Abstract
目的
探讨MicroRNA-132(miR-132)在动脉粥样硬化斑块中的表达及生物学意义。
方法
收集在本医院行外周血管造瘘手术的动脉粥样硬化患者的斑块样本及周围正常血管样本各30例,分为实验组(n=30)与对照组(n=30);利用RT-qPCR验证miR-132在30例组织标本中的表达水平;采用脂质体转染技术上调人脐静脉内皮细胞(HUVEC)中miR-132的表达,继而通过流式细胞及激光共聚焦技术分析过表达miR-132的HUVEC内活性氧(ROS)、ROS与线粒体的定位关系、线粒体活性氧超氧化物(mtROS)、线粒体膜电位状态(MMP)以及线粒体膜转换孔通透性(mPTP)的功能变化;通过ELISA检测HUVEC内线粒体氧化还原呼吸链复合体(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ型)活性的状态;通过Western blot检测铁死亡关键蛋白的表达水平。
结果
与正常血管样本(对照组)相比,miR-132在动脉粥样硬化斑块的表达水平显著上调(P < 0.001);相比于正常HUVEC,脂质体转染的HUVEC内miR-132表达量显著上升(P < 0.001),细胞内ROS明显增加(P < 0.001),且大部分ROS与线粒体存在共定位关系;同时于正常HUVEC,miR-132过表达的HUVEC细胞内MMP下降(P < 0.001)、mtROS升高(P < 0.001)、线粒体活性氧mPTP更多开放(P < 0.001),继而引起线粒体氧化还原呼吸链应激障碍,铁死亡关键蛋白GPX4显著下调(P < 0.001)、氧化蛋白NOX4显著增多(P < 0.001)。
结论
MiR-132可通过诱导线粒体氧化应激障碍-铁死亡进程促进动脉粥样硬化,有望成为动脉粥样硬化的治疗靶点。
Keywords: 动脉粥样硬化, 铁死亡, MicroRNA-132, 氧化应激
Abstract
Objective
To explore the expression of microRNA-132 (miR-132) and its potential role in the development of atherosclerosis (AS).
Methods
Thirty AS samples and 30 samples of normal peripheral vessels were collected from atherosclerotic patients undergoing peripheral angiostomy in our hospital for detecting the expression level of miR-132 using RT-qPCR. The expression of miR-132 in human umbilical vein endothelial cells (HUVEC) was up-regulated by liposome transfection, and intracellular reactive oxygen species (ROS), localization relationship between ROS and mitochondria, functional changes of mitochondrial reactive oxygen superoxide species (mtROS), mitochondrial membrane potential (MMP) and opening of mitochondrial permeability transition pore (mPTP) were analyzed by flow cytometry and laser confocal microscopy. The activity of mitochondrial redox respiratory chain complex (type I, II, III, IV and V) in HUVECs was detected using ELISA, and the expression levels of key iron death proteins were detected with Western blotting.
Results
RT-qPCR results showed that miR-132 was significantly up-regulated in atherosclerotic plaques compared with normal vascular samples (P < 0.001). Compared with control HUVECs, HUVECs overexpressing miR-132 showed a significantly increased level of intracellular ROS (P < 0.001), and most of ROS was colocalized with mitochondria. HUVECs overexpressing miR-132 also showed significantly decreased MMP (P < 0.001) and obviously increased mtROS (P < 0.001) and opening of mPTP (P < 0.001), which led to mitochondrial REDOX respiratory chain stress disorder. The key iron death protein GPX4 was significantly down-regulated and the oxidized protein NOX4 was significantly increased in miR-132-overexpressing HUVECs (P < 0.001).
Conclusion
MiR-132 promotes atherosclerosis by inducing mitochondrial oxidative stress-mediated ferroptosis, which may serve as a promising therapeutic target for AS.
Keywords: atherosclerosis, ferroptosis, microRNA-132, oxidative stress
动脉粥样硬化(AS)具有高发病率、高致残率及高死亡率的特点,严重影响我国国民健康,其主要的特征是动脉的慢性退化及动脉壁的逐渐变化[1-2]。动脉粥样硬化的形成过程非常复杂,虽然目前与动脉粥样硬化发病机制相关的学说包括脂质浸润学说、炎症学说、氧化应激反应学说、感染学说、遗传-环境因素相互作用学说等[3-4],但仍未能完全阐明动脉粥样硬化的发病机理。
近年来,动脉粥样硬化的研究已由宏观转向微观,深入到效应细胞、信号转导、分子等领域[5]。miRNA参与调节代谢等多种重要的生物学过程,在动脉粥样硬化的治疗中有潜在的应用价值[6]。MicroRNA-132(miR- 132)位于人类基因组中第17号染色体的p13.3基因间区,其的表达水平受环腺苷酸反应元件结合子的调控。成熟miR-132是由长度为66 bp的前体序列加工而成,其序列长度为22 bp[7-8]。在动脉粥样硬化发生发展中,miR-132参与内皮细胞中的脂质代谢,并可诱发细胞内活性氧(ROS)的生成等相关的促炎症过程[9],但具体机制尚不清楚。
铁死亡是一种新型的细胞死亡方式,已成为调控炎症相关疾病发生发展的关键机制,其主要特征为:在形态学上表现为线粒体萎缩、膜密度增加、嵴减少或消失等; 在生物学上表现为铁依赖性的活性氧和脂质过氧化物的蓄积、谷胱甘肽的耗竭以及谷胱甘肽过氧化酶(GPX4)的失活等[10]。铁死亡在内皮细胞损伤、动脉粥样硬化演进过程中起着关键的调控作用[11-12],但其具体机制仍不明确。
因此,本研究主要探索miR-132对人脐静脉内皮细胞(HUVEC)生物学功能及铁死亡进程的影响,为进一步阐明miR-132在动脉粥样硬化的演进过程所起作用进奠定基础。
1. 资料和方法
1.1. 组织标本
收集在本单位医院行外周血管造瘘手术的动脉粥样硬化患者的斑块样本及周围正常血管样本各30例,分组为实验组(n=30)与对照组(n=30)。纳入标准:患者为首次接受血管造瘘手术; 术前未接受任何特殊治疗; 术后病理证实为动脉粥样硬化。排除标准:既往患有免疫; 肿瘤以及其他感染性疾病。本研究获得了南方医科大学南方医院研究伦理委员会的批准,研究人员均自愿签署知情同意书。
1.2. 主要试剂和仪器
RNA提取液(TRIzol,Invitgen),PrimeScript RT Master Mix试剂盒(Takara),活性氧试剂盒、线粒体膜电位检测试剂盒、线粒体活性氧试剂盒、线粒体膜通道转化电位试剂盒(上海凯基公司),NADH氧化还原呼吸链复合物检测试剂盒(艾美捷科技公司),线粒体探针、Image-iT® Lipid Peroxidation检测试剂盒、GPX4抗体、NOX4抗体、GAPDH抗体、鼠/兔二抗(Abcam)、流式细胞仪(BD)、激光共聚焦仪器(Olympus)。
1.3. 方法
1.3.1. RT-qPCR检测
首先,从收集到的组织中提取总RNA,然后用PrimeScript RT Master Mix试剂盒将其转录为cDNA。以cDNA为模板对目的基因进行实时定量PCR反应。反应条件设置为:预变性95 ℃ 30 s,变性95 ℃ 5 s、退火65 ℃ 30 s及延伸95 ℃ 5 s,共40个循环。最后,采用2-ΔΔCT法表示目的基因的相对表达水平,以U6作为内参。
1.3.2. 细胞培养和转染
脐静脉内皮细胞(HUVECs)均使用含10%胎牛血清的DMEM培养基、置于恒温孵育箱中培养。每24 h更换1次培养基,细胞密度超过70%时,以0.25%胰酶消化进行传代培养。
取稳定生长的对数生长期的HUVECs细胞消化后接种于6孔板,密度为5×105/孔。转染前将细胞培养液更换为无双抗培养基,用miRNA negative control (Control)及目标miRNA mimics(miR-132)分别与LipofectamineTM 3000混合后进行细胞转染,6 h后更换新鲜培养基,24 h后收集细胞进行RT-qPCR实验评估细胞的转染效率。
1.3.3. 细胞内活性氧检测实验
收集成功转染的HUVECs,去除原来的细胞培养液,加入一定量的已经稀释好的DCFH-DA探针溶液。在37 ℃细胞培养箱中避光孵育20 min后,用无血清细胞培养液洗涤细胞3次。最后,收集处理后的细胞,使用流式细胞仪检测细胞内的荧光轻度; 与此同时,将处理后的细胞与线粒体红色荧光探针进行共同孵育后,用4%的多聚甲醛进行固定、以及DAPI对细胞核进行染色后,在激光共聚焦显微镜下观察细胞内的荧光强度。
1.3.4. 线粒体功能测定实验
收集成功转染的HUVECs细胞,加入JC-1染色工作液; 在细胞培养箱中孵育20 min后,吸除上清,用JC-1染色缓冲液洗涤2次,最后在流式细胞仪检测线粒体膜电位(MMP)状态。同时,将成功转染的HUVECs细胞用线粒体活性氧(mtROS)检测试剂盒及线粒体通透性转换孔(mPTP)检测试剂盒进行处理,分别用流式细胞学及激光共聚焦法对细胞内mtROS及mPTP进行分析。最后,将成功转染的HUVECs,用线粒体复合体检测试剂盒对线粒体氧化还原呼吸链上的5个复合体的功能进行检测。
1.3.5. 脂质过氧化染色法
收集成功转染的HUVECs,通过Image-iT® Lipid Peroxidation检测试剂盒处理细胞,用激光共聚焦法评估细胞内的脂质过氧化状态。
1.3.6. 蛋白印迹法
收集成转转染的HUVECs,加入适量RIPA裂解液提取细胞的总蛋白,用BCA法测定蛋白浓度。30 μg变性总蛋白经电泳、转膜后,封闭1 h,用GPX4(1∶1000)、NOX4(1∶1000)、GAPDH(1∶1000)一抗在4 ℃孵育过夜,洗膜3次,相应二抗(1∶3000)常温孵育1 h,洗膜3次,ECL化学发光法显像并保存图像。
1.3.7. 统计学分析
所有数据均采用IBM SPSS 20.0处理。计数资料比较则采用卡方检验。采用Kaplan-Meier法进行生存分析,并用Log-rank检验比较组间差异,以P < 0.05为差异有统计学意义。
2. 结果
2.1. miR-132在动脉粥样硬化组织中的表达
RT-qPCR检测结果显示:相对于正常组,动脉粥样硬化组织中miR-132的表达水平较正常组织显著上调(P < 0.001,图 1A)。
1.

miR-132的在动脉粥样硬化组织与细胞内的表达量
Expression of miR-132 in atherosclerotic samples and HUVECs (Mean±SD). A: Expression of miR-132 in atherosclerotic and normal vascular samples (n=30, *P < 0.001). B: Expression of miR-132 in HUVECs cells after transfection with miR-132 mimics (n=3, *P < 0.001).
细胞内miR-132的含量检测结果显示:相比于空白对照组,阴性对照组细胞miR-132无明显变化,而实验组(miR-132)细胞内的miR-132表达水平相对于空白对照组跟阴性对照组均显著上调(P < 0.001,图 1B)。
2.2. miR-132可促进HUVECs的ROS的产生
流式细胞学技术分析显示:相比于阴性对照组,上调miR-132的表达能显著增加HUVECs细胞内的ROS水平(P < 0.001,图 2A)。通过倒置荧光显微镜观察mtROS含量与分布,结果显示:与对照组相比,miR-132上调的HUVECs细胞内内绿色荧光(ROS)显著上升,且绿色与红色(线粒体)重叠部位(黄色)显著增多(P < 0.001,图 2B)。
2.

脐静脉内皮细胞中活性氧的含量检测。
Content of reactive oxygen species (ROS) in HUVECs. A: Changes of ROS in the cells detected by flow cytometry (*P < 0.001). B: ROS in the cells observed by confocal laser scanning microscopy (Scale bar: 100 μm; *P < 0.001). Data are presented as Mean± SD, n=3.
2.3. miR-132可损伤HUVECs的线粒体
流式细胞学结果显示:与对照组相比,上调miR-132后能诱导HUVECs细胞的线粒体膜电位显著下降(P < 0.001,图 3A)、细胞内的mitoROS水平明显上调(P < 0.001,图 3B); 激光共聚焦结果显示:与对照组相比,miR-132上调的HUVECs细胞内线粒体通透性转换孔通透性明显增加(P < 0.001,图 3C)。
3.

HUVECs线粒体功能检测
Mitochondrial function in HUVECs. A: Changes of mitochondrial membrane potential (MMP) detected by flow cytometry (*P < 0.001). B: Mitochondrial reactive oxygen species (mtROS) content detected by flow cytometry (*P < 0.001). C: Changes in functional status of mitochondrial permeability transitionpore (mPTP) observed by confocal laser scanning microscopy (Scale bar: 200 μm; *P < 0.001).
2.4. miR-132可损伤线粒体内膜NADH氧化还原呼吸链复合物
细胞线粒体的氧化还原呼吸链(复合体Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ型)活性检测结果显示:与对照组相比,上调miR-132的HUVECs细胞内氧化还原呼吸链中复合体Ⅰ(P < 0.001,图 4A)、复合体Ⅲ(P < 0.001,图 4C)、复合体Ⅳ (P < 0.001,图 4D)、复合体Ⅴ型活性显著下降(P < 0.001,图 4E),而氧化还原呼吸链中复合体Ⅱ活性则无明显变化(P>0.05,图 4B)。
4.

线粒体的氧化还原呼吸链功能检测
Detection of mitochondrial redox respiratory chain in HUVECs (Mean±SD, n=3). A: Complex type I (*P < 0.001). B: Complex type II (P > 0.05). C: Complex type III (*P < 0.001). D: Complex type IV (*P < 0.001). E: Complex type (*P < 0.001).
2.5. miR-132可促进HUVECs细胞的铁死亡进程
细胞内氧化还原状态检测结果显示:与对照组相比,上调miR-132的HUVECs细胞内的还原型蛋白被显著抑制、氧化型蛋白显著提升(P < 0.001,图 5A、B)。同时,与对照组相比,上调miR-132的表达后,细胞氧化还原相关的蛋白GPX4显著下降、NOX4蛋白显著上升(P < 0.001,图 5C、D)。
5.

HUVECs铁死亡检测
Detection of ferroptosis in HUVECs. A, B: Expression of oxidative and reductive proteins in HUVECs detected using confocal laser imaging (Mean±SD, n=3. *P < 0.001). C, D: Expression levels of GPX4 and NOX4 proteins in HUVECs detected by Western blotting (Mean±SD, n=3. *P < 0.001).
3. 讨论
AS作为全球主要的致死性疾病[5]。不健康的生活方式(如高脂肪食物的大量摄入、运动减少、生活压力过大等)均可导致体内脂质代谢紊乱,诱发局部炎症反应、细胞氧化应激,继而导致动脉粥样硬化的形成[1]。
miRNAs是一种非编码RNA。目前,已在人类组织标本发现的miRNA有1000多个,其参与着50%以上哺乳动物蛋白质编码基因的调控,在疾病的发生发展中起着关键的调控作用[13]。最新的研究证据表明,血管内皮细胞功能维持与多种miRNA的表达密切相关,包括miR-143/miR-145[14]、miR-21[15]、miR-31[16]和miR-221/ miR-222[17]等。研究证实miR-132与癌症[18]、神经元可塑性[19]和血管生成[20]等密切相关。然而,目前尚不清楚miR-132是否也参与动脉粥样硬化的演进。在本研究中,我们收集动脉粥样硬化患者的组织标本及血清样本进行RT-qPCR分析,结果显示动脉粥样硬化组织中miR-132的表达较正常组织显著上调。此外,我们还成功通过构建过表达miR-132的HUVECs模型,进一步对其细胞内氧化应激状态、线粒体功能及铁死亡关键蛋白等进行分析,阐明miR-132在动脉粥样硬化的演进中的关键调控作用。
细胞和组织中ROS的生成和清除之间的不平衡被称为氧化应激,而机体内ROS的动态平衡对机体具有重要影响[21]。既往研究发现,ROS有利于胶原沉积和血管平滑肌细胞增殖,最终导致动脉粥样硬化斑块发展[22-23]。本研究深入分析miR-132对内皮细胞的调控作用,结果显示上调内皮细胞中miR-132的表达水平后,能导致细胞内活性氧水平异显著升高,但其如何调控动脉粥样硬化尚不清楚。
铁死亡是一种由于细胞氧化应激损伤所致的、铁依赖的新型死亡方式[10]。铁死亡与很多疾病的发生发展密切相关,如肝炎[24]、急性肾衰及急性心衰[25]等。铁死亡在动脉粥样硬化的发生发展中发挥着重要作用[26-27]。例如PTGS2通过诱导内皮细胞铁死亡促进动脉粥样硬化的发生和发展[28]。抑制小鼠内皮细胞的铁死亡可以抑制动脉粥样硬化的发生发[29]。上调血管平滑肌细胞中GPX4的表达可有效阻断氧化应激、增强对动脉的保护、延缓动脉粥样硬化的发生[30]。在本研究中,我们也进一步证实上调细胞内miR-132的表达可以影响细胞氧化应激状态,从而抑制CPX4的表达、促进HUVECs铁死亡的发生。
综上所述,在动脉粥样硬化的演进过程中,miR-132处于高表达状态,并引起内皮细胞中ROS的异常升高,进而引起线粒体功能障碍,如线粒体膜电位改变,线粒体ROS升高,线粒体膜通道开放等,进一步导致细胞内GPX4蛋白降低以及氧化酶NOX4蛋白上升、诱导铁死亡发生,最终促进动脉粥样硬化的演进。本研究阐明了miR-132在动脉粥样硬化发生发展中的调控作用及机制,miR-132有望成为动脉粥样硬化诊疗的关键标志物。
Biography
刘泽鑫,医师,硕士,E-mail:2402513539@qq.com
Funding Statement
南方医院院长基金(2017C049)
Contributor Information
刘 泽鑫 (Zexin LIU), Email: 2402513539@qq.com.
黄 显莹 (Xianying HUANG), Email: hxy_nfyy@sina.com.
References
- 1.Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers. 2019;16(5):1. doi: 10.1038/s41572-019-0106-z. [Libby P, Buring JE, Badimon L, et al. Atherosclerosis[J]. Nat Rev Dis Primers, 2019, 16(5): 1.] [DOI] [PubMed] [Google Scholar]
- 2.Bäck M, Yurdagul A Jr, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16(7):389–406. doi: 10.1038/s41569-019-0169-2. [Bäck M, Yurdagul A Jr, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities[J]. Nat Rev Cardiol, 2019, 16(7): 389-406.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124(2):315–27. doi: 10.1161/CIRCRESAHA.118.313591. [Wolf D, Ley K. Immunity and inflammation in atherosclerosis[J]. Circ Res, 2019, 124(2): 315-27.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–80. doi: 10.1038/nrneph.2017.51. [Gisterå A, Hansson GK. The immunology of atherosclerosis[J]. Nat Rev Nephrol, 2017, 13(6): 368-80.] [DOI] [PubMed] [Google Scholar]
- 5.Schaftenaar F, Frodermann V, Kuiper J, et al. Atherosclerosis. Curr Opin Lipidol. 2016;27(3):209–15. doi: 10.1097/MOL.0000000000000302. [Schaftenaar F, Frodermann V, Kuiper J, et al. Atherosclerosis[J]. Curr Opin Lipidol, 2016, 27(3): 209-15.] [DOI] [PubMed] [Google Scholar]
- 6.Feinberg MW, Moore KJ. microRNA regulation of atherosclerosis. Circ Res. 2016;118(4):703–20. doi: 10.1161/CIRCRESAHA.115.306300. [Feinberg MW, Moore KJ. microRNA regulation of atherosclerosis[J]. Circ Res, 2016, 118(4): 703-20.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Täubel J, Hauke W, Rump S, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur Heart J. 2021;42(2):178–88. doi: 10.1093/eurheartj/ehaa898. [Täubel J, Hauke W, Rump S, et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study[J]. Eur Heart J, 2021, 42(2): 178-88.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Foinquinos A, Batkai S, Genschel C, et al. Preclinical development of a miR-132 inhibitor for heart failure treatment. Nat Commun. 2020;11(1):633. doi: 10.1038/s41467-020-14349-2. [Foinquinos A, Batkai S, Genschel C, et al. Preclinical development of a miR-132 inhibitor for heart failure treatment[J]. Nat Commun, 2020, 11(1): 633.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Choe N, Kwon JS, Kim JR, et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis. 2013;229(2):348–55. doi: 10.1016/j.atherosclerosis.2013.05.009. [Choe N, Kwon JS, Kim JR, et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia[J]. Atherosclerosis, 2013, 229(2): 348-55.] [DOI] [PubMed] [Google Scholar]
- 10.Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. doi: 10.1038/s41419-020-2298-2. [Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Ouyang SY, You J, Zhi CX, et al. Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis. 2021;12(8):782. doi: 10.1038/s41419-021-04054-3. [Ouyang SY, You J, Zhi CX, et al. Ferroptosis: the potential value target in atherosclerosis[J]. Cell Death Dis, 2021, 12(8): 782.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Meng ZJ, Liang HP, Zhao JL, et al. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci. 2021;284:119935. doi: 10.1016/j.lfs.2021.119935. [Meng ZJ, Liang HP, Zhao JL, et al. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis[J]. Life Sci, 2021, 284: 119935.] [DOI] [PubMed] [Google Scholar]
- 13.Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol. 2010;42(8):1316–29. doi: 10.1016/j.biocel.2009.09.016. [Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules[J]. Int J Biochem Cell Biol, 2010, 42(8): 1316-29.] [DOI] [PubMed] [Google Scholar]
- 14.Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–10. doi: 10.1038/nature08195. [Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity[J]. Nature, 2009, 460 (7256): 705-10.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Lee KS, Lee J, Kim HK, et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. J Extracell Vesicles. 2021;10(12):e12152. doi: 10.1002/jev2.12152. [Lee KS, Lee J, Kim HK, et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p[J]. J Extracell Vesicles, 2021, 10 (12): e12152.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Luque-Badillo AC, Hernandez-Tapia G, Ramirez-Castillo DA, et al. Gold nanoparticles enhance microRNA 31 detection in colon cancer cells after inhibition with chlorogenic acid. Oncol Lett. 2021;22(4):742. doi: 10.3892/ol.2021.13003. [Luque-Badillo AC, Hernandez-Tapia G, Ramirez-Castillo DA, et al. Gold nanoparticles enhance microRNA 31 detection in colon cancer cells after inhibition with chlorogenic acid[J]. Oncol Lett, 2021, 22 (4): 742.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Liu XJ, Cheng YH, Zhang S, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104(4):476–87. doi: 10.1161/CIRCRESAHA.108.185363. [Liu XJ, Cheng YH, Zhang S, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia[J]. Circ Res, 2009, 104(4): 476-87.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Formosa A, Lena AM, Markert EK, et al. DNA methylation silences miR-132 in prostate cancer. Oncogene. 2013;32(1):127–34. doi: 10.1038/onc.2012.14. [Formosa A, Lena AM, Markert EK, et al. DNA methylation silences miR-132 in prostate cancer[J]. Oncogene, 2013, 32(1): 127-34.] [DOI] [PubMed] [Google Scholar]
- 19.Mellios N, Sugihara H, Castro J, et al. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci. 2011;14(10):1240–2. doi: 10.1038/nn.2909. [Mellios N, Sugihara H, Castro J, et al. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity[J]. Nat Neurosci, 2011, 14(10): 1240-2.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Anand S, Majeti BK, Acevedo LM, et al. microRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med. 2010;16(8):909–14. doi: 10.1038/nm.2186. [Anand S, Majeti BK, Acevedo LM, et al. microRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis[J]. Nat Med, 2010, 16(8): 909-14.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Brieger K, Schiavone S, Miller FJ Jr, et al. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142(6):w13659. doi: 10.4414/smw.2012.13659. [Brieger K, Schiavone S, Miller FJ Jr, et al. Reactive oxygen species: from health to disease[J]. Swiss Med Wkly, 2012, 142(6): w13659.] [DOI] [PubMed] [Google Scholar]
- 22.Kattoor AJ, Pothineni NVK, Palagiri D, et al. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19(11):42. doi: 10.1007/s11883-017-0678-6. [Kattoor AJ, Pothineni NVK, Palagiri D, et al. Oxidative stress in atherosclerosis[J]. Curr Atheroscler Rep, 2017, 19(11): 42.] [DOI] [PubMed] [Google Scholar]
- 23.Nowak WN, Deng J, Ruan XZ, et al. Reactive oxygen species generation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37(5):e41–52. doi: 10.1161/ATVBAHA.117.309228. [Nowak WN, Deng J, Ruan XZ, et al. Reactive oxygen species generation and atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2017, 37(5): e41-52.] [DOI] [PubMed] [Google Scholar]
- 24.Capelletti MM, Manceau H, Puy H, et al. Ferroptosis in liver diseases: an overview. Int J Mol Sci. 2020;21(14):4908. doi: 10.3390/ijms21144908. [Capelletti MM, Manceau H, Puy H, et al. Ferroptosis in liver diseases: an overview[J]. Int J Mol Sci, 2020, 21(14): 4908.] [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Schefold JC, Filippatos G, Hasenfuss G, et al. Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol. 2016;12(10):610–23. doi: 10.1038/nrneph.2016.113. [Schefold JC, Filippatos G, Hasenfuss G, et al. Heart failure and kidney dysfunction: epidemiology, mechanisms and management[J]. Nat Rev Nephrol, 2016, 12(10): 610-23.] [DOI] [PubMed] [Google Scholar]
- 26.Mao HM, Zhao YH, Li HX, et al. Ferroptosis as an emerging target in inflammatory diseases. Prog Biophys Mol Biol. 2020;155(9):20–8. doi: 10.1016/j.pbiomolbio.2020.04.001. [Mao HM, Zhao YH, Li HX, et al. Ferroptosis as an emerging target in inflammatory diseases[J]. Prog Biophys Mol Biol, 2020, 155(9): 20-8.] [DOI] [PubMed] [Google Scholar]
- 27.Bai T, Li MX, Liu YF, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160(4):92–102. doi: 10.1016/j.freeradbiomed.2020.07.026. [Bai T, Li MX, Liu YF, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell[J]. Free Radic Biol Med, 2020, 160(4): 92-102.] [DOI] [PubMed] [Google Scholar]
- 28.Zhou YQ, Zhou HX, Hua L, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med. 2021;171(5):55–68. doi: 10.1016/j.freeradbiomed.2021.05.009. [Zhou YQ, Zhou HX, Hua L, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis[J]. Free Radic Biol Med, 2021, 171 (5): 55-68.] [DOI] [PubMed] [Google Scholar]
- 29.Lin XY, Ouyang SY, Zhi CX, et al. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch Biochem Biophys. 2022;715(15):109–20. doi: 10.1016/j.abb.2021.109098. [Lin XY, Ouyang SY, Zhi CX, et al. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis[J]. Arch Biochem Biophys, 2022, 715(15): 109-20.] [DOI] [PubMed] [Google Scholar]
- 30.Mathew OP, Ranganna K, Milton SG. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation. Pharmaceuticals (Basel) 2014;7(11):1008–27. doi: 10.3390/ph7111008. [Mathew OP, Ranganna K, Milton SG. Involvement of the antioxidant effect and anti-inflammatory response in butyrate-inhibited vascular smooth muscle cell proliferation[J]. Pharmaceuticals (Basel), 2014, 7(11): 1008-27.] [DOI] [PMC free article] [PubMed] [Google Scholar]
