Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2022 Jan 20;42(1):78–85. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2022.01.09

RFWD2调控小鼠大脑皮层神经元树突发育及树突棘形成的功能效应

Effects of ring finger and tryptophan-aspartic acid 2 on dendritic spines and synapse formation in cerebral cortex neurons of mice

Tingting SUN 1, Yuanyuan WANG 1, Zhuling FANG 2, Jiajia XU 1, Shiwen MA 1, Jiuxiang CHANG 3, Gaofeng LIU 1, Yu GUO 2, Changqing LIU 1,*
PMCID: PMC8901395  PMID: 35249873

Abstract

Objective

To clarify the functional effects of differential expression of ring finger and tryptophan-aspartic acid 2 (RFWD2) on dendritic development and formation of dendritic spines in cerebral cortex neurons of mice.

Methods

Immunofluorescent staining was used to identify the location and global expression profile of RFWD2 in mouse brain and determine the co-localization of RFWD2 with the synaptic proteins in the cortical neurons. We also examined the effects of RFWD2 over-expression (RFWD2-Myc) and RFWD2 knockdown (RFWD2-shRNA) on dendritic development, dendritic spine formation and synaptic function in cultured cortical neurons.

Results

RFWD2 is highly expressed in the cerebral cortex and hippocampus of mice, and its expression level was positively correlated with the development of cerebral cortex neurons and dendrites. RFWD2 expression was detected on the presynaptic membrane and postsynaptic membrane of the neurons, and its expression levels were positively correlated with the length, number of branches and complexity of the dendrites. In cultured cortical neurons, RFWD2 overexpression significantly lowered the expressions of the synaptic proteins synaptophysin (P < 0.01) and postsynapic density protein 95 (P < 0.01), while RFWD2 knockdown significantly increased their expressions (both P < 0.05). Compared with the control and RFWD2-overexpressing cells, the neurons with RFWD2 knockdown showed significantly reduced number of dendritic spines (both P < 0.05).

Conclusion

RFWD2 can regulate the expression of the synaptic proteins, the development of the dendrites, the formation of the dendritic spines and synaptic function in mouse cerebral cortex neurons through ubiquitination of Pea3 family members and c-Jun, which may serve as potential treatment targets for neurological diseases.

Keywords: ring finger and tryptophan-aspartic acid 2, cortical neurons, dendritic spines, synapses


环指和色氨酸-天冬氨酸重复序列结构域2(RFWD2),属于COP-DET-FUS家族成员,是一类E3泛素连接酶[1-2]。在哺乳动物细胞中,内源性RFWD2主要以复合物形式存在于细胞核质和核膜中,少数存在于细胞质中,通过其卷曲螺旋区域形成二聚体发挥作用[3]。RFWD2在多种肿瘤中异常高表达,可调节细胞增殖、分化及凋亡,以及DNA损伤修复[4-7]

RFWD2是哺乳动物中各种底物的关键负调节因子,包括p53、激活蛋白-1(AP-1)和c-Jun、p27(Kip1)、ETS转录因子的Pea3亚家族、转录因子CCAAT/增强子结合蛋白α、转移相关蛋白(MTA1)、乙酰辅酶A羧化酶、叉头框蛋白O1(FoxO1)和转录共激活因子2[8-12]。神经干细胞中缺失RFWD2的小鼠在发育中的脑和脊髓中显示ETV1、ETV4、ETV5和c-Jun表达异常升高,促进了神经组细胞向胶质细胞分化[13-14]。AP-1转录因子c-Jun广泛表达于发育中的大脑,对神经发生至关重要[15]。RFWD2可通过调控底物蛋白FoxO1表达,调节神经元形态、突触发生和海马的神经发生,且与焦虑和重度抑郁症的发展相关[11]。小鼠纯合子RFWD2缺失(RFWD2-/-)可导致E9.5~E12.5之间的胚胎致死,且大脑皮层、海马和小脑明显发育异常[16]。因此,RFWD2参与的泛素-蛋白酶体系统对于调控哺乳动物脑的正常发育、神经元轴突生长与突触发育都是至关重要的[17-18]

树突棘密度、形状和大小异常与神经精神疾病密切相关,而维持突触的功能和完整性取决于及时将无用或多余的蛋白质降解,蛋白质降解的失调将导致神经精神疾病的发生[19-22]。我们推断RFWD2可能是突触蛋白内稳态的一个关键调控因子,在控制调控神经元树突发育、树突棘形成与突触蛋白稳态中发挥关键作用,但其具体作用机制仍不清楚。本研究通过分析RFWD2在小鼠大脑皮层神经元中的定位及分布,探讨其表达水平对神经元树突发育及树突棘形成的功能效应及作用机制。

1. 材料和方法

1.1. 实验动物

健康Balb/c雌雄实验小鼠均购自安徽医科大学实验动物中心,清洁级动物房中饲养,环境温度控制在26 ℃,取自胎龄16 d小鼠大脑皮层进行体外神经元培养。实验动物的使用和实验程序均经蚌埠医学院实验动物管理和伦理委员会(IACUC)批准(编号:2020-057)。

1.2. 主要试剂

DMEM/F12培养基、Neurobasal培养基(Gibco),鼠抗RFWD2、兔抗Synaptophysin(SYN)、鸡抗Map2、兔抗ETV5、Myc tag抗体(Abcam),兔抗PSD95(CST),驴抗兔Cy3(Jackson Lab),兔抗ETV1、ETV4、c-Jun抗体(Bioss),驴抗鼠Alexa Fluor 488、驴抗鸡Alexa Fluor 633、ToPro3、抗荧光淬灭封片剂(Invitrogen)。

1.3. RFWD2在小鼠全脑的表达谱

使用4%多聚甲醛灌注取成年小鼠全脑,25%蔗糖脱水处理后,采用冷冻切片机(CM1950,Leica,德国)将灌注的大脑切成12 µm厚的冠状面切片,并收集在涂有明胶的载玻片上。经2% BSA、10%驴或羊血清和0.2%Triton X-100封闭1 h后,使用鼠抗RFWD2和兔抗SYN双重染色,在避光、室温条件下与二抗Alexa Fluor 488(1∶500)或Cy3(1∶800)孵育1 h后,共聚焦显微镜扫描,CaseViewer软件分析RFWD2在小鼠全脑的表达谱。

1.4. RFWD2在不同发育时期小鼠大脑表达变化

提取小鼠胚胎14 d(Embryo14,E14),出生后(Postnatal,P0、P14、P21、P30、P60、P105)不同发育时期大脑皮层总蛋白,经Bcinchoninic acid(BCA)蛋白定量试剂盒定量后,每孔40 mg蛋白上样SDS-PAGE电泳,电转膜至PVDF膜(0.45 μm),通过Western blot检测RFWD2与突触囊泡蛋白(SYN)的相关性表达。

1.5. RFWD2在大脑皮层神经元中的表达与定位

取孕16 d小鼠胚胎大脑皮层神经元,以0.12×106/ 孔接种至Poly-D-lysine包被的Coverslips上。使用Neurobasal培养基(添加1% B27+A,0.25% Lglutamine,1%双抗),体外培养至14~21 d,4%多聚甲醛固定后,用2% BSA、10%驴或羊血清和0.2%Triton X- 100封闭1 h后,使用鸡抗Map2、鼠抗RFWD2、兔PSD95或兔SYN进行突触标记的免疫荧光染色,分析确定RFWD2在体外培养小鼠大脑皮层神经元的共定位。

1.6. RFWD2在大脑皮层神经元树突发育与树突棘形成中的功能效应

取E16胎鼠大脑皮层,制备神经元细胞悬液2× 107/mL,使用Lonza 2B细胞核电转染系统对过表达与抑制表达质粒进行电转染,电转染程序为Rat Hippo(neuron)O-003。过表达载体为pCMV-RFWD2-Myc(美国Luis A. Martinez博士惠赠)和载体FUGW-GFP(4∶1比例)的混合物,抑制表达载体为RFWD2表达绿色荧光蛋白(GFP)特异性shRNA,pGPU6/GFP/NeoRFWD2-shRNA(前期验证有效),转染的神经元通过GFP鉴定,体外培养至14~21 d,使用共聚焦显微镜检测GFP阳性树突分支,树突棘密度、形状和大小,Image J软件进行Sholl分析。

1.7. RFWD2影响大脑皮层神经元功能的分子机制

分别提取RFWD2过表达、抑制表达与对照组大脑皮层神经元总蛋白,通过Western blot检测确定RFWD2下游各种底物的关键负调节因子(Pea3家族的ETV1、ETV4与ETV5,c-Jun)相关性。

1.8. 统计学分析

采用SPSS16.0软件进行统计学分析,所得的实验数据均用均数±标准差表示,采用单因素方差分析检验,以P < 0.05认为差异具有统计学意义。

2. 结果

2.1. RFWD2在小鼠全脑表达谱

小鼠全脑冠状面冷冻切片三色免疫荧光检测表明,RFWD2在大脑皮层与海马区均高表达(图 1A,白箭头),而且与突触囊泡蛋白(SYN)具有明显的共定位。在大脑皮层新皮质神经细胞第5层(节细胞层),RFWD2高表达于大中型锥体细胞,树突顶端伸到第一层(分子层)(图 1B,白箭头)。利用Western blot检测小鼠大脑皮层不同发育时期RFWD2与SYN蛋白的表达水平及其相关性,结果显示RFWD2在小鼠大脑皮层中具有两个亚型(isoform),出生后随着个体发育高相对分子质量亚型表达量显著降低,而低相对分子质量亚型自个体出生后开始表达,随着个体的发育14 d后,表达量不断增加,而且与突触形成发育具有明显的正相关性(图 1C)。

1.

1

RFWD2在小鼠全脑中的表达与定位

Localization and expression of RFWD2 in coronal cryosections of mouse brain. A: Localization and relative expression of RFWD2 and SYN in the coronal frozen section of mouse brain (white arrows) (SYNCY3, RFWD2-488, and ToPro3 staining, original magnificantion: upper row, ×100; middle and bottom rows, ×630). B: Confocal image showing RFWD2 immunoreactivity in the dendrites (arrows), soma and nucleus of layer 5 pyramidal in the cortex (RFWD2-CY3 staining, left: ×100; right; ×400). C: Relative expression of RFWD2 and SYN proteins in mouse neorons in different developmental stages detected by Western blotting.

2.2. RFWD2在小鼠大脑皮层神经元中的表达与定位

取E16胎鼠体外培养大脑皮层神经元(图 2A),细胞生长状态良好。体外培养至21 d(Div21),经三色免疫荧光检测表明,RFWD2免疫荧光在神经元胞体和树突(图 2BC)中均呈点状分布。绿色荧光RFWD2斑点可与突触后膜标记PSD95红色斑点共定位,形成黄色斑点(图 2B,紫色箭头),但亦有一些RFWD2斑点与PSD95斑点紧靠在一起(图 2B,白色箭头)。而且,绿色荧光RFWD2斑点与突触前膜标记SYN红色斑点共定位,形成黄色斑点(图 2C,紫色箭头),亦有一些RFWD2斑点与SYN斑点紧靠在一起(图 2B,白色箭头)。RFWD2与SYN、PSD95突触蛋白细胞内共定位表明,RFWD2在小鼠大脑皮层神经元的突触前膜及突触后膜均有表达。

2.

2

RFWD2在小鼠大脑皮层神经元中的定位

Localization and expression of RFWD2 in mouse cerebral cortex neurons. A: Mouse cotical neurons cultured in vitro (×200). B: Co-localization of RFWD2 and synaptophysin (×630). C: Co-localization of RFWD2 and PSD95 (×630).

2.3. RFWD2过表达对大脑皮层神经元突触蛋白表达的影响

用pCMV-RFWD2-Myc过表达载体和FUGWGFP(4∶1比例)的混合物进行电转染小鼠大脑皮层神经元,确保超过90%表达GFP的神经元含有RFWD2- Myc。RFWD2过表达可显著降低神经元突触蛋白的形成与数量(图 3AB),SYN斑点数量由17.2±2.4/10 μm降低至4.5±1.2/10 μm(P < 0.01);而PSD95斑点数量由8.5±1.3/10 μm降低至2.1±0.3/10 μm(P < 0.01,图 4C)。

3.

3

RFWD2过表达对于神经突触蛋白的影响

Effect of RFWD2 overexpression on neurosynaptic proteins. A, B: Localization of GFP (green) and Myc (red) with nthe eurosynaptic markers SYN and PSD95 (blue) in cultured mouse cortical neurons at DIV21 (Immunofluorescence staining, ×400).

4.

4

RFWD2抑制表达对于神经突触蛋白的影响

Effect of RFWD2 inhibition on neurosynaptic proteins. A, B: Localization GFP (green) and RFWD2 (red) with SYN and PSD95 (blue) in cultured mouse cortical neurons at DIV21 (Immunofluorescence staining, ×400). C: Histograms of the number of puncta of SYN and PSD95 in cultured mouse cortical neurons transfected with RFWD2-Myc/FUGW, RFWD2-shRNA and Ctrl-shRNA at DIV14, *P < 0.05, **P < 0.01.

2.4. RFWD2抑制表达在大脑皮层神经元突触蛋白表达的影响

RFWD2-shRNA能够显著降低内源性RFWD2表达,并显著提高神经元突触蛋白的形成与数量(图 4AB),SYN斑点数量由17.2±2.4/10 μm增至19.6±2.6/10 μm(P < 0.05);而PSD95斑点数量由8.5±1.3/10 μm增至11.5±1.1/10 μm(P < 0.05,图 4C)。

2.5. RFWD2在小鼠树突棘形成中的功能效应

对照组树突棘头靠近树突干,多为短粗型或蘑菇型,具有成熟树突棘的典型特征。RFWD2-shRNA组树突棘密度显著降低,而RFWD2过表达组树突棘密度显著增加,尤其丝状伪足样细长树突棘显著增加;与对照组相比,RFWD2抑制表达降低了树突棘的数量,树突棘密度由6.2±0.5/10 μm降低至4.3±0.2/10 μm(P < 0.05);和RFWD2过表达相比,RFWD2抑制表达降低了树突棘的数量,树突棘密度由6.9±1.1/10 μm降低至4.3±0.2/10 μm(P < 0.01,图 5A)。而且,RFWD2过表达可显著增加神经树突棘的数量,而RFWD2-shRNA降低内源性RFWD2表达,明显降低神经树突棘的数量(图 5A)。对培养14~21 d的大脑皮层神经元用Image J进行Sholl分析发现,RFWD2过表达可显著增加神经树突的长度、分支数量及复杂性,而RFWD2抑制表达可显著降低神经细胞树突长度、分支数量及复杂性(图 5B)。

5.

5

RFWD2对小鼠大脑皮层神经树突发育的影响

RFWD2 mediates dendritic growth and branching of mouse cortical neurons. A: Zoomed individual dendritic branches decorated with spiny protrusions of the cortical neurons transfected with RFWD2-Myc/ FUGW, RFWD2-shRNA and Ctrl-shRNA at Div14 and Div21 [×400 (left) or ×630 (right)]. The histogram shows the density of cortical neurons in the 3 groups. Spine measurements were obtained from 5 separate images in each group (*P < 0.05, **P < 0.01). B: Quantification of dendritic complexity by Sholl analysis for the cortical neurons in the 3 groups (×400). Data are presented as Mean±SE from 3 independent experiments.

2.6. RFWD2影响大脑皮层神经元功能的分子机制

Western blot检测RFWD2与下游各种底物之间的相关性,RFWD2过表达可显著降低Pea3家族的ETV1、ETV4、ETV5与c-Jun的表达,并降低神经元突触蛋白SYN与PSD95的表达,而RFWD2抑制表达可显著提升Pea3家族的ETV1、ETV4、ETV5与c-Jun的表达,并提升神经元突触蛋白SYN与PSD95的表达(图 6AB)。

6.

6

RFWD2通过Pea3家族的表达调控小鼠大脑皮层神经元发育与功能

RFWD2 regulates the development and function of mouse cerebral cortex neurons through the Pea3 subfamily. A: Proteins expression levels of RFWD2 and the members of Pea3 subfamily analyzed by Western blotting. B: Scanning densitometry for semi-quantitative analysis of the protein blots. *P < 0.05, **P < 0.01.

3. 讨论

树突棘是树突分支上的棘状突起,是神经元间形成突触的主要部位,位于突触后区域,其数量及形态结构的变化会导致突触可塑性的改变,与神经系统发育及学习记忆功能密切相关[23]。树突棘数量减少及形态结构畸变是许多神经退行性疾病发病的基础[24]。蛋白质降解在神经系统发育和神经变性中具有许多关键功能,尤其在发育期间突触连接的细化和突触可塑性的记忆方面[15, 25-26]。E3泛素连接酶RFWD2作为脑神经元突触蛋白内稳态的一个关键调控因子,可调控神经元树突棘的形成和突触功能[21, 27]

本研究发现,RFWD2在小鼠大脑皮层与海马区均高表达,尤其高表达于大中型锥体细胞,个体出生14 d后,表达量不断增加,与突触形成具有明显的正相关性。RFWD2与SYN、PSD95等突触蛋白细胞内共定位表明,既存在叠加亦有区别,因此RFWD2在小鼠大脑皮层神经元的突触前膜及突触后膜均有表达。RFWD2的高表达可显著降低神经元突触蛋白(SYN、PSD95)的形成与数量,而RFWD2的抑制表达可显著提高神经元突触蛋白的数量,因此,泛素化连接酶RFWD2可能通过泛素化降解,调控神经元突触蛋白表达,从而影响神经元功能。

研究发现RFWD2的失活能够导致小鼠肺分支发育缺陷[13]。RFWD2完全缺失的小鼠在胚胎发生过程中死亡,并伴有严重的心血管缺陷[16]。在神经退行性疾病阿尔兹海默症中,RFWD2缺失会激活小胶质细胞增殖并介导神经炎症[28],但其分子机制目前尚不清楚。而本研究发现RFWD2过表达可增加神经树突的长度、分支数量及复杂性,而RFWD2抑制表达可明显降低神经树突的长度、分支数量与突触功能,同时大量神经元死亡。另外,对照组树突棘头靠近树突干,多为短粗型或蘑菇型,具有成熟树突棘的典型特征,RFWD2-shRNA组树突棘形态异常,树突棘密度显著减少,而RFWD2过表达组树突棘密度显著增加,但丝状伪足样细长树突棘明显增加。因此,RFWD2差异表达,引起神经元树突棘形态和密度发生显著变化,导致树突棘与突触连接的稳定性发生变化,从而影响大脑皮层和海马等脑区突触可塑性的基础。

RFWD2敲除小鼠能够显著提高ETV1、ETV5与cJun的表达,而过表达的ETV1、ETV5与c-Jun又导致RFWD2敲除小鼠死亡[14]。翻译后c-Jun的调节对神经发生至关重要,因为从神经干细胞中c-Jun的提高会降低细胞存活率[29]。在此基础上,本研究表明RFWD2抑制表达可显著提升Pea3家族的ETV1、ETV4、ETV5与c-Jun的表达,并提升神经元突触蛋白SYN的表达,但会导致神经元树突长度、分支数量与复杂性降低,树突棘密度降低,阻断神经元许多功能通路之间的连接,导致突触功能障碍,从而导致神经元死亡。

因此,本研究表明RFWD2能够通过调节Pea3家族的ETV1、ETV4、ETV5与c-Jun的泛素化修饰,调控小鼠大脑皮层神经元树突发育、树突棘形成与突触功能效应,为深入研究神经精神疾病的发生、发展机理及治疗提供一个高效的作用靶点。

Biography

孙婷婷,硕士,E-mail:suntingtingh@163.com

Funding Statement

国家自然科学基金(81771381);安徽省自然科学基金(1908085MH277);国家级大学生创新创业训练项目资助(202010367015,202110367043,202110367044,202110367058)

Supported by National Natural Science Foundation of China(81771381)

Contributor Information

孙 婷婷 (Tingting SUN), Email: suntingtingh@163.com.

刘 长青 (Changqing LIU), Email: lcq7813@bbmc.edu.cn.

References

  • 1.Choi HH, Phan L, Chou PC, et al. COP1 enhances ubiquitinmediated degradation of p27Kip1 to promote cancer cell growth. Oncotarget. 2015;6(23):19721–34. doi: 10.18632/oncotarget.3821. [Choi HH, Phan L, Chou PC, et al. COP1 enhances ubiquitinmediated degradation of p27Kip1 to promote cancer cell growth[J]. Oncotarget, 2015, 6(23): 19721-34.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Marine JC. Spotlight on the role of COP1 in tumorigenesis. Nat Rev Cancer. 2012;12(7):455–64. doi: 10.1038/nrc3271. [Marine JC. Spotlight on the role of COP1 in tumorigenesis[J]. Nat Rev Cancer, 2012, 12(7): 455-64.] [DOI] [PubMed] [Google Scholar]
  • 3.Cowley AW Jr, Moreno C, Jacob HJ, et al. Characterization of biological pathways associated with a 1.37 Mbp genomic region protective of hypertension in Dahl S rats. Physiol Genomics. 2014;46(11):398–410. doi: 10.1152/physiolgenomics.00179.2013. [Cowley AW Jr, Moreno C, Jacob HJ, et al. Characterization of biological pathways associated with a 1.37 Mbp genomic region protective of hypertension in Dahl S rats[J]. Physiol Genomics, 2014, 46(11): 398-410.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Zou SS, Zhu YF, Wang B, et al. The ubiquitin ligase COP1 promotes glioma cell proliferation by preferentially downregulating tumor suppressor p53. Mol Neurobiol. 2017;54(7):5008–16. doi: 10.1007/s12035-016-0033-x. [Zou SS, Zhu YF, Wang B, et al. The ubiquitin ligase COP1 promotes glioma cell proliferation by preferentially downregulating tumor suppressor p53[J]. Mol Neurobiol, 2017, 54(7): 5008-16.] [DOI] [PubMed] [Google Scholar]
  • 5.Kobayashi A, Waku T. New addiction to the NRF2-related factor NRF 3 in cancer cells: Ubiquitin-independent proteolysis through the 20S proteasome. Cancer Sci. 2020;111(1):6–14. doi: 10.1111/cas.14244. [Kobayashi A, Waku T. New addiction to the NRF2-related factor NRF 3 in cancer cells: Ubiquitin-independent proteolysis through the 20S proteasome[J]. Cancer Sci, 2020, 111(1): 6-14.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Park JE, Miller Z, Jun Y, et al. Next-generation proteasome inhibitors for cancer therapy. Transl Res. 2018;198(3):1–16. doi: 10.1016/j.trsl.2018.03.002. [Park JE, Miller Z, Jun Y, et al. Next-generation proteasome inhibitors for cancer therapy[J]. Transl Res, 2018, 198(3): 1-16.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wang XQ, Tokheim C, Gu SS, et al. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell. 2021;184(21):5357–74. doi: 10.1016/j.cell.2021.09.006. [Wang XQ, Tokheim C, Gu SS, et al. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target[J]. Cell, 2021, 184(21): 5357-74. e22.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Ka WH, Cho SK, Chun BN, et al. The ubiquitin ligase COP1 regulates cell cycle and apoptosis by affecting p53 function in human breast cancer cell lines. Breast Cancer. 2018;25(5):529–38. doi: 10.1007/s12282-018-0849-5. [Ka WH, Cho SK, Chun BN, et al. The ubiquitin ligase COP1 regulates cell cycle and apoptosis by affecting p53 function in human breast cancer cell lines[J]. Breast Cancer, 2018, 25(5): 529-38.] [DOI] [PubMed] [Google Scholar]
  • 9.Dedhia PH, Keeshan K, Uljon S, et al. Differential ability of Tribbles family members to promote degradation of C/EBPalpha and induce acute myelogenous leukemia. Blood. 2010;116(8):1321–8. doi: 10.1182/blood-2009-07-229450. [Dedhia PH, Keeshan K, Uljon S, et al. Differential ability of Tribbles family members to promote degradation of C/EBPalpha and induce acute myelogenous leukemia[J]. Blood, 2010, 116(8): 1321-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Uljon S, Xu X, Durzynska I, et al. Structural basis for substrate selectivity of the E3 ligase COP1. Structure. 2016;24(5):687–96. doi: 10.1016/j.str.2016.03.002. [Uljon S, Xu X, Durzynska I, et al. Structural basis for substrate selectivity of the E3 ligase COP1[J]. Structure, 2016, 24(5): 687-96.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Wang HT, Quirion R, Little PJ, et al. Forkhead box O transcription factors as possible mediators in the development of major depression. Neuropharmacology. 2015;99(6):527–37. doi: 10.1016/j.neuropharm.2015.08.020. [Wang HT, Quirion R, Little PJ, et al. Forkhead box O transcription factors as possible mediators in the development of major depression [J]. Neuropharmacology, 2015, 99(6): 527-37.] [DOI] [PubMed] [Google Scholar]
  • 12.Fu CL, Gong YQ, Shi XX, et al. Expression and regulation of COP1 in chronic lymphocytic leukemia cells for promotion of cell proliferation and tumorigenicity. Oncol Rep. 2016;35(3):1493–500. doi: 10.3892/or.2015.4526. [Fu CL, Gong YQ, Shi XX, et al. Expression and regulation of COP1 in chronic lymphocytic leukemia cells for promotion of cell proliferation and tumorigenicity[J]. Oncol Rep, 2016, 35(3): 1493-500.] [DOI] [PubMed] [Google Scholar]
  • 13.Zhang Y, Yokoyama S, Herriges JC, et al. E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors. Proc Natl Acad Sci USA. 2016;113(27):7557–62. doi: 10.1073/pnas.1603310113. [Zhang Y, Yokoyama S, Herriges JC, et al. E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors[J]. Proc Natl Acad Sci USA, 2016, 113 (27): 7557-62.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Newton K, Dugger DL, Sengupta-Ghosh A, et al. Ubiquitin ligase COP1 coordinates transcriptional programs that control cell type specification in the developing mouse brain. Proc Natl Acad Sci USA. 2018;115(44):11244–9. doi: 10.1073/pnas.1805033115. [Newton K, Dugger DL, Sengupta-Ghosh A, et al. Ubiquitin ligase COP1 coordinates transcriptional programs that control cell type specification in the developing mouse brain[J]. Proc Natl Acad Sci USA, 2018, 115(44): 11244-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Luza S, Opazo CM, Bousman CA, et al. The ubiquitin proteasome system and schizophrenia. Lancet Psychiatry. 2020;7(6):528–37. doi: 10.1016/S2215-0366(19)30520-6. [Luza S, Opazo CM, Bousman CA, et al. The ubiquitin proteasome system and schizophrenia[J]. Lancet Psychiatry, 2020, 7(6): 528-37.] [DOI] [PubMed] [Google Scholar]
  • 16.Migliorini D, Bogaerts S, Defever D, et al. Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. J Clin Invest. 2011;121(4):1329–43. doi: 10.1172/JCI45784. [Migliorini D, Bogaerts S, Defever D, et al. Cop1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice[J]. J Clin Invest, 2011, 121(4): 1329-43.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Cohen LD, Ziv NE. Recent insights on principles of synaptic protein degradation. F1000Research. 2017;23(6):675. doi: 10.12688/f1000research.10599.1. [Cohen LD, Ziv NE. Recent insights on principles of synaptic protein degradation[J]. F1000Research, 2017, 23(6): 675.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lin AW, Man HY. Ubiquitination of neurotransmitter receptors and postsynaptic scaffolding proteins. Neural Plast. 2013;3:432057. doi: 10.1155/2013/432057. [Lin AW, Man HY. Ubiquitination of neurotransmitter receptors and postsynaptic scaffolding proteins[J]. Neural Plast, 2013, 3: 432057.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Penzes P, Cahill ME, Jones KA, et al. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14(3):285–93. doi: 10.1038/nn.2741. [Penzes P, Cahill ME, Jones KA, et al. Dendritic spine pathology in neuropsychiatric disorders[J]. Nat Neurosci, 2011, 14(3): 285-93.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Martínez-Cerdeño V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev Neurobiol. 2017;77(4):393–404. doi: 10.1002/dneu.22417. [Martínez-Cerdeño V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models[J]. Dev Neurobiol, 2017, 77(4): 393-404.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Dehorter N, Ciceri G, Bartolini G, et al. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science. 2015;349(6253):1216–20. doi: 10.1126/science.aab3415. [Dehorter N, Ciceri G, Bartolini G, et al. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch[J]. Science, 2015, 349(6253): 1216-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Louros SR, Osterweil EK. Perturbed proteostasis in autism spectrum disorders. J Neurochem. 2016;139(6):1081–92. doi: 10.1111/jnc.13723. [Louros SR, Osterweil EK. Perturbed proteostasis in autism spectrum disorders[J]. J Neurochem, 2016, 139(6): 1081-92.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci. 2018;91(5):122–30. doi: 10.1016/j.mcn.2018.07.001. [Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins[J]. Mol Cell Neurosci, 2018, 91(5): 122-30.] [DOI] [PubMed] [Google Scholar]
  • 24.Sun YJ, Espinosa JS, Hoseini MS, et al. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex. Proc Natl Acad Sci USA. 2019;116(43):21812–20. doi: 10.1073/pnas.1914661116. [Sun YJ, Espinosa JS, Hoseini MS, et al. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex[J]. Proc Natl Acad Sci USA, 2019, 116 (43): 21812-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett. 2015;601(8):30–40. doi: 10.1016/j.neulet.2015.01.011. [Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders[J]. Neurosci Lett, 2015, 601(8): 30-40.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.耿 丹丹, 张 润娇, 高 燕京, et al. β淀粉样蛋白1-42对大鼠海马神经元树突棘的影响. https://www.cnki.com.cn/Article/CJFDTOTAL-SJJP202101010.htm. 神经解剖学杂志. 2021;37(1):55–60. [耿丹丹, 张润娇, 高燕京, 等. β淀粉样蛋白1-42对大鼠海马神经元树突棘的影响[J]. 神经解剖学杂志, 2021, 37(1): 55-60.] [Google Scholar]
  • 27.Kandemir B, Caglayan B, Hausott B, et al. Pea3 transcription factor promotes neurite outgrowth. Front Mol Neurosci. 2014;7(3):59. doi: 10.3389/fnmol.2014.00059. [Kandemir B, Caglayan B, Hausott B, et al. Pea3 transcription factor promotes neurite outgrowth[J]. Front Mol Neurosci, 2014, 7(3): 59.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Ndoja A, Reja R, Lee SH, et al. Ubiquitin ligase COP1 suppresses neuroinflammation by degrading c/EBPβ in microglia. Cell. 2020;182(5):1156–69. doi: 10.1016/j.cell.2020.07.011. [Ndoja A, Reja R, Lee SH, et al. Ubiquitin ligase COP1 suppresses neuroinflammation by degrading c/EBPβ in microglia[J]. Cell, 2020, 182(5): 1156-69. e12.] [DOI] [PubMed] [Google Scholar]
  • 29.Hoeck JD, Jandke A, Blake SM, et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci. 2010;13(11):1365–72. doi: 10.1038/nn.2644. [Hoeck JD, Jandke A, Blake SM, et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun[J]. Nat Neurosci, 2010, 13(11): 1365-72.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES