Abstract
目的
探讨虎杖苷(PD)对创伤性颅脑损伤(TBI)后大鼠肠粘膜损伤的保护作用及其机制。
方法
采用液压冲击损伤(FPI)方法用SD大鼠复制TBI动物模型,分别在TBI后12、24、48、72 h收集标本,每组5只;另将大鼠随机分为Sham组(n=5,除了FPI操作其他均进行)、TBI+NS组(n=5,TBI后给予和PD组等容积的生理盐水)和TBI+PD组(n=5,TBI后给予30 mg/kg的PD)。记录大鼠体质量和粪便含水量,观察空肠组织病理,检测D-乳酸(D-LAC)、二胺氧化酶(DAO)、ZO-1和claudin-5水平,测定活性氧自由基(ROS)、过氧化脂质(LPO)和超氧化物岐化酶2(SOD2)含量,检测空肠促炎因子表达水平,检测Sirt1活性,SOD2和HMGB1乙酰化水平。
结果
TBI大鼠体质量下降,粪便含水量减少,血清D-LAC、DAO水平进行性升高(P < 0.05)。空肠组织损伤加重,ZO-1、claudin-5、SOD2、Sirt1活性明显下降(P < 0.05),LPO、ROS、促炎细胞因子、SOD2和HMGB1乙酰化水平增高(P < 0.05);与TBI+NS组相比,TBI+PD组大鼠体质量恢复,粪便含水量增加,D-LAC和DAO水平降低(P < 0.05),空肠组织病理损伤减轻,ZO-1、claudin-5、SOD2表达水平、Sirt1活性增加,ROS、LPO、促炎细胞因子、SOD2和HMGB1乙酰化水平降低(P < 0.05)。
结论
PD通过激活Sirt1介导的SOD2和HMGB1去乙酰化减轻氧化应激及炎症反应,改善TBI大鼠肠粘膜损伤。
Keywords: 创伤性颅脑损伤, Sirt1, 虎杖苷, 肠粘膜, 氧化应激, 炎症反应
Abstract
Objective
To investigate the protective effect against intestinal mucosal injury in rats following traumatic brain injury (TBI) and explore the underlying mechanism.
Methods
SD rat models of TBI were established by fluid percussion injury (FPI), and the specimens were collected at 12, 24, 48, and 72 h after TBI. Another 15 rats were randomly divided into shamoperated group (n=5), TBI with saline treatment (TBI+NS) group (n=5), and TBI with PD treatment (TBI+PD) group (treated with 30 mg/kg PD after TBI; n=5). Body weight gain and fecal water content of the rats were recorded, and after the treatments, the histopathology of the jejunum was observed, and the levels of D-lactic acid (D-LAC), diamine oxidase (DAO), ZO-1, claudin-5, and reactive oxygen species (ROS) were detected. Lipid peroxide (LPO) and superoxide dismutase (SOD) 2 content, jejunal pro-inflammatory factors (IL-6, IL-1β, and TNF- α), Sirt1 activity, SOD2 and HMGB1 acetylation level were also determined after the treatments.
Results
The rats showed significantly decreased body weight and fecal water content and progressively increased serum levels of D-LAC and DAO after TBI (P < 0.05) with obvious jejunal injury, significantly decreased expression levels of ZO-1 and claudin-5, lowered SOD2 and Sirt1 activity (P < 0.05), increased expression levels of LPO, ROS, and pro-inflammatory cytokines, and enhanced SOD2 and HMGB1 acetylation levels (P < 0.05). Compared with TBI+NS group, the rats in TBI+PD group showed obvious body weight regain, increased fecal water content, reduced jejunal pathologies, decreased D-LAC and DAO levels (P < 0.05), increased ZO-1, claudin-5, SOD2 expression levels and Sirt1 activity, and significantly decreased ROS, LPO, pro-inflammatory cytokines, and acetylation levels of SOD2 and HMGB1 (P < 0.05).
Conclusion
PD alleviates oxidative stress and inflammatory response by activating Sirt1-mediated deacetylation of SOD2 and HMGB1 to improve intestinal mucosal injury in TBI rats.
Keywords: traumatic brain injury, polydatin, Sirt1, intestinal mucosa, oxidative stress, inflammation response
由严重创伤引起的创伤性脑损伤(TBI)是导致死亡和残疾的主要原因,已成为全球公共卫生问题[1]。TBI以头部的原发性穿透性或非穿透性损伤为特征,它不是孤立事件,而是与许多非神经损伤相关的生物学过程,例如涉及胃肠系统的全身炎症和器官功能障碍[2]。这些通常在最初的大脑机械损伤后数分钟到数月发生,并在很大程度上导致发病率和死亡率。肠黏膜是内部环境与外部环境相互作用的最大表层。肠上皮将管腔内容物隔开,防止病原抗原侵入。脑损伤后,肠上皮细胞功能障碍或凋亡可能由于缺血和/或缺氧、氧化应激和炎症反应而发生,继而肠粘膜的通透性增加[3]。TBI诱导的肠道通透性可引起肠道内毒素和细菌的移位,进一步诱发或加重全身炎症反应[4],导致多器官功能衰竭和死亡[5]。维持肠黏膜结构的完整性,保护肠屏障功能可以改善TBI的预后[2]。因此,寻找兼具抗氧化和抗炎效应的药物可能是治疗TBI后肠损伤的有效途径。
虎杖苷(PD)作为中国传统中药虎杖的根茎提取物,具有对抗氧化应激及炎性损伤的生物学效应[6]。最近,有研究表明虎杖苷可以减轻TBI的继发性脑损伤[7]和急性肺损伤[8]。然而,虎杖苷在TBI后的肠道保护作用和机制尚不清楚[9]。有临床研究表明补充虎杖苷可以有效缓解肠易激综合征患者的临床症状,改善肠道功能[10];虎杖苷在烧伤及脓毒症引起的肠道损伤中被证实具有减少促炎因子IL-6、IL-1β、TNF-α的释放,降低氧化应激反应,减轻肠粘膜损伤的作用[11]。我们既往研究表明,虎杖苷可能通过激活Sirt1继而去乙酰化超氧化物歧化酶(SOD)2[12]和高迁移率族蛋白B1(HMGB1)分别在失血性休克肠损伤和肾损伤[13]发挥作用。上述研究回顾,提示虎杖苷可能通过肠道氧化应激水平和炎症反应发挥减轻TBI的作用。本文旨在探讨虎杖苷对创伤性颅脑损伤继发性肠粘膜损伤的保护效应及其潜在机制,为TBI后肠损伤的药物治疗提供潜在选择。
1. 材料和方法
1.1. 材料
1.1.1. 实验动物
SPF级雄性SD大鼠,体质量220~300 g,购自南方医科大学实验动物中心,所有动物的安置和饲养依照《南方医科大学实验动物管理办法(试行)》进行,动物实验符合南方医科大学实验动物伦理委员会制定的动物实验标准,许可证号:SCXK(粤)2016-0041。在动物房饲养1~2周适应环境后进行试验。取25只大鼠随机分假手术组(Sham组)及TBI后12、24、48和72 h组,5只/组,在对应时间点处死大鼠。另取15只大鼠随机分为假手术组、脑创伤+生理盐水组(TBI+NS组)和脑创伤+虎杖苷治疗组(PD组),5只/组,48 h后处死大鼠后进行脑组织和肠道组织取材。
1.1.2. 试剂与仪器
液压颅脑损伤仪器(Model01-B,NEWSUN),动物脑立体定向仪(瑞沃德,深圳),正置显微镜(Nikon,ECLIPSE FNI),酶标仪(Thermo ScientificTM MultiskanTM FC),Image-Pro Plus 6.0图像分析系统,虎杖苷(深圳海王药业有限公司),TUNEL细胞凋亡检测试剂盒(Roche),甲苯胺蓝染料(北京索莱宝科技有限公司),逆转录和PCR试剂盒(南京诺唯赞生物科技有限公司),D-乳酸(D-LAC)检测试剂盒(Biovision),二胺氧化酶(DAO)检测试剂盒(南京建成科技有限公司),脂质过氧化物(LPO)检测试剂盒(武汉伊莱瑞特生物科技有限公司),活性氧(ROS)检测试剂盒(上海贝博生物科技有限公司),免疫沉淀试剂盒和BCA蛋白定量检测试剂盒(上海碧云天生物技术有限公司),Sirt1 Activity Assay Kit(Abcam)。
1.2. 方法
1.2.1. TBI模型建立及各组干预措施
大鼠经异氟醚吸入麻醉后,将其固定于脑立体定向仪上,逐层分离骨膜并暴露颅骨。在大鼠冠状缝后5 mm,矢状缝左侧3 mm处,手动以4 mm直径脑壳钻头钻出骨窗并夹出骨片,保证硬脑膜完整。用502胶将连接管与骨窗平面连接,以义齿基托树脂进行加固并测试管道密闭性,待大鼠出现掐尾反射后则进行液压损伤打击,本实验造成的损伤程度为3±0.2 atm峰值冲击压力,为重度颅脑损伤模型,打击后TBI大鼠会出现短暂性的呼吸暂停,常需立即给予预防性的人工胸部按压。假手术组仅做手术操作不进行液压冲击,TBI时间梯度组为进行液压冲击,造模成功后在相应时间点一并称量Sham组和TBI组大鼠的体质量,并取粪便计算粪便含水量;TBI+NS组在损伤后30 min于腹腔注射等量生理盐水,PD组在液压冲击损伤后30 min于腹腔注射虎杖苷(30 mg/kg,溶于0.5 mL生理盐水中,剂量参考[14])。
1.2.2. 体质量变化和粪便含水量测定
大鼠经干预处理后,观察大鼠一般情况。将大鼠放在笼中自由进食和饮水,按照分组记录各组大鼠的体质量变化。收集粪便颗粒进行称重(m0),然后将粪便颗粒在烤箱中干燥后再次称重(m1),计算粪便含水量,粪便含水量=(m0-m1)/m0× 100%。
1.2.3. 标本收集
各组大鼠经异氟醚麻醉后,尾静脉采血,开胸暴露心脏,100 mL生理盐水溶液快速灌注冲洗全身循环血液,灌注完成后,断头取脑并置于4%多聚甲醛中固定,取约4~6 cm空肠组织清洗干净,除去脂肪和肠系膜,置于-80 ℃保存,另取4~6 cm空肠清洗干净后于4%多聚甲醛固定。
1.2.4. 血清D-乳酸和二胺氧化酶检测
标本收集前尾静脉取血,静置4 h,3000 r/min 4 ℃离心15 min,收集上清液,-80 ℃保存。比色法检测血清中D-LAC和DAO的含量,操作步骤严格按照试剂盒操作说明书完成。
1.2.5. 组织活性氧和脂质过氧化物检测
将新鲜的空肠组织取出后用微量电子天平称重后置入4 ℃ PBS中制作10%(组织重量∶PBS=1∶9)的组织匀浆,12 000 g 4 ℃离心15 min,取上清液进行检测。采用二氯荧光素乙酰乙酸盐(DCFH-DA)荧光分光光度法检测ROS,采用比色法检测LPO水平,检测步骤严格按试剂盒说明书进行。
1.2.6. Sirt1活性测定
新鲜空肠组织取出称重后匀浆反应于500 μL免疫沉淀缓冲液中提取蛋白,取上清加入含有荧光肽段溶液和蛋白琼脂糖珠的混合物进行反应,使用酶标仪进行荧光定量(激发光340 nm,发射光460 nm),以1~2 min间隔的荧光强度测量NAD依赖性脱乙酰酶活性,酶活性的最终表现形式为相对于Sham组的吸光度比率,检测步骤严格按试剂盒说明书进行。
1.2.7. 脑组织甲苯胺蓝和TUNEL染色
经4%多聚甲醛固定48 h后的脑组织常规石蜡包埋,切片厚度为4 μm。脱蜡后的切片置于1%甲苯胺蓝水溶液中染色,经分化、脱水、透明、封片等操作后于显微镜下观察尼氏小体;石蜡切片经脱蜡至水后根据TUNEL试剂盒说明经0.1%Triton-X通透、3%BSA封闭、显色、干燥、封片后于显微镜下观察凋亡神经细胞。
1.2.8. 肠道组织病理
取空肠组织标本按常规脱水、透明、包埋,石蜡切片4 μm,按组别进行苏木素-伊红染色(HE染色),在光学显微镜下观察肠粘膜受损情况并进行肠道粘膜损伤评价。参照方法[15]评估大鼠肠粘膜黏膜萎缩、坏死以及出血,中性粒细胞浸润,黏膜层结构完整情况。将染色后的各组大鼠空肠切片置于10倍镜下随机视野观察,测量肠切片5根最长肠绒毛及所对应的隐窝深度和绒毛宽度,最后进行拍照保存。
1.2.9. 空肠组织IL-6、IL-1β、TNF-α mRNA水平的测定
新鲜的空肠组织各称取20 mg,用TRIzol试剂提取空肠组织总RNA,检测RNA水平和浓度。使用反转录试剂盒将500 ng总RNA逆转录为cDNA,后采用荧光定量检测试剂盒(SYBR Green)进行实时荧光定量PCR反应。将IL-6、IL-1β、TNF-α mRNA的相对表达水平标准化为β-actin表达,采用2-△△Ct方法计算mRNA表达的相对倍数变化。实时定量PCR引物通过和美国国立生物技术信息中心(NCBI)数据库设计,引物序列如下:TNF-α(正向:5'-GTG GAA CTG GCA GAA GAG GC- 3',反向:5'-AGA CAG AAG AGC GTG GTG GC-3);' IL-1β(正向:5'-CTG TGT CTT TCC CGT GGA CC-3',反向:5'-CAG CTC ATA TGG GTC CGA CA-3);' IL-6(正向:5'-TTC CAT CCA GTT GCC TTC TT-3',反向:5'-CAG AAT TGC CAT TGC ACA AC-3);' β-actin(正向:5'-TGCTGTCCCTGTATGCCTCTG-3',反向:5'- TGATGTCACGCACGATTTCC-3)。' 同一样本重复3次,反应条件为95 ℃ 10 s;95 ℃ 10 s,60 ℃ 30 s,共40个循环;溶解曲线反应条件为95 ℃ 15 s,60 ℃ 60 s,95 ℃ 15 s。
1.2.10. 免疫沉淀
从-80 ℃冰箱中取出各组大鼠空肠组织,称取30 mg组织,加入500 μL含蛋白酶抑制剂的IP专用裂解液,将组织提取物蛋白与抗体孵育过夜,以使溶液中的蛋白质-抗体相互作用,然后与蛋白A/G偶联的琼脂糖珠孵育4 h,使用缓冲液洗涤珠子后用蛋白质印迹法检测蛋白乙酰化水平。
1.2.11. 蛋白印迹法
从-80 ℃冰箱中取出各组大鼠空肠组织,称取100 mg组织,用蛋白提取试剂盒提取组织蛋白,使用BCA法测定蛋白含量。煮沸8 min使蛋白质变性,上样电泳。首先调节电压80 V,电泳30 min,随后升高电压至120 V,电泳120 min,湿法转至0.45 μm PVDF膜,5%BSA于室温封闭1 h,分别加入兔抗claudin-5(AF5216,AFFINITY,1∶ 1000)、ZO-1(AF5145,AFFINITY,1∶1000)、SOD2(A19576,ABclonal,1∶1000)、TNF-α(AF7014,AFFINITY,1∶1000)、IL-6(DF6087,AFFINITY,1∶1000)、IL-1β(YT2322,IMMUNOWAY,1∶1000)、HMGB1(orb195321,Biorbyt,1∶5000)、Acetyl-HMGB1-K29(A16002,ABclonal,1∶1000)、Acetyl-SOD2- K68(ab137037,Abcam,1∶1000)、β-actin(AF7018,AFFINITY,1∶10000),4 ℃过夜孵育16 h,TBST洗膜,加入山羊抗兔二抗(稀释度1∶10000),室温孵育1 h后,TBST洗膜、ECL显色、暗室曝光观察,采用Image J软件分析。
1.3. 统计学方法
使用SPSS26.0软件对数据进行统计分析。符合正态分布的计量资料采用均数±标准差表示,多组间比较采用单因素方差分析。当P < 0.05表示差异具有统计学意义。
2. 结果
2.1. TBI加重大鼠肠损伤
与假手术组大鼠相比,TBI 48 h大鼠脑组织形态结构发生变化,可见明显的脑挫裂伤(图 1A);病理结果显示脑膜不连续,皮层出现明显的神经元坏死和凋亡(图 1B),且在48 h最为明显;TBI组大鼠在24 h和48 h体质量逐步下降,72 h后部分恢复(均P < 0.001,图 1C);TBI大鼠粪便含水量在前48 h呈下降趋势,72 h下降尤为明显(P=0.0094,图 1D);TBI大鼠血清DAO水平在12 h开始明显增加(P < 0.001),D-LAC水平在24 h增加明显(P=0.0085)两者随时间增加其表达水平逐渐升高,48 h最为明显(均P < 0.001,图 1E、F)。
1.

各组大鼠一般情况和DAO、D-LAC变化
Changes of general condition and serum levels of DAO and D-LAC in the rats. A: Representative images of rat brain in Sham and TBI 48 h group. B: Nissl staining and TUNEL staining of Sham and TBI 48 h group. C: Body weight gain changes at different time points after TBI. D: Fecal water content changes at different time points after TBI. E: Serum levels of DAO in each group. F: Serum levels of D-LAC in each group. **P < 0.01, ***P < 0.001 vs Sham group (n=5).
2.2. 虎杖苷减轻TBI大鼠肠损伤
与TBI组相比,虎杖苷治疗组部分恢复了TBI后大鼠的体质量,48 h尤为明显(P < 0.001),同时也增加了TBI大鼠粪便含水量(P=0.0147,图 2A、B)。此外,虎杖苷显著降低了TBI后48 h大鼠血清的D-LAC(P= 0.0116)和DAO水平(P=0.0048)。Western blot测定空肠组织中ZO-1和claudin-5蛋白含量。与假手术组相比,TBI组空肠组织紧密连接蛋白ZO-1和claudin-5蛋白表达量显著降低;虎杖苷部分恢复了TBI后大鼠空肠组织ZO-1(P=0.0056)和claudin-5(P=0.0156)的含量。肠组织病理方面,假手术组的大鼠空肠黏膜结果基本正常,绒毛和上皮细胞结构完整、排列整齐,无炎性细胞浸润。与假手术组相比,TBI组空肠黏膜部分区域坏死结构不连续,绒毛脱失明显,高度明显降低,排列紊乱或出现断裂;虎杖苷导致TBI大鼠空肠组织坏死减少,结构相对连续,绒毛脱落减少,高度增加,排列趋向整齐(图 2 I)。不仅如此,绒毛高度及与隐窝深度的比值得到显著提高(P < 0.001,表 1),但隐窝深度未见明显增加(P= 0.083,表 1)。
2.

虎杖苷对于TBI大鼠肠屏障功能和粘膜损伤的影响
Intestinal injury of the rats in each group. A: Body weight gain after polydatin (PD) treatment. B: Fecal water content after PD treatment. C: Serum levels of D-LAC in each group after PD treatment. D: Serum levels of DAO in each group after PD treatment. E: Protein expression of ZO-1. F: Quantification of ZO-1. G: Protein expression of claudin-5. H: Quantification of claudin-5. I: HE staining of intestinal tissues. *P < 0.05, ***P < 0.001 vs Sham group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs TBI+NS group (n=5).
1.
绒毛高度、隐窝深度及绒毛高度与隐窝深度之比
Changes in villus height, crypt depth, and their ratio (Mean±SD)
| Group | Villus height/μm | Crypt depth/μm | Villus height/Crypt depth |
| *P < 0.05 vs Sham, #P < 0.05 vs TBI+NS. | |||
| Sham | 297.80±41.75 | 83.30±18.91 | 3.62±0.29 |
| TBI+NS | 97.30±9.40* | 59.10±8.33* | 1.67±0.30* |
| TBI+PD | 198.67±19.39# | 82.20±2.65 | 2.41±0.16# |
| F | 40.986 | 3.872 | 45.682 |
| P | 0.001 | 0.083 | 0.001 |
2.3. 虎杖苷降低TBI大鼠空肠组织的促炎细胞因子水平和氧化应激水平
与假手术组相比,TBI后大鼠空肠组织IL-1β和TNF-α的mRNA相对表达均明显增高(P < 0.05),但IL- 6的mRNA表达无差异(P=0.0517,图 3A);TBI后大鼠促炎因子蛋白表达水平均显著升高(P < 0.01)。虎杖苷处理后显著降低了IL-1β和TNF-α的mRNA水平(P < 0.05,图 3A),但IL-6的mRNA表达水平无差异(P=0.1294);虎杖苷也降低了TBI大鼠空肠组织的促炎因子IL-6、IL-1β蛋白表达量(P < 0.01),TNF-α有下降趋势但差异无统计学意义(P=0.0867,图 3E)。
3.

虎杖苷对于TBI大鼠空肠组织促炎因子和氧化应激水平的影响
Expression levels of pro-inflammatory cytokines and oxidative stress in jejunal tissues of rats after TBI. A: The mRNA levels of IL-6, IL-1β and TNF-α. B: Protein expression of IL-6, IL-1β and TNF-α in intestinal tissues. C: Quantification of IL-6. D: Quantification of IL-1β. E: Quantification of TNF-α. F: Protein expression of SOD2. G: Quantification of SOD2. H: Serum ROS expression levels in each group. I: Serum LPO expression levels in each group.*P < 0.05, **P < 0.01, ***P < 0.001 vs Sham group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs TBI+NS group (n=5).
与假手术组相比,TBI组大鼠空肠组织ROS和LPO生成明显增加而SOD2蛋白水平降低(均P < 0.001);PD处理后TBI大鼠空肠组织SOD2蛋白表达量显著提高(P=0.0079),ROS和LPO水平显著降低(P < 0.001,图 3H、I)。
2.4. 虎杖苷能够激活大鼠空肠组织的Sirt1活性并降低SOD2和HMGB1的乙酰化水平
与假手术组相比,TBI后空肠组织Sirt1活性降低(P =0.0135),SOD2和HMGB1乙酰化水平升高(P < 0.001);但给予虎杖苷处理后Sirt1活性恢复(P=0.0011),HMGB1和SOD2乙酰化水平降低(均P < 0.001)。
3. 讨论
本研究证实TBI大鼠肠道屏障功能受损,氧化应激和促炎细胞因子水平增加;而虎杖苷治疗能够减轻TBI后的肠损伤,其机制可能和上调去乙酰化酶Sirt1介导的氧化应激反应和促炎细胞炎症因子释放的抑制有关。据我们所知,这项研究首次明确了虎杖苷在TBI后肠道保护的作用和提出了可能的保护机制。
严重创伤性颅脑损伤患者中,胃肠功能障碍常见[16]。由于缺血缺氧、氧化应激、炎症反应等,肠粘膜屏障功能受损,内毒素和肠道菌群移位入血,激活机体免疫细胞,增加了TBI患者的死亡率[17]。D-乳酸和肠黏膜上皮细胞分泌的二胺氧化酶(DAO)在肠道通透性增高时可以发生肠道移位,其水平可用于评估肠道损伤严重程度和肠上皮细胞屏障功能[18-19]。紧密连接是肠上皮细胞维持肠道屏障功能的主要连接方式,其中ZO-1和claudin-5是构成紧密连接的主要骨架蛋白,其表达量的变化反映了肠粘膜结构的完整性[20-21]。本研究中TBI大鼠血清D-乳酸、DAO水平升高,空肠ZO-1、claudin-5蛋白表达水平下降,与既往研究结果一致[22],本研究证实了TBI后出现了肠道粘膜损伤。
本研究探讨了虎杖苷作为新药在TBI后肠道保护作用和可能机制。虎杖苷是一种传统中药虎杖的提取物,具有抗炎、抗氧化、抗休克、改善微循环等药理学作用[23-24]。在溃疡性结肠炎中,PD可以降低MPO表达、脂质过氧化物水平从而减轻氧化应激损伤[25];此外,PD也可通过促进核因子E2相关因子2(Nrf2)的核转录,增加血红素加氧酶-1(HO-1)的表达,在DSS诱导的结肠炎中发挥抗氧化作用[26]。我们既往研究表明虎杖苷可以通过激活沉默信息调节因子1(SIRT1)[12]和SIRT3[11]减轻失血性休克对于肠损伤的打击,其机制可能和去乙酰化SOD2有关。我们的这项研究关注了TBI对于肠道损伤的影响,和既往研究一致,研究结果发现TBI大鼠空肠组织氧化应激水平相关因子(ROS、LPO)明显增加而抗氧化因子SOD2表达下降,证实TBI后肠道存在显著的氧化应激损伤。此外,研究发现加入虎杖苷治疗后,空肠组织ROS、LPO蛋白表达水平降低,SOD2含量增加,反映虎杖苷可以抑制TBI后肠道脂质过氧化反应从而减轻肠道氧化应激损伤。具体的机制而言,虎杖苷部分上调了SOD2的蛋白水平,但我们推测虎杖苷上调SOD2的蛋白水平是间接的,其分子机制部分来源于去乙酰化SOD2继而增加SOD2的活性发挥了有效的抗氧化应激作用,这在我们的实验结果中得到了证实。另一方面,虎杖苷通过保护线粒体发挥作用[27-28],而线粒体的破坏也是ROS过度释放的来源[29]。综合而言,虎杖苷在TBI后的肠损伤保护作用可能是基于去乙酰化SOD2和保护线粒体继而减少氧化应激发挥作用的。
4.

虎杖苷对于空肠组织Sirt1活性和SOD2和HMGB1乙酰化水平的影响
Effect of polydatin on Sirt1 activity, acetylation level of SOD2 and HMGB1 in jejunal tissues of rats after TBI. A: SIRT1 activity. B: Acetylation of SOD2 protein and quantitative analysis. C: Acetylation of HMGB1 protein and quantitative analysis. *P < 0.05, **P < 0.01 vs Sham group; #P < 0.05, ##P < 0.01 vs TBI+NS group (n=5). Ac: Acetylation; IP: Immunoprecipitation.
创伤性脑损伤(TBI)的管理需要了解影响周围器官的继发性后遗症,包括胃肠道(GI)。脑-肠轴由双向途径组成,TBI引起的神经炎症和神经变性通过这些途径影响肠道功能,由此产生了TBI诱导的粘膜通透性增加。继发性肠道炎症的存在延长了系统性炎症,加重了TBI。因此,抗炎是一个有希望的针对TBI的治疗方向[30]。既往研究表明虎杖苷通过抑制炎症因子IL-1β、TNF-α和IL-6的产生,减轻炎症性肠病及创伤性休克引起的肠道损伤[26, 31],保持肠道上皮的完整性。TBI后肠道损伤后的氧化应激损伤往往伴有炎症反应,过量的自由基堆积可以引起促炎细胞因子的分泌,IL-6、IL-1β和TNF-α的水平会迅速升高,同时也会破坏肠道上皮屏障[16, 19]。另有研究表明,虎杖苷通过减少小胶质细胞炎症,从而减轻创伤性脊髓损伤[32]。本研究结果发现TBI后大鼠空肠组织促炎因子(IL-6、IL-1β、TNF-α)释放显著增加,证实TBI后肠道存在显著炎症损伤;而在加入虎杖苷治疗后,空肠组织L-6、IL-1β、TNF-α mRNA和蛋白表达水平降低,提示虎杖苷可以抑制TBI后肠道过度的炎症反应,从而减轻肠道受损,这在既往是未见报道的。此外,本研究证实了虎杖苷能够降低HMGB1的乙酰化水平,这可能是虎杖苷直接抑制炎症反应的直接分子机制。本研究为PD应用于TBI的治疗提供了实验依据和理论基础。
本实验存在一定的局限性。首先,我们未采用敲基因动物和更多化学抑制剂或激动剂探讨具体的上下游分子机制;其次,本实验也未检测TBI后免疫功能和多个器官损伤情况,TBI后对于全身器官的免疫可能也造成了损伤,我们尚没有开展这方面的研究;此外,TBI对于肠损伤的影响绝非脑-肠之间的氧化应激和炎症两个方面影响的,其他的器官损伤也参与了其中,另外肠道微生物菌群的结构和数量改变,代谢产物的变化也参与了TBI后肠损伤。这些都将是我们以后研究的重点方向。
综上所述,虎杖苷可减轻TBI对大鼠肠粘膜的损伤,其机制和激活Sirt1,去乙酰化SOD2和HMGB1,减轻氧化应激损伤和促炎因子的释放有关。
Biography
秦娜,硕士,E-mail:13527587041@163.com
Funding Statement
国家自然科学基金(81871551);广东省基础与应用基础研究基金(2020A1515010227);广东省中医药局科研项目(20191226)
Supported by National Science Foundation of China(81871551)
Contributor Information
秦 娜 (Na QIN), Email: 13527587041@163.com.
杨 翃 (Hong YANG), Email: yhicu_1103@163.com.
References
- 1.Khatri N, Thakur M, Pareek V, et al. Oxidative stress: major threat in traumatic brain injury. CNS Neurol Disord Drug Targets. 2018;17(9):689–95. doi: 10.2174/1871527317666180627120501. [Khatri N, Thakur M, Pareek V, et al. Oxidative stress: major threat in traumatic brain injury[J]. CNS Neurol Disord Drug Targets, 2018, 17(9): 689-95.] [DOI] [PubMed] [Google Scholar]
- 2.Pan PF, Song YL, Du XX, et al. Intestinal barrier dysfunction following traumatic brain injury. Neurol Sci. 2019;40(6):1105–10. doi: 10.1007/s10072-019-03739-0. [Pan PF, Song YL, Du XX, et al. Intestinal barrier dysfunction following traumatic brain injury[J]. Neurol Sci, 2019, 40(6): 1105-10.] [DOI] [PubMed] [Google Scholar]
- 3.Sun J, Wang L, Shen JC, et al. Effect of propofol on mucous permeability and inflammatory mediators expression in the intestine following traumatic brain injury in rats. Cytokine. 2007;40(2):151–6. doi: 10.1016/j.cyto.2007.09.003. [Sun J, Wang L, Shen JC, et al. Effect of propofol on mucous permeability and inflammatory mediators expression in the intestine following traumatic brain injury in rats[J]. Cytokine, 2007, 40(2): 151-6.] [DOI] [PubMed] [Google Scholar]
- 4.罗 文辉, 何 兴祥. 肠道屏障功能在创伤性脑损伤中的研究进展. 胃肠病学和肝病学杂志. 2021;30(1):51–4. doi: 10.3969/j.issn.1006-5709.2021.01.012. [罗文辉, 何兴祥. 肠道屏障功能在创伤性脑损伤中的研究进展[J]. 胃肠病学和肝病学杂志, 2021, 30(1): 51-4.] [DOI] [Google Scholar]
- 5.吕 栋, 崔 培林, 杨 昭徐. 氧化应激在创伤性脑损伤后肠黏膜屏障损伤中的作用. 天津医药. 2009;37(10):874–7, 915. doi: 10.3969/j.issn.0253-9896.2009.10.019. [吕栋, 崔培林, 杨昭徐. 氧化应激在创伤性脑损伤后肠黏膜屏障损伤中的作用[J]. 天津医药, 2009, 37(10): 874-7, 915.] [DOI] [Google Scholar]
- 6.Sun ZC, Wang XY, Xu ZC. SIRT1 provides new pharmacological targets for polydatin through its role as a metabolic sensor. Biomed Pharmacother. 2021;139:111549. doi: 10.1016/j.biopha.2021.111549. [Sun ZC, Wang XY, Xu ZC. SIRT1 provides new pharmacological targets for polydatin through its role as a metabolic sensor[J]. Biomed Pharmacother, 2021, 139: 111549.] [DOI] [PubMed] [Google Scholar]
- 7.Cai DZ, Gu ZT, Li L, et al. Polydatin prevents the induction of secondary brain injury after traumatic brain injury by protecting neuronal mitochondria. Neural Regen Res. 2019;14(9):1573. doi: 10.4103/1673-5374.255972. [Cai DZ, Gu ZT, Li L, et al. Polydatin prevents the induction of secondary brain injury after traumatic brain injury by protecting neuronal mitochondria[J]. Neural Regen Res, 2019, 14(9): 1573.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Gu ZT, Li L, Li Q, et al. Polydatin alleviates severe traumatic brain injury induced acute lung injury by inhibiting S100B mediated NETs formation. Int Immunopharmacol. 2021;98:107699. doi: 10.1016/j.intimp.2021.107699. [Gu ZT, Li L, Li Q, et al. Polydatin alleviates severe traumatic brain injury induced acute lung injury by inhibiting S100B mediated NETs formation[J]. Int Immunopharmacol, 2021, 98: 107699.] [DOI] [PubMed] [Google Scholar]
- 9.Sun ZC, Wang XY. Protective effects of polydatin on multiple organ ischemia-reperfusion injury. Bioorg Chem. 2020;94:103485. doi: 10.1016/j.bioorg.2019.103485. [Sun ZC, Wang XY. Protective effects of polydatin on multiple organ ischemia-reperfusion injury[J]. Bioorg Chem, 2020, 94: 103485.] [DOI] [PubMed] [Google Scholar]
- 10.Zhang H, Chen YN, Li Y, et al. Protective effect of polydatin on jejunal mucosal integrity, redox status, inflammatory response, and mitochondrial function in intrauterine growth-retarded weanling piglets. Oxidative Med Cell Longev. 2020;2020:7178123. doi: 10.1155/2020/7178123. [Zhang H, Chen YN, Li Y, et al. Protective effect of polydatin on jejunal mucosal integrity, redox status, inflammatory response, and mitochondrial function in intrauterine growth-retarded weanling piglets[J]. Oxidative Med Cell Longev, 2020, 2020: 7178123.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Zeng ZH, Yang YT, Dai XG, et al. Polydatin ameliorates injury to the small intestine induced by hemorrhagic shock via SIRT3 activation-mediated mitochondrial protection. Expert Opin Ther Targets. 2016;20(6):645–52. doi: 10.1080/14728222.2016.1177023. [Zeng ZH, Yang YT, Dai XG, et al. Polydatin ameliorates injury to the small intestine induced by hemorrhagic shock via SIRT3 activation-mediated mitochondrial protection[J]. Expert Opin Ther Targets, 2016, 20(6): 645-52.] [DOI] [PubMed] [Google Scholar]
- 12.Zeng ZH, Chen ZQ, Xu SQ, et al. Polydatin alleviates small intestine injury during hemorrhagic shock as a SIRT1 activator. Oxidative Med Cell Longev. 2015;2015:965961. doi: 10.1155/2015/965961. [Zeng ZH, Chen ZQ, Xu SQ, et al. Polydatin alleviates small intestine injury during hemorrhagic shock as a SIRT1 activator[J]. Oxidative Med Cell Longev, 2015, 2015: 965961.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Wei SW, Gao YG, Dai XG, et al. SIRT1-mediated HMGB1 deacetylation suppresses Sepsis-associated acute kidney injury. Am J Physiol Ren Physiol. 2019;316(1):F20–31. doi: 10.1152/ajprenal.00119.2018. [Wei SW, Gao YG, Dai XG, et al. SIRT1-mediated HMGB1 deacetylation suppresses Sepsis-associated acute kidney injury[J]. Am J Physiol Ren Physiol, 2019, 316(1): F20-31.] [DOI] [PubMed] [Google Scholar]
- 14.Wang XM, Song R, Chen YY, et al. Polydatin - a new mitochondria protector for acute severe hemorrhagic shock treatment. Expert Opin Investig Drugs. 2013;22(2):169–79. doi: 10.1517/13543784.2013.748033. [Wang XM, Song R, Chen YY, et al. Polydatin - a new mitochondria protector for acute severe hemorrhagic shock treatment[J]. Expert Opin Investig Drugs, 2013, 22(2): 169-79.] [DOI] [PubMed] [Google Scholar]
- 15.Sundman MH, Chen NK, Subbian V, et al. The bidirectional gutbrain-microbiota axis as a potential Nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun. 2017;66:31–44. doi: 10.1016/j.bbi.2017.05.009. [Sundman MH, Chen NK, Subbian V, et al. The bidirectional gutbrain-microbiota axis as a potential Nexus between traumatic brain injury, inflammation, and disease[J]. Brain Behav Immun, 2017, 66: 31-44.] [DOI] [PubMed] [Google Scholar]
- 16.Jin W, Wang HD, Ji Y, et al. Increased intestinal inflammatory response and gut barrier dysfunction in Nrf2-deficient mice after traumatic brain injury. Cytokine. 2008;44(1):135–40. doi: 10.1016/j.cyto.2008.07.005. [Jin W, Wang HD, Ji Y, et al. Increased intestinal inflammatory response and gut barrier dysfunction in Nrf2-deficient mice after traumatic brain injury[J]. Cytokine, 2008, 44(1): 135-40.] [DOI] [PubMed] [Google Scholar]
- 17.Katzenberger RJ, Ganetzky B, Wassarman DA. The gut reaction to traumatic brain injury. Fly. 2015;9(2):68–74. doi: 10.1080/19336934.2015.1085623. [Katzenberger RJ, Ganetzky B, Wassarman DA. The gut reaction to traumatic brain injury[J]. Fly, 2015, 9(2): 68-74.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Tang MG, Wang YH, Wang BH, et al. Effect of carbachol on intestinal mucosal barrier in rats after diffuse brain injury. World Chin J Dig. 2014;22(21):3161. doi: 10.11569/wcjd.v22.i21.3161. [Tang MG, Wang YH, Wang BH, et al. Effect of carbachol on intestinal mucosal barrier in rats after diffuse brain injury[J]. World Chin J Dig, 2014, 22(21): 3161.] [DOI] [Google Scholar]
- 19.Onur K, Güvenç D. The effects of dexmedetomidine in increased intestinal permeability after traumatic brain injury: an experimental study. Ulusal Travma Ve Acil Cerrahi Dergisi=Turkish J Trauma Emerg Surg TJTES. 2020;26(1):15–20. doi: 10.14744/tjtes.2019.49768. [Onur K, Güvenç D. The effects of dexmedetomidine in increased intestinal permeability after traumatic brain injury: an experimental study[J]. Ulusal Travma Ve Acil Cerrahi Dergisi=Turkish J Trauma Emerg Surg TJTES, 2020, 26(1): 15-20.] [DOI] [PubMed] [Google Scholar]
- 20.Yao BY, He JN, Yin X, et al. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-κB dependent mechanism in Caco-2 cells. Toxicol Lett. 2019;316:109–18. doi: 10.1016/j.toxlet.2019.08.024. [Yao BY, He JN, Yin X, et al. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-κB dependent mechanism in Caco-2 cells[J]. Toxicol Lett, 2019, 316: 109-18.] [DOI] [PubMed] [Google Scholar]
- 21.Ho J, Chan H, Liang YH, et al. Cathelicidin preserves intestinal barrier function in polymicrobial Sepsis. Crit Care. 2020;24:47. doi: 10.1186/s13054-020-2754-5. [Ho J, Chan H, Liang YH, et al. Cathelicidin preserves intestinal barrier function in polymicrobial Sepsis[J]. Crit Care, 2020, 24: 47.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Jin W, Wang HD, Hu ZG, et al. Transcription factor Nrf2 plays a pivotal role in protection against traumatic brain injury-induced acute intestinal mucosal injury in mice. J Surg Res. 2009;157(2):251–60. doi: 10.1016/j.jss.2008.08.003. [Jin W, Wang HD, Hu ZG, et al. Transcription factor Nrf2 plays a pivotal role in protection against traumatic brain injury-induced acute intestinal mucosal injury in mice[J]. J Surg Res, 2009, 157(2): 251-60.] [DOI] [PubMed] [Google Scholar]
- 23.Bheereddy P, Yerra VG, Kalvala AK, et al. SIRT1 activation by polydatin alleviates oxidative damage and elevates mitochondrial biogenesis in experimental diabetic neuropathy. Cell Mol Neurobiol. 2021;41(7):1563–77. doi: 10.1007/s10571-020-00923-1. [Bheereddy P, Yerra VG, Kalvala AK, et al. SIRT1 activation by polydatin alleviates oxidative damage and elevates mitochondrial biogenesis in experimental diabetic neuropathy[J]. Cell Mol Neurobiol, 2021, 41(7): 1563-77.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.曹 媛媛, 李 桂成, 邓 加雄, et al. 虎杖苷改善氧化应激介导的肺泡上皮细胞线粒体损伤的机制. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLQG202002016.htm. 中华老年多器官疾病杂志. 2020;19(2):141–5. [曹媛媛, 李桂成, 邓加雄, 等. 虎杖苷改善氧化应激介导的肺泡上皮细胞线粒体损伤的机制[J]. 中华老年多器官疾病杂志, 2020, 19(2): 141-5.] [Google Scholar]
- 25.Ebrahim HA, Elsherbini DMA. Renovation of intestinal barrier by polydatin in experimentally induced ulcerative colitis: comparative ultrastructural study with L-carnosine. Cells Tissues Organs. 2021;210(4):275–92. doi: 10.1159/000516191. [Ebrahim HA, Elsherbini DMA. Renovation of intestinal barrier by polydatin in experimentally induced ulcerative colitis: comparative ultrastructural study with L-carnosine[J]. Cells Tissues Organs, 2021, 210(4): 275-92.] [DOI] [PubMed] [Google Scholar]
- 26.Chen GX, Yang ZY, Wen D, et al. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis. Immun Inflamm Dis. 2021;9(3):959–70. doi: 10.1002/iid3.455. [Chen GX, Yang ZY, Wen D, et al. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis[J]. Immun Inflamm Dis, 2021, 9(3): 959-70.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Gao YG, Zeng ZH, Li T, et al. Polydatin inhibits mitochondrial dysfunction in the renal tubular epithelial cells of a rat model of Sepsis-induced acute kidney injury. Anesth Analg. 2015;121(5):1251–60. doi: 10.1213/ANE.0000000000000977. [Gao YG, Zeng ZH, Li T, et al. Polydatin inhibits mitochondrial dysfunction in the renal tubular epithelial cells of a rat model of Sepsis-induced acute kidney injury[J]. Anesth Analg, 2015, 121(5): 1251-60.] [DOI] [PubMed] [Google Scholar]
- 28.Wang XM, Song R, Bian H, et al. Polydatin, a natural polyphenol, protects arterial smooth muscle cells against mitochondrial dysfunction and lysosomal destabilization following hemorrhagic shock. Am J Physiol Regul Integr Comp Physiol. 2012;302(7):R805–14. doi: 10.1152/ajpregu.00350.2011. [Wang XM, Song R, Bian H, et al. Polydatin, a natural polyphenol, protects arterial smooth muscle cells against mitochondrial dysfunction and lysosomal destabilization following hemorrhagic shock[J]. Am J Physiol Regul Integr Comp Physiol, 2012, 302(7): R805-14.] [DOI] [PubMed] [Google Scholar]
- 29.Zeng ZH, Chen ZQ, Xu SQ, et al. Polydatin protecting kidneys against hemorrhagic shock-induced mitochondrial dysfunction via SIRT1 activation and p53 deacetylation. Oxidative Med Cell Longev. 2016;2016:1737185. doi: 10.1155/2016/1737185. [Zeng ZH, Chen ZQ, Xu SQ, et al. Polydatin protecting kidneys against hemorrhagic shock-induced mitochondrial dysfunction via SIRT1 activation and p53 deacetylation[J]. Oxidative Med Cell Longev, 2016, 2016: 1737185.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Investig. 2021;131(12):e143777. doi: 10.1172/JCI143777. [Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury[J]. J Clin Investig, 2021, 131(12): e143777] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Li L, Zhang K, Zhang J, et al. Protective effect of polydatin on radiation-induced injury of intestinal epithelial and endothelial cells. Biosci Rep. 2018;38(6):BSR20180868. doi: 10.1042/BSR20180868. [Li L, Zhang K, Zhang J, et al. Protective effect of polydatin on radiation-induced injury of intestinal epithelial and endothelial cells [J]. Biosci Rep, 2018, 38(6): BSR20180868.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Lv RX, Du LL, Liu XY, et al. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int Immunopharmacol. 2019;70:28–36. doi: 10.1016/j.intimp.2019.02.006. [Lv RX, Du LL, Liu XY, et al. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway[J]. Int Immunopharmacol, 2019, 70: 28-36.] [DOI] [PubMed] [Google Scholar]
