.0264 (10) 0.0230 (11) 0.0185 (11) −0.0091 (9) −0.0071 (8) 0.0041 (9)
C2 0.0099 (8) 0.0101 (10) 0.0189 (11) −0.0033 (8) −0.0023 (8) −0.0040 (8)
C44 0.0218 (10) 0.0233 (13) 0.0155 (11) 0.0008 (10) 0.0039 (9) 0.0011 (10)
C20 0.0105 (9) 0.0123 (10) 0.0184 (11) 0.0015 (8) 0.0010 (8) −0.0046 (8)
C26 0.0108 (8) 0.0094 (10) 0.0193 (11) −0.0032 (8) 0.0011 (8) 0.0030 (8)
C35 0.0109 (8) 0.0099 (10) 0.0206 (11) 0.0000 (8) −0.0007 (8) 0.0034 (8)
C32 0.0093 (8) 0.0088 (10) 0.0185 (11) −0.0033 (8) −0.0011 (8) −0.0006 (8)
C21 0.0075 (8) 0.0148 (11) 0.0198 (11) −0.0011 (8) 0.0017 (8) 0.0048 (9)
N5 0.0251 (10) 0.0215 (11) 0.0201 (11) 0.0007 (9) −0.0033 (8) −0.0015 (9)
C47 0.0215 (10) 0.0227 (13) 0.0142 (11) −0.0004 (10) −0.0039 (9) −0.0015 (10)
N8 0.0252 (10) 0.0211 (11) 0.0207 (11) 0.0001 (9) 0.0031 (8) 0.0006 (9)
C12 0.0098 (9) 0.0094 (10) 0.0178 (11) −0.0034 (8) −0.0002 (8) −0.0019 (8)
C39 0.0203 (10) 0.0224 (12) 0.0171 (12) −0.0001 (9) −0.0017 (9) 0.0001 (10)
C8 0.0065 (8) 0.0087 (10) 0.0118 (10) −0.0016 (7) −0.0003 (7) −0.0011 (8)
C29 0.0104 (8) 0.0101 (10) 0.0163 (11) 0.0009 (8) 0.0005 (8) −0.0008 (8)
C19 0.0210 (10) 0.0209 (12) 0.0189 (12) −0.0006 (9) 0.0003 (9) −0.0007 (10)
C15 0.0107 (8) 0.0102 (10) 0.0216 (11) 0.0003 (8) 0.0002 (8) −0.0039 (9)
C28 0.0051 (8) 0.0103 (10) 0.0114 (10) −0.0023 (7) −0.0014 (7) −0.0004 (8)
C41 0.0408 (14) 0.0288 (15) 0.0138 (12) −0.0106 (12) −0.0012 (11) −0.0015 (11)
C9 0.0096 (8) 0.0105 (10) 0.0174 (11) 0.0012 (8) −0.0016 (8) 0.0002 (8)
C1 0.0077 (8) 0.0137 (11) 0.0193 (11) −0.0017 (8) −0.0018 (8) −0.0044 (9)
C5 0.0227 (11) 0.0393 (16) 0.0147 (12) 0.0034 (11) −0.0009 (9) −0.0032 (11)
C34 0.0107 (8) 0.0086 (10) 0.0206 (11) −0.0002 (8) −0.0011 (8) 0.0003 (9)
C23 0.0234 (11) 0.0392 (16) 0.0148 (12) 0.0030 (11) −0.0003 (9) 0.0014 (11)
C6 0.0162 (10) 0.0263 (13) 0.0185 (12) 0.0020 (9) −0.0047 (9) −0.0004 (10)
C50 0.0402 (14) 0.0292 (15) 0.0138 (12) −0.0104 (12) 0.0003 (11) 0.0013 (11)
C25 0.0140 (9) 0.0187 (12) 0.0248 (13) 0.0034 (9) 0.0043 (9) 0.0065 (10)
C52 0.0312 (13) 0.0275 (15) 0.0292 (14) 0.0091 (12) 0.0037 (11) 0.0028 (12)
C3 0.0146 (9) 0.0185 (12) 0.0247 (12) 0.0035 (9) −0.0047 (9) −0.0071 (10)
C36 0.0204 (11) 0.0192 (12) 0.0281 (13) −0.0040 (9) 0.0011 (10) 0.0060 (10)
C43 0.0304 (12) 0.0271 (14) 0.0286 (14) 0.0083 (12) −0.0035 (11) −0.0032 (11)
C14 0.0109 (8) 0.0079 (10) 0.0208 (11) 0.0000 (8) 0.0007 (8) −0.0002 (8)
C7 0.0102 (8) 0.0072 (10) 0.0219 (11) −0.0015 (8) −0.0005 (8) −0.0007 (8)
C27 0.0105 (8) 0.0076 (10) 0.0218 (11) −0.0011 (8) 0.0003 (8) 0.0005 (8)
C22 0.0171 (10) 0.0254 (13) 0.0178 (12) 0.0025 (9) 0.0028 (9) −0.0017 (10)
C38 0.0296 (12) 0.0329 (15) 0.0179 (12) 0.0003 (11) 0.0042 (10) 0.0028 (11)
C18 0.0309 (12) 0.0313 (15) 0.0188 (12) −0.0002 (11) −0.0055 (10) −0.0051 (11)
C16 0.0185 (10) 0.0188 (12) 0.0281 (13) −0.0041 (9) 0.0002 (9) −0.0065 (10)
C17 0.0278 (12) 0.0337 (16) 0.0249 (14) −0.0030 (12) −0.0078 (11) −0.0119 (12)
C37 0.0288 (12) 0.0344 (16) 0.0253 (14) −0.0025 (12) 0.0078 (11) 0.0125 (12)
C4 0.0217 (11) 0.0379 (16) 0.0242 (13) 0.0118 (11) −0.0006 (10) −0.0115 (12)
C46 0.0319 (13) 0.0318 (15) 0.0278 (14) 0.0052 (12) 0.0051 (11) −0.0110 (12)
C24 0.0222 (11) 0.0377 (16) 0.0230 (13) 0.0120 (11) 0.0008 (10) 0.0114 (12)
C42 0.0288 (13) 0.0324 (16) 0.0326 (15) 0.0062 (12) −0.0088 (11) −0.0059 (12)
C51 0.0274 (12) 0.0325 (16) 0.0341 (15) 0.0052 (12) 0.0079 (11) 0.0056 (12)
C11 0.0069 (8) 0.0103 (11) 0.0280 (13) −0.0050 (8) 0.0018 (8) −0.0036 (9)
C48 0.0536 (19) 0.051 (2) 0.0385 (19) −0.0346 (17) −0.0143 (16) 0.0156 (16)
C30 0.0081 (8) 0.0162 (11) 0.0231 (12) 0.0023 (8) 0.0027 (8) 0.0029 (9)
C31 0.0074 (8) 0.0113 (11) 0.0275 (13) −0.0050 (8) −0.0029 (8) 0.0022 (9)
C49 0.0310 (13) 0.0319 (15) 0.0276 (14) 0.0049 (12) −0.0063 (11) 0.0108 (12)
C45 0.0540 (19) 0.050 (2) 0.043 (2) −0.0335 (18) 0.0155 (16) −0.0181 (16)
C10 0.0081 (8) 0.0165 (11) 0.0224 (12) 0.0014 (8) −0.0033 (8) −0.0035 (9)

Dioxido{2,2'-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate (1b). Geometric parameters (Å, º)

Mo01—O1 1.9567 (16) C29—C30 1.311 (3)
Mo01—O3 1.6769 (16) C19—H012 0.9500
Mo01—N2 2.2493 (17) C19—C18 1.322 (4)
Mo01—O4 1.7518 (14) C15—C14 1.512 (3)
Mo01—O2 1.9213 (16) C15—C16 1.324 (3)
Mo01—N1 2.3475 (16) C41—H015 0.9500
Mo02—O5 1.9665 (15) C9—H016 0.9500
Mo02—O8 1.7493 (15) C9—C10 1.335 (3)
Mo02—O7 1.6423 (17) C1—C6 1.407 (3)
Mo02—N4 2.2145 (18) C5—H018 0.9500
Mo02—O6 1.9692 (15) C5—C6 1.410 (3)
Mo02—N3 2.3529 (16) C5—C4 1.426 (4)
O5—C21 1.368 (2) C34—H01G 0.9900
O1—C1 1.377 (2) C34—H01H 0.9900
N2—H008 1.0000 C23—H01I 0.9500
N2—C13 1.465 (2) C23—C22 1.401 (3)
N2—C14 1.492 (3) C23—C24 1.420 (4)
N4—H009 1.0000 C6—H01B 0.9500
N4—C33 1.468 (2) C50—H3AA 0.9500
N4—C34 1.525 (3) C25—H01J 0.9500
O2—C20 1.295 (3) C25—C24 1.370 (4)
O6—C40 1.332 (3) C52—H4AA 0.9800
N1—C8 1.389 (3) C52—H 0.9800
N1—C7 1.486 (3) C52—HA 0.9800
N1—H00D 0.85 (3) C3—H01F 0.9500
N3—C28 1.379 (3) C3—C4 1.399 (4)
N3—C27 1.519 (3) C36—H01K 0.9500
N3—H00E 0.79 (3) C36—C37 1.393 (4)
O9—C41 1.250 (4) C43—H01V 0.9800
O10—C44 1.169 (3) C43—H01X 0.9800
O11—C47 1.187 (3) C43—H01 0.9800
O12—C50 1.249 (4) C14—H01A 0.9900
C40—C35 1.338 (3) C14—H01C 0.9900
C40—C39 1.405 (3) C7—H01D 0.9900
C33—C32 1.307 (3) C7—H01E 0.9900
C33—C28 1.392 (3) C27—H01L 0.9900
N6—C44 1.332 (3) C27—H01M 0.9900
N6—C46 1.464 (3) C22—H01Q 0.9500
N6—C45 1.377 (4) C38—H01S 0.9500
C13—C12 1.333 (3) C38—C37 1.333 (4)
C13—C8 1.419 (3) C18—H01N 0.9500
N7—C47 1.355 (3) C18—C17 1.372 (4)
N7—C48 1.394 (4) C16—H01O 0.9500
N7—C49 1.443 (3) C16—C17 1.396 (4)
C2—C1 1.430 (3) C17—H01P 0.9500
C2—C3 1.415 (3) C37—H01T 0.9500
C2—C7 1.515 (3) C4—H01R 0.9500
C44—H00P 0.9500 C46—H1AA 0.9800
C20—C19 1.407 (3) C46—HB 0.9800
C20—C15 1.380 (3) C46—HC 0.9800
C26—C21 1.425 (3) C24—H01U 0.9500
C26—C25 1.410 (3) C42—H0AA 0.9800
C26—C27 1.490 (3) C42—HD 0.9800
C35—C34 1.513 (3) C42—HE 0.9800
C35—C36 1.373 (3) C51—H5AA 0.9800
C32—H00T 0.9500 C51—HF 0.9800
C32—C31 1.412 (3) C51—HG 0.9800
C21—C22 1.388 (3) C11—H01W 0.9500
N5—C41 1.280 (4) C11—C10 1.424 (3)
N5—C43 1.482 (3) C48—H2AA 0.9800
N5—C42 1.423 (3) C48—HH 0.9800
C47—H00W 0.9500 C48—HI 0.9800
N8—C50 1.308 (3) C30—H01Y 0.9500
N8—C52 1.481 (3) C30—C31 1.391 (3)
N8—C51 1.442 (3) C31—H01Z 0.9500
C12—H00Y 0.9500 C49—H02D 0.9800
C12—C11 1.405 (3) C49—H02E 0.9800
C39—H00Z 0.9500 C49—H02F 0.9800
C39—C38 1.364 (4) C45—H02A 0.9800
C8—C9 1.403 (2) C45—H02B 0.9800
C29—H011 0.9500 C45—H02C 0.9800
C29—C28 1.410 (2) C10—H022 0.9500
O1—Mo01—N2 77.65 (7) O1—C1—C6 118.21 (19)
O1—Mo01—N1 80.23 (6) C6—C1—C2 120.4 (2)
O3—Mo01—O1 100.51 (8) C6—C5—H018 119.6
O3—Mo01—N2 161.90 (6) C6—C5—C4 120.9 (2)
O3—Mo01—O4 109.80 (7) C4—C5—H018 119.6
O3—Mo01—O2 92.51 (8) N4—C34—H01G 109.6
O3—Mo01—N1 86.75 (6) N4—C34—H01H 109.6
N2—Mo01—N1 75.18 (6) C35—C34—N4 110.35 (17)
O4—Mo01—O1 94.14 (7) C35—C34—H01G 109.6
O4—Mo01—N2 88.30 (6) C35—C34—H01H 109.6
O4—Mo01—O2 98.32 (7) H01G—C34—H01H 108.1
O4—Mo01—N1 163.31 (7) C22—C23—H01I 119.1
O2—Mo01—O1 157.78 (6) C22—C23—C24 121.9 (2)
O2—Mo01—N2 84.38 (7) C24—C23—H01I 119.1
O2—Mo01—N1 82.63 (6) C1—C6—C5 119.3 (2)
O5—Mo02—N4 81.39 (7) C1—C6—H01B 120.4
O5—Mo02—O6 158.10 (6) C5—C6—H01B 120.4
O5—Mo02—N3 81.07 (6) O12—C50—N8 125.0 (3)
O8—Mo02—O5 94.30 (7) O12—C50—H3AA 117.5
O8—Mo02—N4 89.52 (7) N8—C50—H3AA 117.5
O8—Mo02—O6 98.33 (7) C26—C25—H01J 120.0
O8—Mo02—N3 163.76 (7) C24—C25—C26 120.0 (2)
O7—Mo02—O5 96.96 (8) C24—C25—H01J 120.0
O7—Mo02—O8 109.00 (7) N8—C52—H4AA 109.5
O7—Mo02—N4 161.48 (7) N8—C52—H 109.5
O7—Mo02—O6 95.73 (8) N8—C52—HA 109.5
O7—Mo02—N3 87.08 (7) H4AA—C52—H 109.5
N4—Mo02—N3 74.43 (6) H4AA—C52—HA 109.5
O6—Mo02—N4 80.91 (7) H—C52—HA 109.5
O6—Mo02—N3 81.84 (6) C2—C3—H01F 119.8
C21—O5—Mo02 137.80 (14) C4—C3—C2 120.5 (2)
C1—O1—Mo01 138.48 (14) C4—C3—H01F 119.8
Mo01—N2—H008 107.3 C35—C36—H01K 118.3
C13—N2—Mo01 112.59 (12) C35—C36—C37 123.5 (3)
C13—N2—H008 107.3 C37—C36—H01K 118.3
C13—N2—C14 113.36 (16) N5—C43—H01V 109.5
C14—N2—Mo01 108.75 (12) N5—C43—H01X 109.5
C14—N2—H008 107.3 N5—C43—H01 109.5
Mo02—N4—H009 107.0 H01V—C43—H01X 109.5
C33—N4—Mo02 113.03 (13) H01V—C43—H01 109.5
C33—N4—H009 107.0 H01X—C43—H01 109.5
C33—N4—C34 111.85 (15) N2—C14—C15 108.70 (16)
C34—N4—Mo02 110.51 (12) N2—C14—H01A 109.9
C34—N4—H009 107.0 N2—C14—H01C 109.9
C20—O2—Mo01 136.10 (14) C15—C14—H01A 109.9
C40—O6—Mo02 138.81 (13) C15—C14—H01C 109.9
Mo01—N1—H00D 110.7 (19) H01A—C14—H01C 108.3
C8—N1—Mo01 113.88 (13) N1—C7—C2 110.47 (17)
C8—N1—C7 107.69 (16) N1—C7—H01D 109.6
C8—N1—H00D 106 (2) N1—C7—H01E 109.6
C7—N1—Mo01 112.87 (12) C2—C7—H01D 109.6
C7—N1—H00D 105 (2) C2—C7—H01E 109.6
Mo02—N3—H00E 113.0 (19) H01D—C7—H01E 108.1
C28—N3—Mo02 114.65 (13) N3—C27—H01L 109.1
C28—N3—C27 109.21 (16) N3—C27—H01M 109.1
C28—N3—H00E 99 (2) C26—C27—N3 112.45 (18)
C27—N3—Mo02 111.45 (12) C26—C27—H01L 109.1
C27—N3—H00E 109 (2) C26—C27—H01M 109.1
O6—C40—C35 118.3 (2) H01L—C27—H01M 107.8
O6—C40—C39 121.4 (2) C21—C22—C23 118.6 (2)
C35—C40—C39 120.3 (2) C21—C22—H01Q 120.7
C32—C33—N4 121.34 (19) C23—C22—H01Q 120.7
C32—C33—C28 117.14 (18) C39—C38—H01S 121.2
C28—C33—N4 121.41 (18) C37—C38—C39 117.7 (2)
C44—N6—C46 124.5 (2) C37—C38—H01S 121.2
C44—N6—C45 120.4 (2) C19—C18—H01N 121.0
C45—N6—C46 115.0 (3) C19—C18—C17 118.0 (2)
C12—C13—N2 120.75 (18) C17—C18—H01N 121.0
C12—C13—C8 118.66 (17) C15—C16—H01O 119.6
C8—C13—N2 120.47 (17) C15—C16—C17 120.7 (3)
C47—N7—C48 121.9 (2) C17—C16—H01O 119.6
C47—N7—C49 124.1 (2) C18—C17—C16 122.5 (3)
C48—N7—C49 113.9 (2) C18—C17—H01P 118.8
C1—C2—C7 119.57 (18) C16—C17—H01P 118.8
C3—C2—C1 119.5 (2) C36—C37—H01T 120.1
C3—C2—C7 120.89 (19) C38—C37—C36 119.7 (2)
O10—C44—N6 125.1 (2) C38—C37—H01T 120.1
O10—C44—H00P 117.5 C5—C4—H01R 120.3
N6—C44—H00P 117.5 C3—C4—C5 119.5 (2)
O2—C20—C19 118.2 (2) C3—C4—H01R 120.3
O2—C20—C15 118.5 (2) N6—C46—H1AA 109.5
C15—C20—C19 123.3 (2) N6—C46—HB 109.5
C21—C26—C27 119.07 (18) N6—C46—HC 109.5
C25—C26—C21 120.4 (2) H1AA—C46—HB 109.5
C25—C26—C27 120.5 (2) H1AA—C46—HC 109.5
C40—C35—C34 119.71 (19) HB—C46—HC 109.5
C40—C35—C36 116.4 (2) C23—C24—H01U 120.4
C36—C35—C34 123.8 (2) C25—C24—C23 119.3 (2)
C33—C32—H00T 120.0 C25—C24—H01U 120.4
C33—C32—C31 120.0 (2) N5—C42—H0AA 109.5
C31—C32—H00T 120.0 N5—C42—HD 109.5
O5—C21—C26 122.5 (2) N5—C42—HE 109.5
O5—C21—C22 117.6 (2) H0AA—C42—HD 109.5
C22—C21—C26 119.91 (19) H0AA—C42—HE 109.5
C41—N5—C43 123.2 (2) HD—C42—HE 109.5
C41—N5—C42 117.1 (2) N8—C51—H5AA 109.5
C42—N5—C43 119.7 (2) N8—C51—HF 109.5
O11—C47—N7 126.7 (2) N8—C51—HG 109.5
O11—C47—H00W 116.6 H5AA—C51—HF 109.5
N7—C47—H00W 116.6 H5AA—C51—HG 109.5
C50—N8—C52 122.4 (2) HF—C51—HG 109.5
C50—N8—C51 118.5 (2) C12—C11—H01W 119.1
C51—N8—C52 119.1 (2) C12—C11—C10 121.85 (19)
C13—C12—H00Y 120.4 C10—C11—H01W 119.1
C13—C12—C11 119.15 (19) N7—C48—H2AA 109.5
C11—C12—H00Y 120.4 N7—C48—HH 109.5
C40—C39—H00Z 118.8 N7—C48—HI 109.5
C38—C39—C40 122.4 (3) H2AA—C48—HH 109.5
C38—C39—H00Z 118.8 H2AA—C48—HI 109.5
N1—C8—C13 117.13 (16) HH—C48—HI 109.5
N1—C8—C9 120.23 (18) C29—C30—H01Y 121.2
C9—C8—C13 122.55 (18) C29—C30—C31 117.66 (19)
C28—C29—H011 120.3 C31—C30—H01Y 121.2
C30—C29—H011 120.3 C32—C31—H01Z 118.7
C30—C29—C28 119.4 (2) C30—C31—C32 122.6 (2)
C20—C19—H012 120.4 C30—C31—H01Z 118.7
C18—C19—C20 119.1 (2) N7—C49—H02D 109.5
C18—C19—H012 120.4 N7—C49—H02E 109.5
C20—C15—C14 122.4 (2) N7—C49—H02F 109.5
C16—C15—C20 116.4 (2) H02D—C49—H02E 109.5
C16—C15—C14 121.2 (2) H02D—C49—H02F 109.5
N3—C28—C33 115.73 (17) H02E—C49—H02F 109.5
N3—C28—C29 121.04 (19) N6—C45—H02A 109.5
C33—C28—C29 123.17 (19) N6—C45—H02B 109.5
O9—C41—N5 126.1 (3) N6—C45—H02C 109.5
O9—C41—H015 117.0 H02A—C45—H02B 109.5
N5—C41—H015 117.0 H02A—C45—H02C 109.5
C8—C9—H016 120.7 H02B—C45—H02C 109.5
C10—C9—C8 118.57 (19) C9—C10—C11 119.12 (18)
C10—C9—H016 120.7 C9—C10—H022 120.4
O1—C1—C2 121.4 (2) C11—C10—H022 120.4
Mo01—O1—C1—C2 −28.3 (3) C12—C13—C8—C9 −3.3 (3)
Mo01—O1—C1—C6 152.37 (19) C12—C11—C10—C9 −2.1 (4)
Mo01—N2—C13—C12 −175.03 (17) C39—C40—C35—C34 178.42 (19)
Mo01—N2—C13—C8 8.9 (2) C39—C40—C35—C36 0.9 (3)
Mo01—N2—C14—C15 −69.85 (16) C39—C38—C37—C36 0.5 (4)
Mo01—O2—C20—C19 144.35 (18) C8—N1—C7—C2 55.7 (2)
Mo01—O2—C20—C15 −36.3 (3) C8—C13—C12—C11 2.2 (3)
Mo01—N1—C8—C13 6.3 (2) C8—C9—C10—C11 1.1 (3)
Mo01—N1—C8—C9 −176.91 (16) C29—C30—C31—C32 2.2 (3)
Mo01—N1—C7—C2 −70.89 (17) C19—C20—C15—C14 −178.5 (2)
Mo02—O5—C21—C26 28.4 (3) C19—C20—C15—C16 −1.0 (3)
Mo02—O5—C21—C22 −152.48 (18) C19—C18—C17—C16 −0.5 (4)
Mo02—N4—C33—C32 174.91 (17) C15—C20—C19—C18 0.0 (3)
Mo02—N4—C33—C28 −9.1 (2) C15—C16—C17—C18 −0.6 (4)
Mo02—N4—C34—C35 72.40 (16) C28—N3—C27—C26 −58.0 (2)
Mo02—O6—C40—C35 37.3 (3) C28—C33—C32—C31 −2.3 (3)
Mo02—O6—C40—C39 −143.20 (19) C28—C29—C30—C31 −0.9 (3)
Mo02—N3—C28—C33 −6.2 (2) C1—C2—C3—C4 0.2 (4)
Mo02—N3—C28—C29 176.63 (15) C1—C2—C7—N1 48.1 (3)
Mo02—N3—C27—C26 69.68 (18) C34—N4—C33—C32 −59.6 (3)
O5—C21—C22—C23 −178.6 (2) C34—N4—C33—C28 116.4 (2)
O1—C1—C6—C5 178.5 (2) C34—C35—C36—C37 −178.7 (2)
N2—C13—C12—C11 −173.9 (2) C6—C5—C4—C3 0.5 (4)
N2—C13—C8—N1 −10.4 (3) C25—C26—C21—O5 178.9 (2)
N2—C13—C8—C9 172.8 (2) C25—C26—C21—C22 −0.1 (3)
N4—C33—C32—C31 173.9 (2) C25—C26—C27—N3 130.2 (2)
N4—C33—C28—N3 10.4 (3) C52—N8—C50—O12 −179.7 (3)
N4—C33—C28—C29 −172.52 (19) C3—C2—C1—O1 −178.8 (2)
O2—C20—C19—C18 179.4 (2) C3—C2—C1—C6 0.6 (3)
O2—C20—C15—C14 2.2 (3) C3—C2—C7—N1 −130.8 (2)
O2—C20—C15—C16 179.62 (19) C36—C35—C34—N4 124.9 (2)
O6—C40—C35—C34 −2.1 (3) C43—N5—C41—O9 −180.0 (3)
O6—C40—C35—C36 −179.60 (18) C14—N2—C13—C12 61.0 (3)
O6—C40—C39—C38 −179.3 (2) C14—N2—C13—C8 −115.1 (2)
N1—C8—C9—C10 −175.1 (2) C14—C15—C16—C17 178.7 (2)
C40—C35—C34—N4 −52.4 (2) C7—N1—C8—C13 −119.7 (2)
C40—C35—C36—C37 −1.3 (3) C7—N1—C8—C9 57.1 (2)
C40—C39—C38—C37 −0.9 (4) C7—C2—C1—O1 2.3 (3)
C33—N4—C34—C35 −54.5 (2) C7—C2—C1—C6 −178.3 (2)
C33—C32—C31—C30 −0.5 (3) C7—C2—C3—C4 179.1 (2)
C13—N2—C14—C15 56.2 (2) C27—N3—C28—C33 119.63 (19)
C13—C12—C11—C10 0.3 (3) C27—N3—C28—C29 −57.5 (3)
C13—C8—C9—C10 1.6 (3) C27—C26—C21—O5 −2.5 (3)
C2—C1—C6—C5 −0.8 (4) C27—C26—C21—C22 178.4 (2)
C2—C3—C4—C5 −0.8 (4) C27—C26—C25—C24 −179.3 (2)
C20—C19—C18—C17 0.8 (4) C22—C23—C24—C25 −0.8 (4)
C20—C15—C14—N2 53.3 (2) C16—C15—C14—N2 −124.0 (2)
C20—C15—C16—C17 1.3 (3) C4—C5—C6—C1 0.3 (4)
C26—C21—C22—C23 0.5 (4) C46—N6—C44—O10 0.9 (4)
C26—C25—C24—C23 1.1 (4) C24—C23—C22—C21 −0.1 (4)
C35—C40—C39—C38 0.2 (3) C42—N5—C41—O9 1.1 (4)
C35—C36—C37—C38 0.6 (4) C51—N8—C50—O12 −0.8 (4)
C32—C33—C28—N3 −173.44 (19) C48—N7—C47—O11 −177.0 (3)
C32—C33—C28—C29 3.6 (3) C30—C29—C28—N3 174.9 (2)
C21—C26—C25—C24 −0.7 (4) C30—C29—C28—C33 −2.0 (3)
C21—C26—C27—N3 −48.4 (3) C49—N7—C47—O11 −0.7 (4)
C12—C13—C8—N1 173.4 (2) C45—N6—C44—O10 177.3 (3)

Dioxido{2,2'-[l,2-phenylenebis(iminomethylene)]bis(phenolato)}molybdenum(VI) dimethylformamide disolvate (1b). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H008···O11 1.00 2.03 2.958 (2) 154
N4—H009···O10 1.00 1.99 2.924 (3) 154
N1—H00D···O12 0.85 (3) 2.15 (3) 2.949 (3) 157 (2)
N3—H00E···O9 0.79 (3) 2.16 (3) 2.885 (3) 154 (3)

Funding Statement

This work was funded by National Science Foundation grants 1800605 and 1847926 to Alex John and S. Chantal E. Stieber; US Department of Defense grant W911NF-17-1- 0537 to S. Chantal E. Stieber; MENTORES PPOHA.

References

  1. Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chakravarthy, R. D. & Chand, D. K. (2011). J. Chem. Sci. 123, 187–199.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Enemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200. [DOI] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hille, R. (1996). Chem. Rev. 96, 2757–2816. [DOI] [PubMed]
  7. Hille, R., Hall, J. & Basu, P. (2014). Chem. Rev. 114, 3963–4038. [DOI] [PMC free article] [PubMed]
  8. Hossain, M. K., Köhntopp, A., Haukka, M., Richmond, M. G., Lehtonen, A. & Nordlander, E. (2020). Polyhedron, 178, 114312.
  9. Mayilmurugan, R., Traar, P., Schachner, J. A., Volpe, M. & Mösch-Zanetti, N. C. (2013). Eur. J. Inorg. Chem. 3644–3670.
  10. Rajan, O. A., Spence, J. T., Leman, C., Minelli, M., Sato, M., Enemark, J. H., Kroneck, P. M. H. & Sulger, K. (1983). Inorg. Chem. 22, 3065–3072.
  11. Roy, S., Mohanty, M., Pasayat, S., Majumder, S., Senthilguru, K., Banerjee, I., Reichelt, M., Reuter, H., Sinn, E. & Dinda, R. (2017). J. Inorg. Biochem. 172, 110–121. [DOI] [PubMed]
  12. SciFinder (2021). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed September 22, 2021).
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  15. Subramanian, P., Spence, J. T., Ortega, R. & Enemark, J. H. (1984). Inorg. Chem. 23, 2564–2572.
  16. Whiteoak, C. J., Britovsek, G. J. P., Gibson, V. C. & White, A. J. P. (2009). Dalton Trans. pp. 2337–2344. [DOI] [PubMed]
  17. Yang, H., Wang, H. & Zhu, C. (2007). J. Org. Chem. 72, 10029–10034. [DOI] [PubMed]
  18. Ziegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009). Inorg. Chem. 48, 11290–11296. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 2b, 1b. DOI: 10.1107/S2056989022000524/tx2046sup1.cif

e-78-00244-sup1.cif (5.9MB, cif)

Structure factors: contains datablock(s) 2b. DOI: 10.1107/S2056989022000524/tx20462bsup3.hkl

e-78-00244-2bsup3.hkl (756.5KB, hkl)

Structure factors: contains datablock(s) 1b. DOI: 10.1107/S2056989022000524/tx20461bsup2.hkl

e-78-00244-1bsup2.hkl (605.5KB, hkl)

CCDC references: 2142074, 2142073

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES