Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2022 Jan 20;42(1):101–107. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2022.01.12

树突棘及突触发育障碍诱发自闭症小鼠核心症状的机制

Mechanism of valproic acid-induced dendritic spine and synaptic impairment in the prefrontal cortex for causing core autistic symptoms in mice

Feifei WANG 1, Luyi WANG 1, Yue XIONG 1, Jing DENG 1, Mingqi LÜ 2, Boyi TANG 3, Xiaoyue ZHANG 3, Yingbo LI 1,*
PMCID: PMC8901407  PMID: 35249876

Abstract

Objective

To investigate the mechanism of valproic acid (VPA) -induced impairment of the dendritic spines and synapses in the prefrontal cortex (PFC) for causing core symptoms of autism spectrum disorder (ASD) in mice.

Methods

Female C57 mice were subjected to injections of saline or VPA on gestational days 10 and 12, and the male offspring mice in the two groups were used as the normal control group and ASD model group (n=10), respectively. Another 20 male mice with fetal exposure to VPA were randomized into two groups for stereotactic injection of DMSO or Wortmannin into the PFC (n=10). Open field test, juvenile play test and 3-chamber test were used to evaluate autistic behaviors of the mice. The density of dendrite spines in the PFC was observed with Golgi staining. Western blotting and immunofluorescence staining were used to detect the expressions of p-PI3K, PI3K, p-AKT, AKT, p-mTOR, mTOR and the synaptic proteins PSD95, p-Syn, and Syn in the PFC of the mice.

Results

Compared with the normal control mice, the mice with fetal exposure to VPA exhibited obvious autism-like behaviors with significantly decreased density of total, mushroom and stubby dendritic spines (P < 0.05) and increased filopodia dendritic spines (P < 0.05) in the PFC. The VPA-exposed mice also showed significantly increased expressions of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR (P < 0.01) and lowered expressions of PSD95 and p-Syn/Syn in the PFC (P < 0.05 or 0.001). Wortmannin injection into the PFC obviously improved the ASD-like phenotype and dendritic spine development, down-regulated PI3K/Akt/mTOR signaling pathway and up-regulated the synaptic proteins in VPA-exposed mice.

Conclusion

In male mice with fetal exposure to VPA, excessive activation of PI3K/Akt/mTOR signaling pathway and decreased expressions of the synaptic proteins PSD95 and p-Syn cause dendritic spine damage and synaptic development disturbance in the PFC, which eventually leads to ASD-like phenotype.

Keywords: autism, dendritic spine, synaptic, PI3K/Akt/mTOR, PSD95, Syn


自闭症(ASD)是一种先天性疾病,其病因与大脑中枢神经系统发育障碍密切相关。ASD核心症状有兴趣狭窄、重复刻板行为以及社会交往交流障碍[1-2]。在中国6~12岁的儿童中,ASD患病率约为0.7%[3]

前额叶皮层(PFC)是信息处理、记忆控制、情感认知和情绪调控的中心。PFC异常与ASD核心症状的发生密切相关[4]。产前VPA暴露的啮齿动物常被用于ASD模型的研究[5]

树突棘是兴奋性突触的传递位点,能够接收信息并形成突触联系,被认为是突触可塑性的基础[6]。研究报道,VPA诱导的ASD小鼠PFC树突棘总密度降低[7-8],但不同类型树突棘密度的变化及其具体的调控机制,目前尚不清楚。研究发现,在单一全身性癫痫发作的大鼠模型中,树突棘的变化与PI3K/Akt/mTOR信号通路过度激活相关[9]。在VPA诱导的ASD模型小鼠中,PFC树突棘发育障碍是否与PI3K/Akt/mTOR信号通路的变化相关,目前尚未见文献报道。突触后密度蛋白95(PSD95)和突触素(Syn)与突触可塑性相关[10],Syn缺失的小鼠会出现ASD样表型[11]。基于此,我们通过改良方式建立VPA诱导的ASD小鼠模型[12],探讨PI3K/Akt/mTOR信号通路及PSD95、Syn异常,是否导致小鼠PFC树突棘及突触发育障碍,并诱发小鼠出现ASD样表型。

1. 材料和方法

1.1. 药物与试剂

丙戊酸钠(VPA),DMSO(Sigma);明胶(BioFroxx);OCT组织包埋剂(Sakura Finetek);高尔基染色试剂盒(Hitobiotec);SDS-PAGE凝胶制备试剂盒(康为);脱脂奶粉(博士德);山羊抗兔IgG(碧云天),PVDF膜和ECL化学发光试剂盒(Millipore);Wortmannin,p-PI3K,PI3K,AKT,p-mTOR,mTOR,PSD95和Syn抗体(CST);p-Syn抗体(Abcam);p-Syn抗体(Bioss);β-actin抗体,p-AKT(Affinity)。

1.2. 实验动物

本次实验所用的C57BL/6J小鼠,均购于重庆医科大学实验动物中心,合格证号为SYXG(渝)2018-0003。饲养环境相对湿度约为55%,温度约为23 ℃,环境安静,遵循昼夜节律,小鼠能够自由饮食饮水。本研究涉及到的动物实验,均通过了重庆市科学技术委员会的伦理审查。

1.3. 动物模型建立及分组

成年C57小鼠按雄鼠:雌鼠=1∶2的比例合笼过夜,次日8~9点,查看合笼雌鼠受精情况。若肉眼见阴栓,阴道涂片见精子,则该雌鼠视为受精成功,当天记录为孕0.5 d。将孕鼠随机分为2组,于孕10 d、12 d分别注射0.9%的生理盐水或VPA,其子代雄鼠分别作为CON组(10只),VPA组(10只),VPA+DMSO组(10只)和VPA+ Wortmannin(10只)。其中CON组和VPA组不做处理;VPA+Wortmannin组小鼠脑立体定位注射0.1 mmol/L Wortmannin;VPA+DMSO组小鼠脑立体定位注射等量5% DMSO作溶剂对照。

1.4. 脑立体定位注射

将5周龄VPA小鼠进行脑立体定位注射。小鼠吸入式麻醉,脑立体定位仪固定,去除毛发,碘伏消毒皮肤,做中线切口,3%过氧化氢清洁颅骨,以Bregma为原点,根据小鼠脑立体定位图谱确定PFC坐标(AP=-2.68,ML=±1.0,DV=-1.5),颅骨钻暴露脑组织,微量注射器注射DMSO溶液或Wortmannin溶液,单侧单次剂量为1 μL,药物注射速度为0.1 μL/min。注射完成后,清洁消毒,缝合皮肤,术后保温。

1.5. 行为学测试

1.5.1. 旷场实验

实验装置为亚克力玻璃,长60 cm,宽60 cm,高40 cm。装置底部按比例划分为16个等大的方格,中间4个方格视为中央格,周围12个方格视为周围格:(1)适应阶段:放入受检测小鼠自由运动10 min;(2)测试阶段:重新放入该小鼠,记录该小鼠在10 min内的捋毛时长、跨中央格次数、跨总格次数、攀墙次数、站立次数。

1.5.2. 青年玩耍实验

实验装置为亚克力玻璃,长60 cm,宽60 cm,高40 cm,装置内有1 cm厚垫料:(1)适应阶段:放入受检测小鼠自由运动10 min;(2)测试阶段:重新放入该小鼠和一只陌生互动小鼠(以下行为学实验过程中所用的陌生鼠,均为与受检测小鼠同龄同性别异笼饲养的C57小鼠)。记录受检测小鼠10 min内的挖掘时长,与陌生小鼠的互动时长。

1.5.3. 三箱社交实验

实验装置为亚克力玻璃,长120 cm,宽20 cm,高22 cm,装置左右两腔各放置一个空笼子:(1)适应阶段:放入受检测小鼠自由运动10 min;(2)社交互动测试阶段:将左腔的空笼子里放入一只陌生小鼠1(Stanger 1)。重新放入受检测小鼠,并记录10 min内受检测小鼠停留在各个箱体的时长,与Stanger 1的交流时长,与空笼子(Object)的接触时长;(3)社交偏好测试阶段,将右腔的空笼子放入另一只陌生小鼠2(Stanger 2)。重新放入受试小鼠,并记录10 min内受试小鼠的社交偏好情况。

1.6. 高尔基染色

将小鼠过量麻醉处死,取完整脑组织。将小鼠脑组织浸泡在5倍体积的高尔基溶液1、2的混合液中,室温避光放置。静置12~24 h后,更换等量混合液,室温避光放置。静置14 d后,更换等量溶液3并且避光放入4 ℃冰箱。静置12 h后,再次更换等量溶液3,4 ℃避光放置。静置48~72 h,用滤纸吸干多余溶液,将脑组织置于-80 ℃保存。冰冻切片机切片,厚度为100 μm,晾干后进行高尔基染色处理。

1.7. Western blot检测

将麻醉后小鼠灌注0.9%生理盐水,取脑组织分离PFC。称重,加入蛋白酶抑制剂和RIPA裂解液,研磨PFC组织,静置、离心、收集上清液并进行蛋白浓度的测定。将蛋白样品浓度进行标准化,热变性,冻存于-20 ℃备用。将配平的蛋白质样品进行恒压电泳,恒流电转于PVDF膜,使用5%的脱脂奶粉溶液封闭,加入对应抗体,4 ℃孵育过夜。次日,TBST漂洗3次,10 min/次,加入二抗,37 ℃孵育1 h,TBST漂洗3次,10 min/次,进行化学发光以及曝光。

1.8. 免疫荧光染色

将麻醉后的小鼠依次灌注0.9%生理盐水和4%多聚甲醛,取脑组织,蔗糖梯度脱水。冰冻切片机切片,厚度为15 μm。PBS漂洗3次,5 min/次,0.3% Triton X- 100破膜1 h,PBS漂洗3次,5 min/次,羊血清封闭37 ℃孵育1 h,分别加入一抗PSD95(1:500,CST),p-Syn(1∶300,Bioss),4 ℃孵育过夜。次日,PBS漂洗3次,5 min/次,分别避光加入荧光二抗驴抗兔555(1∶200),羊抗兔488(1∶300),37 ℃孵育30 min,PBS漂洗3次,5 min/次。加入DPAI,室温孵育5 min,抗荧光衰减封片液封片,激光共聚焦显微镜观察。

1.9. 统计学处理

使用GraphPad Prim 8.0软件进行数据处理绘图,多组数据比较采用单因素方差分析(one-way ANOVA),计量数据采用均数±标准误表示,P < 0.05表明差异具有统计学意义。

2. 结果

2.1. ASD样行为学检测

2.1.1. 旷场实验

与CON组相比,VPA组小鼠自我捋毛时间增加(P < 0.001),跨中央格减少(P < 0.05)。与VPA组相比,Wortmannin组小鼠自我捋毛时间减少(P < 0.05),跨中央格增加(P < 0.05)。表明VPA组小鼠具有ASD样重复刻板行为和焦虑行为,Wortmannin能改善ASD小鼠重复刻板行为和焦虑行为。4组小鼠跨总格数、直立和攀墙次数均无统计学差异(P>0.05),各组小鼠运动功能良好,对陌生环境的垂直探索能力无明显差异(图 1)。

1.

1

小鼠旷场实验结果

Open-field test in the 4 groups (n=6-8). A: Open-field test. B: Time of self-grooming. C: Numbers of cross center grid. D: Numbers of cross grid. E: Numbers of climbing. F: Numbers of Vertical. *P < 0.05, ***P < 0.001 vs CON group; #P < 0.05 vs VPA group.

2.1.2. 青年玩耍实验

与CON组相比,VPA组小鼠社交时间减少(P < 0.001)。与VPA组相比,Wortmannin组小鼠社交时间增加(P < 0.05,图 2B)。表明VPA组小鼠社交互动能力下降,Wortmannin能改善ASD小鼠社交缺陷。四组小鼠挖掘时间均无统计学差异(P>0.05,图 2C),表明四组小鼠对陌生环境的探索能力无明显差异。

2.

2

小鼠青年玩耍实验结果

Juvenile play test in the 4 groups (n=6-8). A: Juvenile play test. B: Times of social interaction. C: Times of digging. ***P < 0.001 vs CON group; #P < 0.05 vs VPA group.

2.1.3. 三箱社交实验社交测试

与CON组相比,VPA组小鼠在A箱停留时间减少(P < 0.01),在B箱停留时间增加(P < 0.05),与陌生鼠1交流时间减少(P < 0.01),与物体接触时间增加(P < 0.01),VPA组小鼠社交互动能力下降。与VPA组相比,Wortmannin组小鼠在B箱停留时间减少(P < 0.05),与物体接触时间减少(P < 0.05,图 3C),表明Wortmannin能改善ASD小鼠社交互动缺陷。三箱社交实验社交偏好测试阶段中,与CON组相比,VPA组小鼠与陌生鼠1交流时间增加(P < 0.05)。与VPA组相比,Wortmannin组小鼠与陌生鼠1交流时间减少(P < 0.05,图 3D)。VPA组小鼠喜欢与熟悉事物接触,不喜欢与新鲜事物接触,即社交偏好能力障碍,Wortmannin能改善ASD小鼠社交偏好障碍。

3.

3

小鼠三箱社交实验结果

Three-chamber sociability test in the 4 groups (n=6-8). A: Social interaction test. B: Novelty preference test. C: Time spent in A cage, B cage and interaction time with stranger 1 mice and object. D: Interaction time with stranger 1 mice and stranger 2 mice. *P < 0.05, **P < 0.001 vs CON group; #P < 0.05 vs VPA group.

2.2. 小鼠PFC树突棘发育情况

4组小鼠树突棘分类示意图(图 4A)。与CON组相比,VPA组小鼠PFC树突棘总密度(P < 0.01),成熟型蘑菇状(P < 0.001)和粗短状(P < 0.05)树突棘密度均减少;不成熟型丝状树突棘密度增加(P < 0.01)。与VPA组相比,Wortmannin组小鼠PFC树突棘总密度(P < 0.01),成熟型蘑菇状(P < 0.001)树突棘密度均增加;不成熟型丝状树突棘密度减少(P < 0.01,图 4B~E)。

4.

4

小鼠PFC高尔基染色结果

Results of Golgi-Cox staining in the PFC neurons in the 4 groups (30 dendrites from 3 mice). A: Microscopic images of the dendritic spines (Scale bar: 10 μm). B-E: Spine density of the total and each subtype. *P < 0.05, **P < 0.01, ***P < 0.001 vs CON group. ##P < 0.01, ###P < 0.001 vs VPA group.

2.3. 小鼠PFC中PI3K/AKT/mTOR信号通路相关蛋白表达情况

与CON组相比,VPA组小鼠PFC中p-PI3K(P < 0.001),p-AKT(P < 0.05)和p-mTOR表达均升高(P < 0.001)。与VPA组相比,Wortmannin组小鼠p-PI3K(P < 0.05),p-AKT(P < 0.01)和p-mTOR表达均降低(P < 0.01,图 5B~D)。

5.

5

小鼠PFC中PI3K/AKT/mTOR信号通路相关蛋白表达水平

Expression level of proteins related to PI3K/AKT/mTOR signaling pathway (n=3). A: Western blots of p-PI3K, PI3K, p-AKT, AKT, p-mTOR, and mTOR. B-D: Relative expression levels of p-PI3K, p-AKT, and p-mTOR. *P < 0.05, ***P < 0.001 vs CON group. #P < 0.05, ##P < 0.01 vs VPA group.

2.4. 小鼠PFC中突触相关蛋白表达情况

与CON组相比,VPA组小鼠PFC中PSD95(P < 0.01)和p-Syn表达均降低(P < 0.001)。与VPA组相比,Wortmannin组小鼠PFC中PSD95(P < 0.05)和p-Syn I表达均升高(P < 0.01,图 6BC)。与CON组相比,VPA组小鼠PSD95与p-Syn荧光强度减弱,与VPA组相比,Wortmannin组小鼠PSD95与p-Syn荧光强度增强(图 6DE)。

6.

6

小鼠PFC突触相关蛋白表达水平

Expression levels of synaptic proteins (n=3). A: Western blots of PSD95, p-Syn, and Syn. B, C: Relative expression levels of PSD95 and p-Syn. D: Immunofluorescence staining of PSD95 (Original magnification: ×1000). E: Immunofluorescence staining of p-Syn (×400). **P < 0.01, ***P < 0.001 vs CON group, #P < 0.05, ##P < 0.01 vs VPA group.

3. 讨论

ASD具有高度的异质性,由于致病原因的多样性,其发病机制尚不明确,目前关注较多的一点为:神经元树突棘和突触发育异常[13]。儿童2~3岁时,大脑树突棘数目达到高峰[14]。在大脑发育早期,树突棘生成和修剪异常可能导致突触结构和功能的改变,从而引起ASD的发生[15-16]。已有文献报道,ASD患儿大脑树突棘存在过度的形成和/或不完全修剪[17]。经研究发现,VPA诱导的ASD小鼠PFC总树突棘、成熟型蘑菇状和粗短状树突棘密度降低,未成熟型丝状树突棘密度增加。那么在该模型中,树突棘发育异常的具体机制又是什么呢?PI3K/AKT/mTOR信号通路能够调节突触的强度、活性和成熟度以及轴突再生。铝通过PI3K/AKT/mTOR信号通路会诱导大鼠海马CA1区树突棘密度减少,引起突触可塑性损伤,造成大鼠脑功能损伤[18]。在癫痫模型中,PI3K/AKT/mTOR信号通路的过度激活会导致未成熟型树突棘密度显著增加,诱发认知障碍及记忆障碍[19]。在VPA诱导的ASD模型小鼠中,PFC树突棘密度的异常变化是否与PI3K/Akt/mTOR信号通路相关?基于此,我们发现VPA诱导的ASD模型小鼠PFC中,PI3K/AKT/mTOR信号通路相关蛋白过度激活可能导致总的、成熟型树突棘密度显著降低,未成熟树突棘密度增加。运用PI3K抑制剂Wortmannin后,能够抑制该信号通路,改善树突棘发育,改善小鼠ASD样表型。

PSD95是突触后密度的组成成分,与突触可塑性密切相关[20]。PSD95的异常被认为是ASD等精神疾病神经发育障碍的原因之一[21]。Syn是神经元磷酸化蛋白家族,由三个不同的基因编码,即SYN I、SYN II和SYN III[22]。Syn一方面能够调节囊泡的内吞和胞吐,参与神经递质的释放[23];另一方面能够调节突触可塑性,包括突触的发生、稳定和传递[24]。目前,在ASD的家系中已经发现了Syn基因的突变,并且该基因异常可能导致突触稳态失调[25-26]。有研究报道,Syn的缺失或功能性突变可能引起神经元发育受损,并导致小鼠出现ASD样表型[28]。我们在VPA诱导的ASD模型小鼠中发现,PSD95和p-Syn蛋白表达水平显著降低,运用Wortmannin后,PSD95和p-Syn蛋白表达水平升高。

因此,我们认为,PI3K/AKT/mTOR信号通路的过度激活和突触相关蛋白PSD95、p-Syn表达降低可能导致VPA诱导的ASD小鼠PFC树突棘损伤和突触发育障碍,最终引起ASD样表型的出现。

Biography

王菲菲,在读硕士研究生,E-mail:1500870243@qq.com

Funding Statement

重庆市自然科学基金(stc2021jcyj-msxmX0065)

Contributor Information

王 菲菲 (Feifei WANG), Email: 1500870243@qq.com.

李 英博 (Yingbo LI), Email: 3594883@qq.com.

References

  • 1.Raulston TJ, Hansen SG, Machalicek W, et al. Interventions for repetitive behavior in young children with autism: a survey of behavioral practices. J Autism Dev Disord. 2019;49(8):3047–59. doi: 10.1007/s10803-019-04023-y. [Raulston TJ, Hansen SG, Machalicek W, et al. Interventions for repetitive behavior in young children with autism: a survey of behavioral practices[J]. J Autism Dev Disord, 2019, 49(8): 3047-59.] [DOI] [PubMed] [Google Scholar]
  • 2.St Pourcain B, Robinson EB, Anttila V, et al. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties. Mol Psychiatry. 2018;23(2):263–70. doi: 10.1038/mp.2016.198. [St Pourcain B, Robinson EB, Anttila V, et al. ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties[J]. Mol Psychiatry, 2018, 23(2): 263-70.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Zhou H, Xu X, Yan W, et al. Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years. Neurosci Bull. 2020;36(9):961–71. doi: 10.1007/s12264-020-00530-6. [Zhou H, Xu X, Yan W, et al. Prevalence of autism spectrum disorder in China: a nationwide multi-center population-based study among children aged 6 to 12 years[J]. Neurosci Bull, 2020, 36(9): 961-71.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Jacot-Descombes S, Keshav NU, Dickstein DL, et al. Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats. Mol Autism. 2020;11(1):89. doi: 10.1186/s13229-020-00393-8. [Jacot-Descombes S, Keshav NU, Dickstein DL, et al. Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats[J]. Mol Autism, 2020, 11(1): 89.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Takuma K, Hara Y, Kataoka S, et al. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav. 2014;126:43–9. doi: 10.1016/j.pbb.2014.08.013. [Takuma K, Hara Y, Kataoka S, et al. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism [J]. Pharmacol Biochem Behav, 2014, 126: 43-9.] [DOI] [PubMed] [Google Scholar]
  • 6.Nishiyama J. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders. Psychiatry Clin Neurosci. 2019;73(9):541–50. doi: 10.1111/pcn.12899. [Nishiyama J. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders[J]. Psychiatry Clin Neurosci, 2019, 73(9): 541-50.] [DOI] [PubMed] [Google Scholar]
  • 7.Kawase H, Ago Y, Naito M, et al. mS-11, a mimetic of the mSin3- binding helix in NRSF, ameliorates social interaction deficits in a prenatal valproic acid-induced autism mouse model. Pharmacol Biochem Behav. 2019;176:1–5. doi: 10.1016/j.pbb.2018.11.003. [Kawase H, Ago Y, Naito M, et al. mS-11, a mimetic of the mSin3- binding helix in NRSF, ameliorates social interaction deficits in a prenatal valproic acid-induced autism mouse model[J]. Pharmacol Biochem Behav, 2019, 176: 1-5.] [DOI] [PubMed] [Google Scholar]
  • 8.Hara Y, Ago Y, Taruta A, et al. Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice. Psychopharmacol: Berl. 2017;234(21):3217–28. doi: 10.1007/s00213-017-4703-9. [Hara Y, Ago Y, Taruta A, et al. Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice[J]. Psychopharmacol: Berl, 2017, 234(21): 3217-28.] [DOI] [PubMed] [Google Scholar]
  • 9.Kumar V, Zhang MX, Swank MW, et al. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci. 2005;25(49):11288–99. doi: 10.1523/JNEUROSCI.2284-05.2005. [Kumar V, Zhang MX, Swank MW, et al. Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways[J]. J Neurosci, 2005, 25(49): 11288-99.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Wang J, Yuan J, Pang J, et al. Effects of chronic stress on cognition in male SAMP8 mice. Cell Physiol Biochem. 2016;39(3):1078–86. doi: 10.1159/000447816. [Wang J, Yuan J, Pang J, et al. Effects of chronic stress on cognition in male SAMP8 mice[J]. Cell Physiol Biochem, 2016, 39(3): 1078-86.] [DOI] [PubMed] [Google Scholar]
  • 11.Greco B, Managò F, Tucci V, et al. Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res. 2013;251:65–74. doi: 10.1016/j.bbr.2012.12.015. [Greco B, Managò F, Tucci V, et al. Autism-related behavioral abnormalities in synapsin knockout mice[J]. Behav Brain Res, 2013, 251: 65-74.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.郑 文霞, 胡 宇玲, 陈 笛, et al. 丙戊酸钠诱导小鼠自闭症模型的改良. https://www.j-smu.com/CN/10.12122/j.issn.1673-4254.2019.06.14. 南方医科大学学报. 2019;39(6):718–23. doi: 10.12122/j.issn.1673-4254.2019.06.14. [郑文霞, 胡宇玲, 陈笛, 等. 丙戊酸钠诱导小鼠自闭症模型的改良[J]. 南方医科大学学报, 2019, 39(6): 718-23.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins. Mol Cell Neurosci. 2018;91:122–30. doi: 10.1016/j.mcn.2018.07.001. [Borovac J, Bosch M, Okamoto K. Regulation of actin dynamics during structural plasticity of dendritic spines: Signaling messengers and actin-binding proteins[J]. Mol Cell Neurosci, 2018, 91: 122-30.] [DOI] [PubMed] [Google Scholar]
  • 14.Petanjek Z, Judaš M, Kostović I, et al. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex. 2008;18(4):915–29. doi: 10.1093/cercor/bhm124. [Petanjek Z, Judaš M, Kostović I, et al. Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern[J]. Cereb Cortex, 2008, 18(4): 915-29.] [DOI] [PubMed] [Google Scholar]
  • 15.Marmolejo N, Paez J, Levitt JB, et al. Early postnatal lesion of the medial dorsal nucleus leads to loss of dendrites and spines in adult prefrontal cortex. Dev Neurosci. 2012;34(6):463–76. doi: 10.1159/000343911. [Marmolejo N, Paez J, Levitt JB, et al. Early postnatal lesion of the medial dorsal nucleus leads to loss of dendrites and spines in adult prefrontal cortex[J]. Dev Neurosci, 2012, 34(6): 463-76.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Trutzer IM, García-Cabezas MÁ, Zikopoulos B. Postnatal development and maturation of layer 1 in the lateral prefrontal cortex and its disruption in autism. Acta Neuropathol Commun. 2019;7(1):40. doi: 10.1186/s40478-019-0684-8. [Trutzer IM, García-Cabezas MÁ, Zikopoulos B. Postnatal development and maturation of layer 1 in the lateral prefrontal cortex and its disruption in autism[J]. Acta Neuropathol Commun, 2019, 7(1): 40.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94. doi: 10.1016/j.brainres.2009.09.120. [Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders[J]. Brain Res, 2010, 1309: 83-94.] [DOI] [PubMed] [Google Scholar]
  • 18.Li H, Xue X, Li L, et al. Aluminum-induced synaptic plasticity impairment via PI3K-Akt-mTOR signaling pathway. Neurotox Res. 2020;37(4):996–1008. doi: 10.1007/s12640-020-00165-5. [Li H, Xue X, Li L, et al. Aluminum-induced synaptic plasticity impairment via PI3K-Akt-mTOR signaling pathway[J]. Neurotox Res, 2020, 37(4): 996-1008.] [DOI] [PubMed] [Google Scholar]
  • 19.Lee CC, Huang CC, Hsu KS. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology. 2011;61(4):867–79. doi: 10.1016/j.neuropharm.2011.06.003. [Lee CC, Huang CC, Hsu KS. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways[J]. Neuropharmacology, 2011, 61(4): 867-79.] [DOI] [PubMed] [Google Scholar]
  • 20.Berry KP, Nedivi E. Spine dynamics: are they all the same? Neuron. 2017;96(1):43–55. doi: 10.1016/j.neuron.2017.08.008. [Berry KP, Nedivi E. Spine dynamics: are they all the same[J]? Neuron, 2017, 96(1): 43-55.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Coley AA, Gao WJ. PSD95: a synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry. 2018;82:187–94. doi: 10.1016/j.pnpbp.2017.11.016. [Coley AA, Gao WJ. PSD95: a synaptic protein implicated in schizophrenia or autism[J]? Prog Neuropsychopharmacol Biol Psychiatry, 2018, 82: 187-94.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Pogorelov VM, Kao HT, Augustine GJ, et al. Postsynaptic mechanisms render syn Ⅰ/Ⅱ/Ⅲ mice highly responsive to psychostimulants. Int J Neuropsychopharmacol. 2019;22(7):453–65. doi: 10.1093/ijnp/pyz019. [Pogorelov VM, Kao HT, Augustine GJ, et al. Postsynaptic mechanisms render syn Ⅰ/Ⅱ/Ⅲ mice highly responsive to psychostimulants[J]. Int J Neuropsychopharmacol, 2019, 22(7): 453-65.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Mirza FJ, Zahid S. The role of synapsins in neurological disorders. Neurosci Bull. 2018;34(2):349–58. doi: 10.1007/s12264-017-0201-7. [Mirza FJ, Zahid S. The role of synapsins in neurological disorders [J]. Neurosci Bull, 2018, 34(2): 349-58.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Kotajima-Murakami H, Kobayashi T, Kashii H, et al. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol Brain. 2019;12(1):3. doi: 10.1186/s13041-018-0423-2. [Kotajima-Murakami H, Kobayashi T, Kashii H, et al. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero[J]. Mol Brain, 2019, 12(1): 3.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Fassio A, Patry L, Congia S, et al. SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet. 2011;20(12):2297–307. doi: 10.1093/hmg/ddr122. [Fassio A, Patry L, Congia S, et al. SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function[J]. Hum Mol Genet, 2011, 20(12): 2297-307.] [DOI] [PubMed] [Google Scholar]
  • 26.Brenes O, Giachello CN, Corradi AM, et al. Synapsin knockdown is associated with decreased neurite outgrowth, functional synaptogenesis impairment, and fast high-frequency neurotransmitter release. J Neurosci Res. 2015;93(10):1492–506. doi: 10.1002/jnr.23624. [Brenes O, Giachello CN, Corradi AM, et al. Synapsin knockdown is associated with decreased neurite outgrowth, functional synaptogenesis impairment, and fast high-frequency neurotransmitter release [J]. J Neurosci Res, 2015, 93(10): 1492-506.] [DOI] [PubMed] [Google Scholar]
  • 27.Cesca F, Baldelli P, Valtorta F, et al. The synapsins: key actors of synapse function and plasticity. Prog Neurobiol. 2010;91(4):313–48. doi: 10.1016/j.pneurobio.2010.04.006. [Cesca F, Baldelli P, Valtorta F, et al. The synapsins: key actors of synapse function and plasticity[J]. Prog Neurobiol, 2010, 91(4): 313-48.] [DOI] [PubMed] [Google Scholar]
  • 28.Greco B, Managò F, Tucci V, et al. Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res. 2013;251:65–74. doi: 10.1016/j.bbr.2012.12.015. [Greco B, Managò F, Tucci V, et al. Autism-related behavioral abnormalities in synapsin knockout mice[J]. Behav Brain Res, 2013, 251: 65-74.] [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES