Abstract
目的
探讨TRIM21基因在肝癌侵袭表型中的作用及机制。
方法
利用siRNA敲低肝癌细胞MHCC 97H,HCC LM3中的TRIM21、β-catenin基因,将肝癌细胞分为对照组:转染对照siRNA;TRIM21敲低组:转染siTRIM21 RNA;CTNNB1敲低组:转染siCTNNB1 RNA;双敲低组:共转染siTRIM21 RNA及siCTNNB1 RNA。利用Western blotting验证敲除效率及相关通路的激活或抑制情况。通过Transwell侵袭实验检测肿瘤细胞的侵袭性。通过尾静脉注射敲低TRIM21的HCC LM3细胞构建裸鼠肺转移模型以观测其肺转移能力。在HEK 293细胞中过表达TRIM21,将HEK 293细胞分为对照组:加入转染试剂;过表达组:转染flagTRIM21。并利用Co-IP检测TRIM21蛋白与β-catenin的相互作用及泛素化水平。生信分析TCGA数据库中CTNNB1highTRIM21high和CTNNB1highTRIM21low两种亚型肝癌的预后。
结果
敲低TRIM21可以显著增强肝癌细胞MHCC 97H和HCC LM3的侵袭能力(P < 0.01,P < 0.05)和HCC LM3细胞的肺转移能力(P < 0.01)。机制研究发现,TRIM21可通过泛素化蛋白酶体途径降解β-catenin以减少其入核,进而降低肝癌细胞的的侵袭性(P < 0.0001,P < 0.05)。由于TRIM21表达水平降低使肝癌细胞中Wnt信号通路激活,最终使CTNNB1highTRIM21high亚型肝癌患者的生存预后明显优于CTNNB1highTRIM21low亚型肝癌患者(P < 0.05)。
结论
TRIM21能通过泛素化途径降解β-catenin来抑制肝癌细胞的侵袭性,这可能导致了CTNNB1highTRIM21low肝癌患者预后较差。
Keywords: 肝癌, 侵袭性, TRIM21, β-catenin, 泛素化, 预后
Abstract
Objective
To explore the role of TRIM21 in modulating the invasive phenotype of hepatocellular carcinoma (HCC) cells and its mechanism of action.
Methods
RNA interference technique was used to knock down the expression of TRIM21 and β-catenin, alone or in combination, in HCC cell lines 97H and LM3, and the interfering efficiency and the activity of closely related pathways were determined using Western blotting. The two cells with TRIM21 knockdown (siTRIM21 97H and siTRIM21 LM3 cells) were assessed for their invasion ability in vitro using Transwell invasion assay, and the lung metastasis capacity of siTRIM21 LM3 cells following tail vein injection was evaluated in nude mice. The binding of TRIM21 with β-catenin and the ubiquitylation level of β-catenin in TRIM21-overexpressing HEK293 cells were determined with Western blotting and co-immunoprecipitation assay. We also compared the overall survival of patients with CTNNB1highTRIM21high and CTNNB1highTRIM21low HCC subtypes using Kaplan-Meier method based on filtrated and grouped HCC clinical data from TCGA database.
Results
TRIM21 knockdown significantly enhanced the invasion ability of 97H and LM3 cells in vitro (P < 0.01 or 0.05) and the lung metastasis ability of LM3 cells in nude mice (P < 0.01), and simultaneous knockdown of β -catenin obviously suppressed the in vitro invasiveness of the cells (P < 0.0001 or 0.05). Co-immunoprecipitation assay showed that TRIM21 was capable of directly binding with β-catenin protein to accelerate the ubiquitination and degradation of the latter, leading to inhibition of nuclear translocation of β-catenin and hence reduced invasiveness of HCC cells. Bioinformatic analysis showed that compared patients with CTNNB1highTRIM21low HCC subtype where Wnt pathway was activated, the patients with CTNNB1highTRIM21high HCC subtype had a significantly better survival outcomes (P < 0.05).
Conclusion
A high expression of TRIM21 suppresses the invasion of HCC cells by promoting β-catenin ubiquitylation and degradation, which possibly explains the poor prognosis of CTNNB1highTRIM21low HCC patients.
Keywords: liver cancer, aggressiveness, TRIM21, β-catenin, ubiquitination, prognosis
原发性肝癌是全世界最常见的恶性肿瘤之一,发病率居恶性肿瘤第6位,死亡率居第3位[1]。在我国,肝癌死亡率居肿瘤相关死亡率的第5位,严重威胁我国人民的生命健康[2]。由于大部分肝癌患者确诊时已是晚期且缺乏有效的治疗手段,导致肝癌患者的5年生存率仅为18%左右[3]。肿瘤进展和转移是肝癌治疗预后不良的主要原因。此外,在部分接受根治性肝癌手术的患者中,很高比例的患者在术后出现肿瘤复发[4]。尽管人们对肝癌的进展、转移和复发相关的机制进行了大量的研究,但其具体机制仍然不清楚。因此,鉴定新的靶点或生物标志物并阐明其背后的肿瘤驱动机制是亟待解决的科学问题。
TRIM蛋白具有进化保守的结构域,许多研究表明TRIM蛋白的功能广泛,影响细胞的增殖、分化、先天免疫、凋亡调节、细胞迁移等[5]。许多TRIM家族蛋白是癌症发生发展的重要调节因子[6],例如,TRIM29在前列腺癌中表达下调,但是在正常组织或良性憎生中高表达[7];TRIM16可以阻断细胞周期抑制神经母细胞瘤的增殖[8];胶质瘤中TRIM3可与p21结合以抑制肿瘤形成[9];TRIM15在结肠癌,TRIM62在乳腺癌和肺癌中分别扮演不同的角色[9-11]。TRIM21,也被称为Ro52或RNF81,其编码的蛋白质具有E3泛素连接酶活性[5, 12-13]。TRIM21作为一种重要的胞质蛋白,最初的研究发现其可在炎症反应中上调并转移至细胞核[14]。Espinosa等[15]报道在Sjögren综合征和系统性红斑狼疮(SLE)中,TRIM21表达上调可以减少细胞的增殖能力并促进细胞凋亡,表明TRIM21对细胞增殖及凋亡的调控作用。鉴于多数TRIM蛋白与癌症密切相关,其中大多数具有抑制肿瘤生长作用;且持续的细胞增殖信号和抵抗细胞凋亡是肿瘤细胞的重要特征[16]。因此,我们推测TRIM21可能通过调控细胞增殖和细胞凋亡等机制抑制肝癌细胞的恶性表型发挥肿瘤抑制作用。在另一方面,TRIM蛋白在肝癌的发生发展过程中也起着重要的调控作用。TRIM35在肝癌组织中表达下调,并且TRIM35的表达水平与肿瘤分级、肿瘤大小和患者血清AFP水平呈负相关[17];小鼠中TRIM24的种系失活通过破坏肝细胞中的RA信号导致肝癌的发生[18]。Ding等[5]发现在临床病例中TRIM21下调和肝癌患者的的肿瘤病灶数量、T分期、巴塞罗那临床肝癌(BCLC)分期密切相关;并发现敲低Hep G2和HCC LM3细胞中的TRIM21后可促进癌细胞增殖、克隆形成、凋亡抵抗和迁徙能力。然而,既往研究关于TRIM21的表达水平降低后促进肝癌恶性表型背后的具体机制尚不明确。
在本研究中,我们发现TRIM21表达水平降低后可以显著增强肝癌细胞的侵袭性和肺转移能力,同时Wnt信号通路被显著激活,机制研究发现敲低TRIM21可以减少其对β-catenin的泛素化降解,增加其入核并最终激活Wnt信号通路。本研究第一次提出了TRIM21可以通过泛素化蛋白酶体途径降解β-catenin抑制肝癌细胞的侵袭能力,为将来的新型治疗靶点确认提供了理论基础并为催生新的治疗策略提供新思路。
1. 材料和方法
1.1. 材料
1.1.1. 细胞
人肝癌细胞株MHCC 97H、HCC LM3,人胚肾细胞HEK293购自中国科学院上海细胞库。4~6周龄,体质量18~22 g的雄性SPF级Balb/c裸鼠购自南方医科大学医学实验动物中心,许可证号:SCXK(粤)2016~0167。饲养于南方医科大学南方医院动物实验中心,所有饲养及动物实验皆按照《南方医科大学实验动物管理办法(试行)》和《南方医科大学动物实验伦理审查指南(试行)》原则进行。本研究通过南方医院实验动物伦理委员会审查,伦理号(NFYY-2021-1118)。
1.1.2. 药品与试剂
DMEM培养基、胎牛血清(Gibco);侵袭Transwell(Corning),siRNA(TRIM21,β-catenin)、Flag-TRIM21质粒等基因干扰及过表达系统分别由广州锐博生物和上海吉凯基因构建。蛋白提取试剂盒、BCA试剂盒、蛋白酶抑制剂、蛋白marker等(碧云天)。
1.1.3. 仪器
酶标仪(Bio TeK);蛋白印迹系统(BioRAD);正置显微镜(OLYMPUS BX63)。
1.1.4. 细胞培养
人肝癌细胞株MHCC 97H、HCC LM3,HEK293用含10%血清的DMEM培养基培养,培养于含5% CO2,37 ℃恒温培养箱(21% O2,常氧),待细胞密度达到85%汇合度处于对数期后进行常规传代、冻存及后续实验,每1~2 d换液。
1.2. 方法
1.2.1. 细胞转染
细胞转染参考Lipofectamine 3000说明书进行操作。TRIM21,CTNNB1的敲低对照siRNA由锐博生物合成,TRIM21敲低序列5'- GAUGGUGUCUGCUAUUGUATT-3',CTNNB1的敲低序列5'-GCTGCAGGAGGTGATAATT-3'。flagTRIM21由吉凯基因合成。肝癌细胞转染分组,对照组:转染对照siRNA;TRIM21敲低组:转染siTRIM21 RNA;CTNNB1敲低组:转染siCTNNB1 RNA;双敲低组:共转染siTRIM21 RNA及siCTNNB1 RNA。HEK 293细胞中过表达TRIM21分组:对照组:加入转染试剂;过表达组:转染flag-TRIM21。
1.2.2. 蛋白质提取
总蛋白质提取及胞浆蛋白、胞核蛋白提取参考本课题组既往已发表文献。
1.2.3. Western blotting
利用BCA法检测蛋白质浓度,进行凝胶电泳、转膜、封闭(5%脱脂奶粉或BSA)、一抗(TRIM21,β-catenin,p-Akt,c-Myc,flag(稀释比1∶ 1000,Proteintech);anti-c-JUN,anti-LaminB1(稀释比1∶500,Cell Signaling Technology),anti-GAPDH(稀释比1∶10 000,Fdbio science)4 ℃孵育过夜、洗膜、二抗孵育、洗膜、ECL发光液显影、曝光。
1.2.4. Transwell侵袭实验
转染细胞48 h后收集97H、LM3细胞,制备单细胞悬液,用无血清DMEM重悬细胞(调整密度为1×105/mL),取200 μL细胞悬液接种至规格为8 μm的Transwell专用小室上层,(Transwell小室基底膜预先用1∶6的matrigel基质胶包被、水化、培养箱条件下缓慢成膜),小室下层加入600 μL含15%FBS的DMEM培养基,常规培养4~6 h取出小室,用棉签拭去上层未穿膜细胞及基质胶。PBS清洗3次,甲醇固定,1%结晶紫试剂染色,小室基底膜封风干后在显微镜下随机(Z型拍照)选取5个视野拍照并计数。实验重复3次。
1.2.5. 免疫共沉淀(Co-IP)
细胞转染48 h后,PBS清洗细胞,加入RIPA Buffer(预冷)。将细胞从皿底刮下,静置于冰上裂解。以4 ℃,14 000 g离心15 min,转移上清。准备Protein A agarose(PBS清洗后配置成50%浓度)。每1 mL总蛋白中加入100 μL Protein A琼脂糖珠(50%),4 ℃低速摇晃混匀,去除非特异性蛋白,降低背景。以4 ℃,14 000 g离心15 min,转移上清,去除Protein A琼脂糖珠。BCA法测浓度。取一定体积的抗体加入适宜体积的总蛋白中。4 ℃缓慢摇动过夜。加入100 μL Protein A琼脂糖珠捕捉抗原抗体复合物,4 ℃缓慢摇动抗原抗体混合物室温2 h(同时加入少量甘油减少非特异性结合),14 000 r/min瞬时离心5 s,收集琼脂糖珠-抗原抗体复合物,去上清,用预冷的RIPA buffer洗3遍,800 μL/遍。用60 μL的2×上样缓冲液将琼脂糖珠-抗原抗体复合物重悬,轻轻混匀。将所得样品在金属浴中变性5 min,以游离抗原。SDS-PAGE方法参考1.2.3部分。
1.2.6. 临床标本检测Wnt信号通路关键蛋白的表达
为了将临床样本用于实验研究,样本获取前取得了患者知情同意并得到了南方医科大学南方医院伦理委员会批准。从既往研究中的样本库[19]里选择3例临床标本。获得样品匀浆后,使用强效RIPA裂解液提取总蛋白,BCA试剂盒检测蛋白质浓度。后续实验方法参考1.2.3步骤。
1.2.7. 肺转移动物模型构建
利用1.2.1中转染siRNA后的对照组和TRIM21敲低组肝癌细胞HCC LM3,将10只小鼠随机分配至对照组和TRIM21敲低组,5只/ 组。尾静脉注射100 μL HCC LM3细胞悬液(3×106细胞),尾静脉注射后14 d后以颈椎断颈法处死小鼠,剥离肺组织,对肺组织和小鼠体质量分别称重。
1.3. 生信分析
从TCGA网站(www.cbioportal.org)下载原始肝细胞肝癌数据,含394例临床病理确诊的肝细胞癌病人临床信息。首先,利用差异mRNA表达(CTNNB1中位表达量)筛选出CTNNB1high病例198例,进一步在此数据集中利用x-tile找到最佳cutoff值,并以KaplanMeier法分析CTNNB1highTRIM21high(低危50例)及CTNNB1highTRIM21low(高危148例)两种细分肝癌亚型的总生存率(OS)。
1.4. 统计学分析
采用Graphpad Prism 9.0等软件进行统计学分析与处理,R及R Studio等软件进行生物学信息分析,各指标采用均数±标准差表示,两组间均数比较采用独立样本t检验,生存分析采Kaplan-Meier法。以P < 0.05(双侧)为差异具有统计学意义。所有实验均独立重复3次。
2. 结果
2.1. 敲低TRIM21后肝癌细胞的体外侵袭和肺转移能力增强
与对照组相比,siTRIM21组细胞中的TRIM21蛋白表达水品显著降低(P < 0.05,图 1A)。敲低TRIM21后,以Transwell侵袭实验检测各组细胞的侵袭能力,结果显示,与对照组中穿过Transwell小室基底膜的细胞数相比,TRIM21敲低组穿过小室的细胞数量明显增加(97H:763.8±26.32 vs 551.9±54.44,P=0.0071;LM3:605.1±51.66 vs 485.8±21.64,P=0.0489,图 1B、C)。和对照组细胞相比,HCC LM3细胞在TRIM21被敲低后,在裸鼠肺转移模型中可以肉眼观察到更明显的肺转移灶(图 1D),并且肺的重量和肺占体质量的比值均显著增加(图 1E)(LW:0.1840±0.0219 vs 0.0920±0.0278 g,P= 0.0004;LW/BW:0.8798±0.0695 vs 0.4245±0.0660,P= 0.0014)。
1.
敲低TRIM21后肝癌细胞的体外侵袭和肺转移能力增强
RNA interference of TRIM21 enhances the in vitro invasion ability of 97H and LM3 cells and lung metastasis ability of LM3 cells in nude mice. A: Knock-down efficiency in 97H and LM3 cells detected by Western blotting. B, C: Transwell assays for assessing the invasion ability of transfected 97H and LM3 cells (Original magnification: ×100). D: Gross observation of the lungs of mice after intravenous inoculation of control and siTRIM21 LM3 cells. E: Lung weight (LW) and lung/body weight ratio (LW/BW) of the mice after injection of control and siTRIM21 LM3 cells. *P < 0.05, **P < 0.01, ***P < 0.001 vs control group.
2.2. 敲低TRIM21基因激活了肝癌细胞中Wnt信号通路
敲低TRIM21后,Wnt信号通路相关的关键蛋白,β-catenin,C-JUN显著上调(P < 0.05,图 2),;PI3K-Akt信号通路相关蛋白p-Akt表达水平也被显著上调(P < 0.05,图 2),然而MAPK信号通路相关蛋白c-Myc表达水平无明显变化(图 2)。
2.
干扰TRIM21表达后可激活肝癌细胞中Wnt信号通路
TRIM21 knockdown activates Wnt pathway in 97H and LM3 cells. The key factors of KEGG pathways in cancer including Wnt signaling pathway, PI3K-Akt signaling pathway, and MAPK signaling pathway were detected in si-TRIM21 and control 97H cells and si-TRIM21 and control LM3 cells. *P < 0.05.
2.3. TRIM21可结合β-catenin、增加其泛素化水平、抑制其入核
在HEK 293中过表达TRIM21(flag-TRIM21)后,通过Co-IP发现TRIM21和β-catenin之间可相互结合(P < 0.05,图 3A)。过表达TRIM21后,结合泛素分子β- catenin蛋白明显增加(P < 0.05,图 3B)。敲低TRIM21后,分别提取97H细胞的胞浆蛋白及染色质蛋白,用Western blotting检测胞质和染色质中β-catenin水平,结果表明敲低TRIM21后,β-catenin的稳定性(胞浆蛋白)且入核比例(染色质蛋白)均显著增加(P < 0.05,图 3C)。
3.
TRIM21可结合β-catenin、增加其泛素化水平、抑制其入核
TRIM21 can bind with β-catenin to accelerate the ubiquitination and inhibit nuclear translocation of the latter. A: Binding of TRIM21 with β-catenin in HEK293 cells transfected with TRIM21-overexpressing plasmid determined by Western blotting. B: Ubiquitination level of β-catenin tagged by HA in TRIM21-overexpressing HEK293 cells detected by Co-IP followed by Western blotting. C: Level of nuclear translocation of β -catenin determined by Western blotting of cytoplasmic and chromosomal protein fractions from si-TRIM21 MHCC 97H cells. *P < 0.05.
2.4. 敲低β-catenin可以降低肝癌细胞因TRIM21被敲低而显著增加的体外侵袭能力
用Western blotting检测蛋白质水平被敲低的效率,两株细胞中的靶蛋白均被显著敲除(图 4A)。同2.1中结果一致,敲低TRIM21后,两株细胞株中的侵袭能力显著增强(97H:772.8±36.32 vs 526.9±61.44,P=0.0004;LM3:654±42.35 vs 499.8±54.64,P=0.0219,图 4B、C);进一步敲低CTNNB1后,增强的侵袭能力被显著抑制(97H:308.9±3.8 vs 772.8±36.32,P < 0.0001;LM3:456.7±34.73 vs 654±42.35,P=0.0198,图 4B、C)。
4.
干扰β-catenin表达可以显著降低肝癌细胞因敲低TRIM21而增加的体外侵袭能力
β-catenin knockdown undermines TRIM21 knockdown-induced enhancement of invasion in HCC cells. A: Efficiency of TRIM21 and β-catenin knock-down in 97H and LM3 cells detected by Western blotting. B, C: Transwell assay for assessing the invasion ability of 97H and LM3 cells with knock-down of TRIM21 or β- catenin or both (×100). *P < 0.05, **P < 0.01, ****P < 0.0001.
2.5. TRIM21表达水平对不同临床亚型肝癌病人预后和临床标本中Wnt信号通路状态的影响
CTNNB1highTRIM21high亚型肝癌患者的OS明显优于CTNNB1highTRIM21low亚型肝癌患者(图 5A,mOS:21.7月(高危组)vs ∞(低危组)(166.7月随访期截止时超过50%病人尚存活,P=0.02)。在TRIM21低表达的肝癌临床样本中,Wnt信号通路中的β-catenin和下游关键蛋白c-JUN的表达水平显著上调(P < 0.05,图 5B)。
5.
TRIM21表达水平对肝癌患者预后的影响和临床样本中Wnt信号通路的状态
Effect of TRIM21 expression level on overall survival of HCC patients with different subtypes and the activation of Wnt pathway in clinical samples. A: Kaplan-Meier analysis of the overall survival for CTNNB1highTRIM21high and CTNNB1highTRIM21low HCC subtypes. B: Western blotting of the indicated protein in 3 pairs of HCC tissues (T) and matched adjacent liver tissues (N).
3. 讨论
本研究探索了TRIM21的表达水平和肝癌细胞侵袭表型的关系,肝癌细胞中的TRIM21被敲低后,在体内体外实验中其肿瘤细胞侵袭性明显增加。尽管TRIM21在肝癌的发生发展过程中的作用仍待探究,但是既往的研究已经初步揭露了其潜在机制。既往研究发现,在体外实验、动物实验以及临床样本研究均表明白介素2(IL-2)可抑制肝癌发展,且IL-2高表达的肝癌病人有更好的预后[20]。Jurkt细胞中,敲低TRIM21可显著减少CD28刺激的IL-2的表达[21]。IL-2也可能被TRIM21调控,敲低TRIM21可能导致IL-2下调,进一步导致肝癌的进展。Ding等[5]的研究也发现在肝癌中TRIM21可能参与NF-κB信号通路的组成性激活,但这一结论尚且需要进一步研究来证明。因此,TRIM21通过何种途径调控肝癌的进展尚不完全明确。
最近,越来越多的研究表明病毒和细菌等病原体感染可以使TRIM21表达上调,并进一步通过激活相关转录因子途径,如NF-κB、激活蛋白1(AP-1)、干扰素调节因子IRF3、IRF5和IRF7等来实现其有效的抗病原体保护作用[22]。有研究表明TRIM21可调控重要的肿瘤相关的NF-κB信号通路[21]。作为转录因子,NF-κB及其家族在B细胞中主要被IKKβ激活,TRIM21可以通过单泛素化IKKβ来抑制NF-κB信号通路[23]。以上研究表明TRIM21可能通过调控下游相关转录因子途径调控肝癌的恶性表型,如侵袭性。β-连环素(β-catenin)是由CTNNB1基因编码的一种具有多功能的蛋白质,可作为一种重要的转录因子,既往研究发现其编码基因在多种肿瘤中存在突变,与肝癌的相关研究表明β-catenin基因突变和蛋白的过表达与肿瘤的发生、发展及预后密切相关[24]。大量研究表明TRIM家族蛋白在多种癌症的发生发展过程中发挥的作用与β- catenin密切相关,如敲低TRIM44可通过抑制Wnt信号通路抑制甲状腺乳头状癌细胞的增殖和侵袭[25];TRIM32或TRIM11通过激活胃癌中的β-catenin信号促进胃癌细胞增殖、迁移、侵袭和EMT[26-27];敲低TRIM59后可通过下调神经母细胞瘤中的Wnt信号通路来抑制肿瘤细胞增殖[28];敲低TRIM26通过Akt/GSK3β/β-catenin通路抑制膀胱癌细胞的增殖、迁移和侵袭[29]。就肝癌而言,Fan等[30]报道了TRIM66在肝癌细胞中相较于正常肝细胞显著高表达,敲低TRIM66后,肝癌细胞的增殖、集落形成和侵袭能力显著降低,过表达TRIM66可观察到相反的结果,敲低β-catenin可阻止TRIM66高表达肝癌细胞的恶性表型。Ding等[5]利用肝癌细胞系发现敲低TRIM21后发现肝癌细胞的增殖、集落形成、迁移、和体外抗凋亡能力显著增加。遗憾的是,该研究未进一步探索其背后的机制,基于此,本研究关注肝癌的侵袭性,发现肝癌细胞中TRIM21被敲低后可以显著提高胞质中β-catenin的表达水平,且其下游的c-JUN等蛋白表达水平也被上调,表明Wnt信号通路被显著激活。在TRIM21低表达的肝癌临床标本中,我们也发现β-catenin及其下游关键蛋白c-JUN的表达水平上调。在敲低TRIM21后,p-AKT表达水平也被上调,表明PI3K-Akt信号通路也被激活;但是c-Myc表达水平无明显变化,这表明MAPK信号通路可能与TRIM21不相关。遗憾的是,本研究未进一步对PI3K-Akt信号通路作进一步研究,后续研究将对PI3K-Akt信号通路进行更加深入的研究。我们在HEK-293细胞中过表达TRIM21后发现TRIM21和β-catenin结合水平显著增加,并且同时减少了β-catenin的表达。我们猜想TRIM21结合β-catenin后可能发挥泛素连接酶作用通过募集更多泛素结合到β-catenin上,并最终通过泛素化途径降解β-catenin。在Co-IP实验中发现过表达TRIM21的HEK-293细胞中,β-catenin的泛素化水平被显著提高。于是我们在97H细胞中敲低TRIM21后发现β-catenin在细胞质和染色体水平显著提高,所以,敲低TRIM21可以减少β- catenin的泛素化水平,阻断泛素化蛋白酶体系统对β- catenin的降解,进而提高β-catenin在胞质中的表达水平,最终更多的β-catenin蛋白可以从胞质进入胞核以激活Wnt信号通路,并激活其下游蛋白,如c-JUN、GS等。至于更多的β-catenin蛋白入核后启动具体的肝癌侵袭相关基因尚需进一步研究与验证。
本研究证实了TRIM21的表达水平和肝癌侵袭表型密切相关,肝细胞癌细胞TRIM21被敲低后,其体外侵袭性和肺转移能力明显增加。首次发现敲低TRIM21后Wnt信号通路被显著激活。在肝癌细胞中对TRIM21和β-catenin进行双敲低后发现增强的侵袭性被显著抑制。生信分析发现CTNNB1highTRIM21high亚型的肝细胞肝癌的中位生存期明显长于CTNNB1highTRIM21low亚型。我们的研究不仅丰富了我们对肝癌侵袭能力的认识,也为我们深入理解TRIM21在肝癌侵袭转移过程所扮演角色提供了理论基础。此外,增加TRIM21的表达或提高TRIM21酶活性很有可能是一种创新的肝癌治疗策略。关于TRIM21在基因疗法中的潜在应用价值及其作为预后标志物的作用尚需进一步研究。
Biography
张志红,硕士,E-mail:rederzang@gmail.com
Funding Statement
国家自然科学基金(81903133,82073343);中国博士后科学基金(2020M672736);广东省自然科学基金(2021A1515012151);广州市科技计划(201906010087)
Supported by National Science Foundation of China (81903133, 82073343)
Contributor Information
张 志红 (Zhihong ZHANG), Email: rederzang@gmail.com.
曹 传辉 (Chuanhui CAO), Email: huichuancao@163.com.
References
- 1.Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–49. doi: 10.3322/caac.21660. [Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2021, 71(3): 209-49.] [DOI] [PubMed] [Google Scholar]
- 2.Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015. CA: A Cancer J Clin. 2016;66(2):115–32. doi: 10.3322/caac.21338. [Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015[J]. CA: A Cancer J Clin, 2016, 66(2): 115-32.] [DOI] [PubMed] [Google Scholar]
- 3.Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380(15):1450–62. doi: 10.1056/NEJMra1713263. [Villanueva A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-62.] [DOI] [PubMed] [Google Scholar]
- 4.Kishi Y. Role of hepatectomy for recurrent or initially unresectable hepatocellular carcinoma. World J Hepatol. 2014;6(12):836. doi: 10.4254/wjh.v6.i12.836. [Kishi Y. Role of hepatectomy for recurrent or initially unresectable hepatocellular carcinoma[J]. World J Hepatol, 2014, 6(12): 836.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Ding QS, He D, He K, et al. Downregulation of TRIM21 contributes to hepatocellular carcinoma carcinogenesis and indicates poor prognosis of cancers. Tumor Biol. 2015;36(11):8761–72. doi: 10.1007/s13277-015-3572-2. [Ding QS, He D, He K, et al. Downregulation of TRIM21 contributes to hepatocellular carcinoma carcinogenesis and indicates poor prognosis of cancers[J]. Tumor Biol, 2015, 36(11): 8761-72.] [DOI] [PubMed] [Google Scholar]
- 6.Petrera F, Meroni G. TRIM proteins in development[M]//Advances in Experimental Medicine and Biology. New York, NY: Springer New York, 2012: 131-141.
- 7.Kanno Y, Watanabe M, Kimura T, et al. TRIM29 as a novel prostate basal cell marker for diagnosis of prostate cancer. Acta Histochem. 2014;116(5):708–12. doi: 10.1016/j.acthis.2013.12.009. [Kanno Y, Watanabe M, Kimura T, et al. TRIM29 as a novel prostate basal cell marker for diagnosis of prostate cancer[J]. Acta Histochem, 2014, 116(5): 708-12.] [DOI] [PubMed] [Google Scholar]
- 8.Bell JL, Malyukova A, Kavallaris M, et al. TRIM16 inhibits neuroblastoma cell proliferation through cell cycle regulation and dynamic nuclear localization. Cell Cycle. 2013;12(6):889–98. doi: 10.4161/cc.23825. [Bell JL, Malyukova A, Kavallaris M, et al. TRIM16 inhibits neuroblastoma cell proliferation through cell cycle regulation and dynamic nuclear localization[J]. Cell Cycle, 2013, 12(6): 889-98.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Liu Y, Raheja R, Yeh N, et al. TRIM3, a tumor suppressor linked to regulation of p21Waf1/Cip1. Oncogene. 2014;33(3):308–15. doi: 10.1038/onc.2012.596. [Liu Y, Raheja R, Yeh N, et al. TRIM3, a tumor suppressor linked to regulation of p21Waf1/Cip1[J]. Oncogene, 2014, 33(3): 308-15.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lee OH, Lee J, Lee KH, et al. Role of the focal adhesion protein TRIM15 in colon cancer development. Biochim et Biophys Acta BBA - Mol Cell Res. 2015;1853(2):409–21. doi: 10.1016/j.bbamcr.2014.11.007. [Lee OH, Lee J, Lee KH, et al. Role of the focal adhesion protein TRIM15 in colon cancer development[J]. Biochim et Biophys Acta BBA - Mol Cell Res, 2015, 1853(2): 409-21.] [DOI] [PubMed] [Google Scholar]
- 11.Chen N, Balasenthil S, Reuther J, et al. DEAR1, a novel tumor suppressor that regulates cell polarity and epithelial plasticity. Cancer Res. 2014;74(20):5683–9. doi: 10.1158/0008-5472.CAN-14-1171. [Chen N, Balasenthil S, Reuther J, et al. DEAR1, a novel tumor suppressor that regulates cell polarity and epithelial plasticity[J]. Cancer Res, 2014, 74(20): 5683-9.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011;11(11):792–804. doi: 10.1038/nrc3139. [Hatakeyama S. TRIM proteins and cancer[J]. Nat Rev Cancer, 2011, 11(11): 792-804.] [DOI] [PubMed] [Google Scholar]
- 13.Guha A, Nag S, Ray PS. Negative feedback regulation by HuR controls TRIM21 expression and function in response to UV radiation. Sci Rep. 2020;10:11753. doi: 10.1038/s41598-020-68646-3. [Guha A, Nag S, Ray PS. Negative feedback regulation by HuR controls TRIM21 expression and function in response to UV radiation[J]. Sci Rep, 2020, 10: 11753.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Reddy BA, van der Knaap JA, Bot AGM, et al. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol Cell. 2014;53(3):458–70. doi: 10.1016/j.molcel.2013.12.017. [Reddy BA, van der Knaap JA, Bot AGM, et al. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization[J]. Mol Cell, 2014, 53(3): 458-70.] [DOI] [PubMed] [Google Scholar]
- 15.Espinosa A, Zhou W, Ek M, et al. The sjögren's syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death. J Immunol. 2006;176(10):6277–85. doi: 10.4049/jimmunol.176.10.6277. [Espinosa A, Zhou W, Ek M, et al. The sjögren's syndrome-associated autoantigen Ro52 is an E3 ligase that regulates proliferation and cell death[J]. J Immunol, 2006, 176(10): 6277-85.] [DOI] [PubMed] [Google Scholar]
- 16.Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013. [Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-74.] [DOI] [PubMed] [Google Scholar]
- 17.Jia D, Wei L, Guo W, et al. Genome-wide copy number analyses identified novel cancer genes in hepatocellular carcinoma. Hepatology (Baltimore, Md) 2011;54:1227–36. doi: 10.1002/hep.24495. [Jia D, Wei L, Guo W, et al. Genome-wide copy number analyses identified novel cancer genes in hepatocellular carcinoma[J]. Hepatology (Baltimore, Md). 2011, 54: 1227-36.] [DOI] [PubMed] [Google Scholar]
- 18.Herquel B, Ouararhni K, Khetchoumian K, et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma. PNAS. 2011;108(20):8212–7. doi: 10.1073/pnas.1101544108. [Herquel B, Ouararhni K, Khetchoumian K, et al. Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma [J]. PNAS, 2011, 108(20): 8212-7.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Liu L, Dong Z, Liang J, et al. As an independent prognostic factor, FAT10 promotes hepatitis B virus-related hepatocellular carcinoma progression via Akt/GSK3β pathway. Oncogene. 2014;33(7):909–20. doi: 10.1038/onc.2013.236. [Liu L, Dong Z, Liang J, et al. As an independent prognostic factor, FAT10 promotes hepatitis B virus-related hepatocellular carcinoma progression via Akt/GSK3β pathway[J]. Oncogene, 2014, 33(7): 909-20.] [DOI] [PubMed] [Google Scholar]
- 20.He P, Tang ZY, Ye SL, et al. The targeted expression of interleukin-2 in human hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2000;19(2):183–7. [He P, Tang ZY, Ye SL, et al. The targeted expression of interleukin-2 in human hepatocellular carcinoma cells[J]. J Exp Clin Cancer Res, 2000, 19(2): 183-7.] [PubMed] [Google Scholar]
- 21.Ishii T, Ohnuma K, Murakami A, et al. SS-A/Ro52, an autoantigen involved in CD28-mediated IL-2 production. J Immunol. 2003;170(7):3653–61. doi: 10.4049/jimmunol.170.7.3653. [Ishii T, Ohnuma K, Murakami A, et al. SS-A/Ro52, an autoantigen involved in CD28-mediated IL-2 production[J]. J Immunol, 2003, 170(7): 3653-61.] [DOI] [PubMed] [Google Scholar]
- 22.McEwan WA, Tam JC, Watkinson RE, et al. Intracellular antibodybound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol. 2013;14(4):327–36. doi: 10.1038/ni.2548. [McEwan WA, Tam JC, Watkinson RE, et al. Intracellular antibodybound pathogens stimulate immune signaling via the Fc receptor TRIM21[J]. Nat Immunol, 2013, 14(4): 327-36.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Zheng TS, Hong XH, Wang JB, et al. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma. Hepatology. 2014;59(3):935–46. doi: 10.1002/hep.26705. [Zheng TS, Hong XH, Wang JB, et al. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma[J]. Hepatology, 2014, 59(3): 935-46.] [DOI] [PubMed] [Google Scholar]
- 24.Torrecilla S, Pinyol R, Wang H, et al. THU-497-Molecular fingerprint of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J Hepatol. 2019;70(1):e379. [Torrecilla S, Pinyol R, Wang H, et al. THU-497-Molecular fingerprint of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis[J]. J Hepatol, 2019, 70(1): e379.] [Google Scholar]
- 25.Zhou ZY, Liu Y, Ma MD, et al. Knockdown of TRIM44 inhibits the proliferation and invasion in papillary thyroid cancer cells through suppressing the Wnt/β-catenin signaling pathway. Biomedecine Pharmacother. 2017;96:98–103. doi: 10.1016/j.biopha.2017.09.132. [Zhou ZY, Liu Y, Ma MD, et al. Knockdown of TRIM44 inhibits the proliferation and invasion in papillary thyroid cancer cells through suppressing the Wnt/β-catenin signaling pathway[J]. Biomedecine Pharmacother, 2017, 96: 98-103.] [DOI] [PubMed] [Google Scholar]
- 26.Wang CM, Xu JP, Fu HB, et al. TRIM32 promotes cell proliferation and invasion by activating β-catenin signalling in gastric cancer. J Cell Mol Med. 2018;22(10):5020–8. doi: 10.1111/jcmm.13784. [Wang CM, Xu JP, Fu HB, et al. TRIM32 promotes cell proliferation and invasion by activating β-catenin signalling in gastric cancer[J]. J Cell Mol Med, 2018, 22(10): 5020-8.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Lan QZ, Tan XP, He PZ, et al. TRIM11 promotes proliferation, migration, invasion and EMT of gastric cancer by activating β- catenin signaling. Onco Targets Ther. 2021;14:1429–40. doi: 10.2147/OTT.S289922. [Lan QZ, Tan XP, He PZ, et al. TRIM11 promotes proliferation, migration, invasion and EMT of gastric cancer by activating β- catenin signaling[J]. Onco Targets Ther, 2021, 14: 1429-40.] [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 28.Chen G, Chen WC, Ye M, et al. TRIM59 knockdown inhibits cell proliferation by down-regulating the Wnt/β-catenin signaling pathway in neuroblastoma. Biosci Rep. 2019;39(1):BSR20181277. doi: 10.1042/BSR20181277. [Chen G, Chen WC, Ye M, et al. TRIM59 knockdown inhibits cell proliferation by down-regulating the Wnt/β-catenin signaling pathway in neuroblastoma[J]. Biosci Rep, 2019, 39(1): BSR20181277.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Xie XJ, Li HJ, Pan JJ, et al. Knockdown of TRIM26 inhibits the proliferation, migration and invasion of bladder cancer cells through the Akt/GSK3β/β-catenin pathway. Chem Biol Interact. 2021;337:109366. doi: 10.1016/j.cbi.2021.109366. [Xie XJ, Li HJ, Pan JJ, et al. Knockdown of TRIM26 inhibits the proliferation, migration and invasion of bladder cancer cells through the Akt/GSK3β/β-catenin pathway[J]. Chem Biol Interact, 2021, 337: 109366.] [DOI] [PubMed] [Google Scholar]
- 30.Fan WH, Du FJ, Liu XJ. TRIM66 confers tumorigenicity of hepatocellular carcinoma cells by regulating GSK-3β -dependent Wnt/β - catenin signaling. Eur J Pharmacol. 2019;850:109–17. doi: 10.1016/j.ejphar.2019.01.054. [Fan WH, Du FJ, Liu XJ. TRIM66 confers tumorigenicity of hepatocellular carcinoma cells by regulating GSK-3β -dependent Wnt/β - catenin signaling[J]. Eur J Pharmacol, 2019, 850: 109-17.] [DOI] [PubMed] [Google Scholar]