Skip to main content
Current Research in Parasitology & Vector-borne Diseases logoLink to Current Research in Parasitology & Vector-borne Diseases
. 2021 Jun 2;1:100035. doi: 10.1016/j.crpvbd.2021.100035

Leishmania infection in cats and feline leishmaniosis: An updated review with a proposal of a diagnosis algorithm and prevention guidelines

André Pereira 1, Carla Maia 1,
PMCID: PMC8906079  PMID: 35284863

Abstract

Leishmaniosis is a vector-borne disease caused by protozoans of the genus Leishmania, which are transmitted to vertebrates, including cats, through the bites of female phlebotomine sand flies. An increasing number of epidemiological and experimental studies concerning Leishmania infection in cats, as well as case reports of clinical leishmaniosis in these felids, have been published in recent years. In the present study, a comprehensive review was made by sourcing the National Library of Medicine resources to provide updated data on epidemiology, immunopathogenesis, diagnosis, treatment, and prevention of feline leishmaniosis. Cats were found infected with Leishmania parasites worldwide, and feline leishmaniosis appears as an emergent disease mostly reported in countries surrounding the Mediterranean Sea and in Brazil. Cats with impaired immunocompetence seem to have a higher risk to develop clinical disease. The main clinical and clinicopathological findings are dermatological lesions and hypergammaglobulinemia, respectively. Diagnosis of feline leishmaniosis remains a challenge for veterinarians, in part due to the lack of diagnosis support systems. For this reason, a diagnostic algorithm for clinical decision support is herein proposed. No evidence-based treatment protocols are currently available, and these remain empirically based. Control measures are limited and scarce. Thus, a set of prevention guidelines are herein suggested.

Keywords: Cats, Diagnosis algorithm, Feline leishmaniosis, Leishmania, Prevention guidelines, Treatment

Graphical abstract

Image 1

Highlights

  • A comprehensive review on epidemiology, immunopathogenesis, diagnosis, treatment, and prevention of feline leishmaniosis.

  • An algorithm for assisting medical diagnosis of leishmaniosis in cats is suggested.

  • Guidelines for the prevention of Leishmania infection in cats are provided.

  • Dermatological lesions are the most common clinical manifestations.

  • Most cats with clinical leishmaniosis present hypergammaglobulinemia.

1. Introduction

Leishmaniosis is a disease that affects humans and both domestic and wild animals worldwide and is caused by protozoans of the genus Leishmania. The infection typically occurs through the bites of female phlebotomine sand flies of the genera Phlebotomus in the Old World and Lutzomyia in the New World (WHO, 2010).

In contrast to dogs, cats have been considered for several years as accidental hosts resistant to leishmaniosis. Nevertheless, this felid now appears as a relevant piece within the ecological system in which Leishmania parasites are maintained indefinitely (Asfaram et al., 2019). Feline Leishmania infection has frequently been reported in endemic areas of South America, Southern Europe and Western Asia, and the number of reported cases of feline leishmaniosis has been increasing in recent years (Pereira et al., 2019b; Baneth et al., 2020; da Costa-Val et al., 2020; Fernandez-Gallego et al., 2020).

The present review aimed to provide updated information concerning the epidemiology of Leishmania infection in cats and clinical management of feline leishmaniosis (FeL) with emphasis on immunopathogenesis, diagnosis, treatment, prognosis, and prevention, as well as the development of an algorithm to assist diagnosis and delineate strategic guidelines to prevent feline infection.

2. Search strategy, eligibility, and review

A comprehensive literature search was performed on 10 March 2021 by sourcing National Library of Medicine (NLM) resources through PubMed (https://pubmed.ncbi.nlm.nih.gov/) using the following Boolean string: (“leishmania” [MeSH Terms] OR “leishmania”[All Fields] OR “leishmanias” [All Fields] OR “leishmaniae” [All Fields] OR (“leishmaniasis” [MeSH Terms] OR “leishmaniasis” [All Fields] OR “leishmaniosis” [All Fields] OR “leishmaniases” [All Fields])) AND (“cat” [All Fields] OR (“felis” [MeSH Terms] OR “felis” [All Fields]) OR (“felidae” [MeSH Terms] OR “felidae” [All Fields] OR “felid” [All Fields] OR “felids” [All Fields]) OR (“cats” [MeSH Terms] OR “cats” [All Fields] OR “felines” [All Fields] OR “felidae” [MeSH Terms] OR “felidae” [All Fields] OR “feline” [All Fields])). Search results were saved as a comma-separated value (CSV) file, subsequently imported into Microsoft® Excel®. Study eligibility was manually assessed by two independent investigators in a blinded manner. Only available original research articles concerning Leishmania infection in cats were retained, including those published in languages other than English (Fig. 1). Except for the epidemiological section (which included data from all Leishmania spp. in felids belonging to the genus Felis), the present review refers exclusively to infection of domestic cats (Felis catus) by L. donovani (sensu lato). Although this complex is formally comprised of L. donovani (sensu stricto), L. chagasi and L. infantum, for the remainder of this review, L. infantum will be used to refer strictly to feline infection by L. donovani (s.l.).

Fig. 1.

Fig. 1

Flow diagram of study searching and selection process

3. Aetiology, distribution, and risk factors

To date, six species belonging to the subgenus Leishmania and one to the subgenus Viannia have been identified in domestic cats (F. catus) through DNA or isoenzyme-based typing methods (Fig. 2):

Fig. 2.

Fig. 2

Worldwide distribution of Leishmania infection in cats (Felis spp.)

Besides, DNA of L. infantum and putative L. major/L. donovani (s.l.) hybrid parasites were detected in wild cats (Felis silvestris) in Spain (Del Río et al., 2014) and in a domestic cat in mainland Portugal (Pereira et al., 2020), respectively.

The proportion of cats infected with or exposed to Leishmania has been assessed in several epidemiological studies through parasitological, serological, or molecular methods (Table 1 and Table 2). However, reported values vary greatly (from 0 to > 70%) and appear to be influenced by local endemicity, sampling bias and heterogeneity/performance of diagnostic methodologies (manly cut-off, target gene and sample used for testing).

Table 1.

Epidemiological studies on the frequency of Leishmania infection in cats (Felis spp.) in the Old World

Country Study Sampling year Species (origin) No. tested Method (test, cut-off/target gene) Sample % Positive (species)a
Albania Silaghi et al. (2014) 2008–2010 F. catus (stray) 146 Serological (IFAT, 1:64) Serum 0.7 (L. infantum)
Molecular (qPCR, kDNA) Whole blood 0
Angola Lopes et al. (2017) 2014–2016 F. catus (domestic) 102 Serological (DAT, 1:100) Serum 0
Bosnia and Herzegovina Colella et al. (2019) 2017 F. catus (domestic) 5 Serological (IFAT) Serum 0
Molecular (qPCR, kDNA) Whole blood 20.0 (Leishmania spp.)
1b Molecular (PCR, kDNA) Whole blood 100 (L. infantum)
Molecular (qPCR, ITS2) Whole blood 100 (L. infantum)
Cyprus Attipa et al., 2017a, Attipa et al., 2017b 2014 F. catus (domestic/shelter) 164 Serological (ELISA, 32 EU) Serum 4.4 (L. infantum)
174 Molecular (qPCR, kDNA) Whole blood 2.3 (L. infantum)
Egypt Michael et al. (1982) na F. catus (stray) 80 Serological (IHA) Serum 3.8 (Leishmania spp.)
Morsy et al. (1988) na F. catus (stray) 28 Serological (IHA) Serum 3.6 (Leishmania spp.)
Morsy & Abou el Seoud (1994) na F. catus (domestic/stray) 60 Serological (IHA, 1:32) Serum 10.0 (Leishmania spp.)
Germany Schäfer et al. (2021) 2012–2020 F. catus (domestic) 624 Serological (IFAT, 1:64) Serum 4.0 (Leishmania spp.)
Greece Chatzis et al. (2014a, b) 2009–2011 F. catus (domestic) 100 Parasitological (cytology) Bone marrow 0
Lymph node 0
Skin 0
Serological (ELISA, 0.145) Serum 1.0 (Leishmania spp.)
Serological (IFAT, 1:10) Serum 10.0 (Leishmania spp.)
Molecular (PCR, kDNA) Bone marrow 16.0 (L. infantum)
Whole blood 13.0 (L. infantum)
99 Molecular (PCR, kDNA) Skin 13.1 (L. infantum)
96 Conjunctival swab 3.1 (L. infantum)
Diakou et al. (2017) 2015 F. catus (stray) 148 Serological (IFAT, 1:80) Serum 6.1 (L. infantum)
Molecular (nPCR, SSU) Whole blood 6.1 (L. infantum)
Diakou et al. (2009) na F. catus (stray) 284 Serological (ELISA) Serum 3.9 (Leishmania spp.)
Morelli et al. (2020) na F. catus 153 Serological (IFAT, 1:80) Serum 2.0 (L. infantum)
Iran Mohebali et al. (2017) 2013–2015 F. catus (stray) 103 Serological (DAT, 1:320) Serum 3.9 (L. infantum)
4b Parasitological (cytology) Liver 25.0 (L. infantum)
Spleen 25.0 (L. infantum)
4b Parasitological (culture) Liver 0
Spleen 0
1b Molecular (nPCR, ITS2) Liver 100 (L. infantum)
Spleen 100 (L. infantum)
Akhtardanesh et al. (2020) 2016 F. catus (stray) 180 Molecular (nPCR, kDNA) Whole blood 13.9 (L. infantum)
Asgari et al. (2020) 2016–2018 F. catus (stray) 174 Serological (DAT, 1:100) Serum 17.2 (L. infantum)
Serological (ELISA) Serum 27.6 (L. infantum)
Molecular (nPCR, kDNA) Buffy coat 20.7 (L. infantum)
Sarkari et al. (2009) na F. catus (stray) 40 Serological (DAT, 1:20) Serum 20.0 (L. infantum)
Serological (IFAT, 1:10) Serum 25.0 (L. infantum)
Hatam et al. (2010) na F. catus (stray) 40 Parasitological (cytology) Liver 2.5 (Leishmania spp.)
Spleen 2.5 (Leishmania spp.)
Parasitological (culture) Liver 7.5 (Leishmania spp.)
Spleen 2.5 (Leishmania spp.)
Molecular (PCR, kDNA Liver 7.5 (L. infantum)
Spleen 5.0 (L. infantum)
Fatollahzadeh et al. (2016) na F. catus (stray) 65 Parasitological (cytology) Liver 0
Spleen 0
Parasitological (culture) Liver 0
Spleen 0
Serological (DAT, 1:320) Serum 23.1 (L. infantum)
Molecular (PCR, kDNA) Spleen 0
Akhtardanesh et al. (2017) na F. catus (stray) 60 Serological (ELISA) Serum 6.7 (L. infantum)
Molecular (nPCR, 7SL RNA) Whole blood 16.7 (L. infantum)
1.7 (L. tropica)
Iraq Otranto et al. (2019) 2008 F. catus (stray) 207 Molecular (qPCR, kDNA) Whole blood 0
Israel Nasereddin et al. (2008) 1999–2000 F. catus (domestic/stray) 104 Serological (ELISA) Serum 6.7 (L. infantum)
Baneth et al. (2020) 2018 F. catus (shelter) 67 Serological (ELISA, 0.4) Serum 75.0 (L. infantum)
Molecular (qPCR, kDNA) Whole blood 16.0 (L. infantum)
Molecular (HRMPCR, ITS1) Whole blood 0
Italy Vita et al. (2005) 2002–2004 F. catus (domestic/stray) 203 Serological (IFAT, 1:40) Serum 16.3 (L. infantum)
11b Molecular (PCR) Lymph node 100 (L. infantum)
Whole blood 45.5 (L. infantum)
Spada et al. (2013) 2008–2010 F. catus (stray) 233 Serological (IFAT, 1:40) Serum 25.3 (L. infantum)
Molecular (qPCR, kDNA) Whole blood 0
Morganti et al. (2019) 2010–2016 F. catus (shelter/stray) 286 Serological (IFAT, 1:40) Serum 9.1 (L. infantum)
Molecular (nPCR, SSU) Buffy coat 0
Conjunctival swab 15.7 (L. infantum)
Dedola et al. (2018) 2011–2013 F. catus (domestic) 90 Serological (IFAT, 1:40) Serum 10.0 (L. infantum)
Molecular (nPCR, ITS) Whole blood 5.5 (L. infantum)
Veronesi et al. (2016) 2011–2014 F. silvestris (wild) 21 Molecular (qPCR, COII) Spleen 0
Persichetti et al. (2016) 2012–2013 F. catus (domestic) 42 Serological (IFAT, 1:80) Serum 2.4 (L. infantum)
Molecular (qPCR, kDNA) Whole blood 42.8 (L. infantum)
Persichetti et al. (2018) 2012–2013 F. catus (domestic) 197 Parasitological (cytology) Whole blood 0
Serological (IFAT, 1:80) Serum 9.6 (L. infantum)
Molecular (qPCR, kDNA) Conjunctival swab 1.5 (L. infantum)
181 Molecular (qPCR, kDNA) Lymph node 1.7 (L. infantum)
143 Molecular (qPCR, kDNA) Urine 2.1 (L. infantum)
197 Molecular (qPCR, kDNA) Oral swab 1.5 (L. infantum)
Whole blood 2.0 (L. infantum)
Spada et al. (2016) 2014 F. catus (stray) 90 Serological (IFAT, 1:40) Serum 30.0 (L. infantum)
Molecular (qPCR, kDNA) Conjunctival swab 0
Lymph node 1.1 (L. infantum)
Whole blood 1.1 (L. infantum)
Brianti et al. (2017) 2015 F. catus (domestic) 159 Serological (IFAT, 1:80) Serum 9.4 (L. infantum)
Molecular (qPCR, kDNA) Conjunctival swab 3.8 (L. infantum)
Whole blood 7.5 (L. infantum)
Otranto et al. (2017) 2015–2016 F. catus (domestic) 330 Serological (IFAT, 1:40) Serum 25.7 (L. infantum)
Molecular (qPCR, kDNA) Conjunctival swab 1.8 (L. infantum)
Whole blood 2.1 (L. infantum)
Abbate et al. (2019) 2015–2017 F. silvestris (wild) 11 Molecular (qPCR, kDNA) Lymph node/skin/spleen 0
Priolo et al. (2019) 2016–2017 F. catus (domestic/stray) 66 Serological (ELISA) Serum 17.0 (L. infantum)
Serological (IFAT, 1:80) Serum 14.0 (L. infantum)
Molecular (qPCR, kDNA) Whole blood 4.0 (L. infantum)
Spada et al. (2020) 2016–2018 F. catus (stray) 102 Serology (IFAT, 1:80) Serum 4.9 (L. infantum)
117 Molecular (qPCR, kDNA) Conjunctival swab 0
115 Molecular (qPCR, kDNA) Lymph node 4.3 (L. infantum)
109 Molecular (qPCR, kDNA) Whole blood 0
Urbani et al. (2020) 2017 F. catus (domestic) 152 Serological (IFAT, 1:80) Serum 11.8 (L. infantum)
150 Molecular (qPCR, kDNA) Conjunctival swab 0
Hair 0.7 (L. infantum)
146 Molecular (qPCR, kDNA) Whole blood 0
Iatta et al. (2019) 2017–2018 F. catus (domestic) 2,659 Serological (IFAT, 1:80) Serum 3.3 (L. infantum)
Molecular (qPCR, kDNA) Whole blood 0.8 (L. infantum)
Ebani et al. (2020) 2018–2019 F. catus (stray) 85 Serological (IFAT) Serum 2.4 (Leishmania spp.)
Molecular (PCR, SSU) Bloodc 5.9 (Leishmania spp.)
Persichetti et al. (2017) 2013 na 76 Serological (ELISA, 40 EU) Serum 2.6 (L. infantum)
Serological (IFAT, 1:80) Serum 17.1 (L. infantum)
Serological (WB) Serum 18.4 (L. infantum)
21b Serological (ELISA, 40 EU) Serum 100 (L. infantum)
Serological (IFAT, 1:80) Serum 95.2 (L. infantum)
Serological (WB) Serum 100 (L. infantum)
Poli et al. (2002) na F. catus (domestic) 110 Serological (IFAT, 1:80) Serum 0.9 (Leishmania spp.)
Morelli et al. (2019) na F. catus (domestic) 167 Serological (IFAT, 1:80) Serum 3.0 (L. infantum)
Morelli et al. (2020) na F. catus 116 Serological (IFAT, 1:80) Serum 4.3 (L. infantum)
Portugal Duarte et al. (2010) 2003–2005 F. catus (stray) 180 Serology (IFAT, 1:40) Serum 0.6 (L. infantum)
Maia et al. (2008) 2004 F. catus (stray) 20 Serological (IFAT, 1:64) Serum 0
23 Molecular (PCR, ITS1) Blood on filter paper 30.4 (Leishmania spp.)
Molecular (PCR, kDNA) Blood on filter paper 30.4 (Leishmania spp.)
4b Molecular (PCR–RFLP, ITS1) Blood on filter paper 100 (L. infantum)
Cardoso et al. (2010) 2004–2008 F. catus (domestic) 316 Serological (DAT, 1:100) Serum 1.9 (L. infantum)
Serological (ELISA) Serum 2.8 (L. infantum)
Maia et al. (2010) 2007–2008 F. catus (domestic/stray) 76 Serological (IFAT, 1:64) Serum 1.3 (Leishmania spp.)
138 Molecular (PCR, kDNA) Whole blood 20.3 (L. infantum)
Maia et al., 2015a, Maia et al., 2015b 2011–2014 F. catus (domestic/stray) 271 Serological (DAT, 1:100) Serum 3.7 (L. infantum)
Maia et al. (2014) 2012–2013 F. catus (domestic/stray) 649 Molecular (nPCR, SSU) Whole blood 9.9 (Leishmania spp.)
Pereira et al. (2019a, b, 2020) 2017–2018 F. catus (domestic/shelter/stray) 373 Serological (IFAT, 1:64) Serum 1.6 (Leishmania spp.)
465 Molecular (nPCR, SSU) Buffy coat 5.4 (Leishmania spp.)
25b Molecular (nPCR, cytB) Buffy coat 12.0 (L. donovani s.l.)
4.0 (L. major)
4.0 (L. major/L. donovani s.l.)f
Molecular (PCR, g6pdh) Buffy coat 4.0 (L. donovani s.l.)
Molecular (nPCR, hsp70) Buffy coat 12.0 (L. donovani s.l.)
4.0 (L. major/L. donovani s.l.)f
Molecular (nPCR, ITS) Buffy coat 12.0 (L. donovani s.l.)
4.0 (L. major)
Neves et al. (2020) 2018–2019 F. catus (domestic) 141 Serological (DAT, 1:100) Serum 0
Vilhena et al. (2013) na F. catus (domestic) 320 Molecular (qPCR, kDNA) Whole blood 0.3 (L. infantum)
Portugal/Spain Mesa-Sanchez et al. (2020) 2015–2020 F. catus (domestic)g 173 Molecular (nPCR, SSU) Whole blood 0
Qatar Lima et al. (2019) 2016–2018 F. catus (domestic/stray) 79 Molecular (qPCR, kDNA) Whole blood/on dried spot 1.3 (Leishmania spp.)
Saudi Arabia Morsy et al. (1999) na F. margarita (wild) 10 Parasitological (cytology) Liver 20.0 (Leishmania spp.)
Spleen 40.0 (Leishmania spp.)
Serological (IHA, 1:64) Serum 40.0 (Leishmania spp.)
Spain Del Río et al. (2014) 2001–2006 Felis silvestris (wild) 4 Molecular (qPCR, kDNA) Liver and/or spleen 25.0 (L. infantum)
1b Molecular (PCR, ITS2) Liver and/or spleen 100 (L. infantum)
Martín-Sánchez et al. (2007) 2003–2004 F. catus (domestic) 183 Serological (IFAT, 1:40) Serum 28.3 (Leishmania spp.)
Molecular (PCR-ELISA, kDNA) Whole blood 25.7 (L. infantum)
7b Parasitological (culture) Leucoconcentrate 0
Parasitological (cytology) Leucoconcentrate 42.9 (Leishmania spp.)
Ayllón et al. (2008) 2005–2006 F. catus (domestic) 233 Serological (IFAT, 1:100) Serum 1.3 (L. infantum)
Molecular (PCR, kDNA) Whole blood 0.4 (L. infantum)
Ayllón et al. (2012) 2005–2008 F. catus (domestic/stray) 680 Serological (IFAT, 1:50) Serum 3.7 (L. infantum)
Molecular (PCR, kDNA) Whole blood 0.6 (L. infantum)
Tabar et al. (2008) 2006 F. catus (domestic) 100 Molecular (qPCR, kDNA) Whole blood 3.0 (L. infantum)
Sherry et al. (2011) 2008 F. catus (shelter) 105 Serological (ELISA) Serum 13.2 (L. infantum)
104 Molecular (qPCR, kDNA) Whole blood 8.7 (L. infantum)
Millán et al. (2011) 2008–2009 F. catus (stray) 83 Serological (WB) Serum 15.7 (L. infantum)
73 Molecular (PCR, kDNA) Blood and/or spleen 25.6 (L. infantum)
14b Molecular (PCR–RFLP, kDNA) Blood and/or spleen 100 (L. infantum)
Miró et al. (2014) 2012–2013 F. catus (stray) 346 Serological (IFAT, 1:100) Serum 3.2 (L. infantum)
57d Molecular (nested PCR, ITS1) Whole blood 0
Molecular (nested PCR, SSU) Whole blood 0
Risueño et al. (2018) 2013–2015 F. silvestris (wild) 2 Molecular (qPCR, kDNA) Skin 50.0 (L. infantum)
Other organse 0
Marenzoni et al. (2018) 2014–2015 F. catus (domestic) 31g Molecular (PCR, kDNA) Whole blood 0
Montoya et al. (2018a) 2014–2017 F. catus (stray) 249 Serological (IFAT, 1:100) Serum 4.8 (L. infantum)
Molecular (PCR, ITS) Skin/whole blood 0
Priolo et al. (2019) 2016–2017 F. catus (domestic/stray) 113 Serological (ELISA) Serum 7.0 (L. infantum)
Serological (IFAT, 1:80) Serum 19.0 (L. infantum)
Molecular (qPCR, kDNA) Whole blood 5.0 (L. infantum)
Villanueva-Saz et al. (2021) 2020 F. catus (stray) 114 Serological (ELISA, 13 EU) Serum 16.7 (L. infantum)
Solano-Gallego et al. (2007) na F. catus (domestic/stray) 445 Serological (ELISA-IgG, 53 EU) Serum 5.3 (L. infantum)
na Serological (ELISA-Prot A, 44 EU) Serum 6.3 (L. infantum)
Alcover et al. (2020) na F. catus (wild) 1 Molecular (qPCR, kDNA) Liver 100 (Leishmania spp.)
na Skin 100 (Leishmania spp.)
na Spleen 100 (Leishmania spp.)
Miró et al. (2011) na F. catus (breeding) 20 Serological (IFAT, 1:100) Serum 15.0 (L. infantum)
Moreno et al. (2014) na F. catus (stray) 43 Serological (IFAT, 1:50) Serum 4.3 (L. infantum)
Montoya et al. (2018b) na F. catus (stray) Serological (IFAT, 1:100) Serum 0
Thailand Sukmee et al. (2008) 2006 F. catus 15 Serological (DAT; 1:100) Serum 60.0 (Leishmania spp.)
9b Molecular (PCR, ITS1) Whole blood 0
Molecular (PCR, kDNA) Whole blood 0
Junsiri et al. (2017) 2013 F. catus (domestic) 250 Serological (ELISA, 0.2) Serum 5.6 (L. infantum)
Molecular (PCR, kDNA) Whole blood 0
Kongkaew et al. (2007) na F. catus 5 Serological (DAT, 1:100) Serum 20.0 (Leishmania spp.)
1b Molecular (PCR) Whole blood 0
Turkey Dincer et al. (2015) 2013 F. catus (domestic/shelter) 22 Molecular (nPCR, kDNA) Whole blood 4.5 (L. infantum)
Karakuş et al. (2019) 2014 F. catus (stray) 5 Molecular (nPCR, SSU) Conjunctival swab 0
2015 8 Molecular (qPCR, ITS1) Conjunctival swab 12.5 (L. infantum)
2016 6 Molecular (qPCR, ITS1) Conjunctival swab 0
Dincer et al. (2016) 2015 F. catus (domestic/shelter) 50 Molecular (nPCR, kDNA) na 0
Dinçer et al. (2012) na F. catus (domestic) 1 Serological (IFAT) Serum 0
Molecular (PCR) na 0
Paşa et al. (2015) na F. catus (domestic) 147 Molecular (qPCR, ITS1) Whole blood 2.7 (L. major)
8.8 (L. tropica)
Molecular (qPCR, hsp70) Whole blood 2.0 (L. major)
2.7 (L. tropica)
2.7 (Leishmania spp.)
Can et al. (2016) na F. catus (shelter) 1,101 Serological (ELISA) Serum 10.8
Serological (IFAT, 1:40) Serum 15.2
Molecular (qPCR, ITS1) Whole blood 0.1 (L. tropica)
Molecular (nPCR, kDNA) Whole blood 0.1 (L. infantum)
0.5 (L. tropica)
UK Persichetti et al. (2017) 2013 F. catus 64 Serological (ELISA, 40 EU) Serum 1.6 (L. infantum)
Serological (IFAT, 1:80) Serum 0
Serological (WB) Serum 3.1 (L. infantum)
Uzbekistan Kovalenko et al. (2011) na F. catus 1 Serological (ELISA) Serum 0

Abbreviations: COII, cytochrome oxidase II; cytB, cytochrome b; DAT, direct agglutination test; ELISA, enzyme-linked immunosorbent assay; EU, ELISA units; F., Felis; g6pdh, glucose-6-phosphate dehydrogenase; HRMPCR, high resolution melt PCR; hsp70, heat-shock protein 70; IFAT, immunofluorescence antibody test; IgG, Immunoglobulin G; IHA, indirect hemagglutination; ITS, internal transcriber spacers; ITS1, internal transcriber spacer 1; ITS2, internal transcriber spacer 2; kDNA, kinetoplast minicircle DNA; L., Leishmania; na, not available; nPCR, nested PCR; PCR, one-step PCR (polymerase chain reaction); Prot A, Protein A; qPCR, real-time PCR; RFLP, restriction fragment length polymorphism; s.l., sensu lato; SSU, small subunit ribosomal DNA; WB, western blot.

a

Species defined according to the original study.

b

Previously identified as positive by another test.

c

DNA extracted from the sediment obtained after centrifugation of the blood samples.

d

Seropositive for L.infantum and/or for feline retrovirus (feline leukemia virus and/or feline immunodeficiency virus).

e

Not specified.

f

Putative hybrid.

g

Cats eligible for blood donation.

Table 2.

Epidemiological studies on the frequency of Leishmania infection in cats (Felis spp.) in the New World

Country Study Sampling year Species (origin) No. tested Method (test, cut-off/target gene) Sample % Positive (species)a
Brazil De Matos et al. (2018) 2004–2014 F. catus 679 Serological (ELISA) Serum 43.4 (Leishmania spp.)
Serological (IFAT, 1:40) Serum 15.8 (Leishmania spp.)
Figueiredo et al. (2009) 2005 F. catus (domestic) 43 Serological (ELISA) Serum 2.4 (Leishmania spp.)
Serological (IFAT, 1:40) Serum 0
Coelho et al. (2011a) 2007–2009 F. catus 70 Serological (ELISA) Serum 4.2 (Leishmania spp.)
Serological (IFAT, 1:40) Serum 0.0 (Leishmania spp.)
Vides et al. (2011) 2008–2009 F. catus 55 Parasitological (cytology) Bone marrow 12.7 (Leishmania spp.)
Liver 3.6 (Leishmania spp.)
Lymph node 5.5 (Leishmania spp.)
Spleen 7.3 (Leishmania spp.)
Parasitological (IHC) Skin 16.4 (Leishmania spp.)
Serological (ELISA, 0.277) Serum 25.4 (Leishmania spp.)
Serological (IFAT, 1:40) Serum 10.9 (Leishmania spp.
3 Molecular (qPCR, gp63) Whole blood 100 (L. chagasi)
Cardia et al. (2013) 2010 F. catus (shelter/stray) 386 Serological (IFAT, 1:40) Serum 0.5 (Leishmania spp.)
Silva et al. (2014) 2010 F. catus (domestic/shelter) 153 Serological (ELISA) Serum 3.9 (L. infantum)
De Sousa Oliveira et al. (2015) 2012 F. catus 52 Molecular (PCR, kDNA) Conjunctival swab 13.5 (Leishmania spp.)
de Sousa et al. (2014) 2013 F. catus (domestic/stray) 151 Serological (IFAT, 1:40) Serum 6.6 (L. infantum)
Metzdorf et al. (2017) 2013–2014 F. catus (domestic/shelter) 100 Parasitological (cytology) Bone marrow 4.0 (Leishmania spp.)
Lymph node 4.0 (Leishmania spp.)
Whole blood 4.0 (Leishmania spp.)
Molecular (PCR-RFLP, kDNA) Bone marrow 6.0 (L. infantum)
Lymph node 3.0 (L. infantum)
Whole blood 4.0 (L. infantum)
Leonel et al. (2020) 2014 F. catus (shelter) 94 Serological (ELISA) Serum 31.9 (Leishmania spp.)
Serological (IFAT, 1:40) Serum 29.8 (Leishmania spp.)
Molecular (PCR, kDNA) Conjunctival swab 0
Whole blood 0
Marcondes et al. (2018) 2014–2015 F. catus (domestic/shelter) 50b Parasitological (cytology) Bone marrow 14.0 (Leishmania spp.)
Molecular (qPCR, kDNA) Bone marrow 86.0 (L. infantum)
Whole blood 72.0 (L. infantum)
Rocha et al. (2019) 2016–2017 F. catus (domestic) 105 Serological (IFAT, 1:40) Serum 30.5 (L. infantum)
Molecular (PCR, CH1) Whole blood 2.9 (L. infantum)
Molecular (PCR, ITS1) Whole blood 5.7 (L. infantum)
Pedrassani et al. (2019) 2017 F. catus (domestic) 30 Serological (IFAT, 1:80) Serum 6.6 (L. infantum)
Molecular (PCR, kDNA) Whole blood 0
Berenguer et al. (2020) 2017 F. catus (domestic) 128 Molecular (PCR, kDNA) Conjunctival swab 0
Whole blood 0.8 (L. infantum)
3c Parasitological (cytology) Lymph node 33.3 (Leishmania spp.)
Molecular (PCR, kDNA) Lymph node 33.3 (L. infantum)
Bezerra et al. (2019) 2017–2018 F. catus (domestic) 91 Serological (IFAT, 1:40) Serum 15.4 (Leishmania spp.)
Molecular (PCR, kDNA) Whole blood 0
da Silva et al. (2008) na F. catus (domestic) 8 Serological (IFAT, 1:40) Serum 25.0 (Leishmania spp.)
3 Molecular (multiplex PCR, kDNA) Whole blood 66.7 (Leishmania spp.)
2b Molecular (DB) Whole blood 100 (L. chagasi)
Bresciani et al. (2010) na F. catus (domestic) 283 Parasitological (cytology) Lymph node 0.7 (Leishmania spp.)
Serological (IFAT, 1:40) Serum 0
da Silveira Neto et al. (2011) na F. catus (shelter) 130 Serological (CAG-ELISA, 0.449) Serum 23.0 (Leishmania spp.)
Serological (FML-ELISA, 0.215) Serum 13.3 (Leishmania spp.)
Serological (rK39-ELISA, 0.347) Serum 15.9 (Leishmania spp.)
Coelho et al. (2011b) na F. catus (domestic) 52 Parasitological (cytology) Bone marrow 0
Lymph node 3.8 (Leishmania spp.)
Spleen 0
Molecular (PCR, kDNA) Bone marrow 0
Lymph node 3.8 (L. chagasi)
Spleen 1.9 (L. chagasi)
Sobrinho et al. (2012) na F. catus (shelter/stray) 302 Parasitological (Cytology) Bone marrow 7.0 (Leishmania spp.)
Lymph node 7.9 (Leishmania spp.)
Serological (ELISA, 0.301) Serum 13.0 (Leishmania spp.)
Serological (IFAT, 1:40) Serum 4.6 (Leishmania spp.)
5b Molecular (qPCR, gp63) Whole blood 100 (L. infantum)
de Morais et al. (2013) na F. catus (domestic) 5 Molecular (qPCR, kDNA) Whole blood 80.0 (L. infantum)
Molecular (PCR, kDNA) Whole blood 80.0 (L. infantum)
Braga et al. (2014a) na F. catus (domestic) 50 Serological (IFAT, 1:40) Serum 4.0 (Leishmania spp.)
Braga et al. (2014b) na F. catus 100 Parasitological (culture) Whole blood 2.0 (Leishmania spp.)
Serological (IFAT, 1:40) Serum 15.0 (Leishmania spp.)
Molecular, PCR, kDNA) Whole blood 0
Oliveira et al. (2015) na F. catus (domestic) 443 Serological (DAT, 1:40) Serum 5.6 (Leishmania spp.)
Serological (IFAT, 1:40) Serum 4.1 (Leishmania spp.)
Benassi et al. (2017) na F. catus (domestic/stray) 108 Molecular (PCR, kDNA) Conjunctival swab 1.9 (Leishmania spp.)
Whole blood 0
Molecular (qPCR, kDNA) Conjunctival swab 1.9 (Leishmania spp.)
Whole blood 0
2b Molecular (PCR, ITS1) Conjunctival swab 50.0 (L. infantum)
Coura et al. (2018) na F. catus (shelter) 100 Parasitological (cytology) Bone marrow 0
Parasitological (culture) Bone marrow 0
Serological (IFAT, 1:40) Serum 54.0 (Leishmania spp.)
54b Molecular (PCR, kDNA) Bone marrow/skin 0
da Costa-Val et al. (2020) na F. catus (domestic) 64 Serological (ELISA, 0.955) Serum 29.8 (Leishmania spp.)
64 Molecular (PCR, kDNA) Conjunctival swab 6.3 (Leishmania spp.)
64 Molecular (PCR, kDNA) Oral swab 4.7 (Leishmania spp.)
8b Molecular (PCR-RFLP, ITS1) Conjunctival swab 12.5 (L. infantum)
Oral swab 37.5 (L. infantum)
12.5 (L. braziliensis)
Honduras Mccown & Grzeszak (2010) na F. catus (stray) 12 Serological (IFAT, 1:32) Serum 25.0 (L. donovani)
Mexico Longoni et al. (2012) 2008–2009 F. catus (stray) 95 Serological (ELISA-H) Serum 5.3 (L. braziliensis)
13.7 (L. infantum)
1.1 (L. mexicana)
Serological (ELISA-SODe) Serum 11.6 (L. baziliensis)
22.1 (L. infantum)
10.5 (L. mexicana)
Serological (WB) Serum 10.5 (L. baziliensis)
20.0 (L. infantum)
10.5 (L. mexicana)
Venezuela Viettri et al. (2018) na na 5 Molecular (nested PCR, ITS1) Blood on filter paper 20.0 (Leishmania spp.)
Molecular (nPCR, SSU rDNA) Blood on filter paper 20.0 (Leishmania spp.)
Rivas et al. (2018) F. catus (domestic/stray) 6 Parasitological (cytology) Skin lesions 66.7 (Leishmania spp.)
5 Parastiological (histology) Skin lesions 80.0 (Leishmania spp.)
5 Parasitological (IHC) Skin lesions 100 (Leishmania spp.)
30 Serological (ELISA, 15.3 EU) Serum 6.7 (L. braziliensis)
Serological (ELISA, 15.3 EU) Serum 6.7 (L. infantum)
Serological (WB) Serum 33.3 (L. braziliensis)
Serological (WB) Serum 33.3 (L. infantum)
31 Molecular (qPCR, kDNA) Whole blood 9.7 (Leishmania spp.)
5 Molecular (qPCR, kDNA) Skin lesions 100 (Leishmania spp.)
Molecular (qPCR, ITS1) Skin lesions 40.0 (L. mexicana)
2b Molecular (PCR-RFLP, ITS1) Skin lesions 50.0 (L. mexicana)
Paniz Mondolfi et al. (2019) na na 12 Molecular (nPCR, cytB) Skin lesions 83.3 (L. mexicana)
16.7 (Leishmania spp.)

Abbreviations: CAG, crude antigen; CH1, chitinase; cytB, cytochrome b; DAT, direct agglutination test; DB, dot blot; ELISA, enzyme-linked immunosorbent assay; EU, ELISA units; F., Felis; FML, fucose-mannose ligand; gp63, metalloprotease gp63; H, total parasite extract; IFAT, immunofluorescence antibody test; IHC, immunohistochemistry; ITS1, internal transcriber spacer 1; kDNA, kinetoplast minicircle DNA; L., Leishmania; na, not available; nPCR, nested PCR; PCR, one-step PCR (polymerase chain reaction); qPCR, real-time PCR; RFLP, restriction fragment length polymorphism; rK39, recombinant K39; SODe, superoxide dismutase excreted; SSU, small subunit ribosomal DNA; WB, western blot.

a

Species defined according to the original study.

b

Previously identified as positive by another test.

c

Cats with lymphadenomegaly.

Specific antibodies or Leishmania DNA have been mostly detected in domestic cats living in endemic areas of South America, the Mediterranean Region and western Asia. Some studies also suggest that wild cats from Spain (Del Río et al., 2014; Risueño et al., 2018) and sand cats (Felis margarita) from Saudi Arabia (Morsy et al., 1999) are frequently exposed to Leishmania infection.

In non-endemic countries, as seen in dogs, feline Leishmania infection has been particularly associated with cats travelling to or rehomed from southern Europe and Brazil (Rüfenacht et al., 2005; Richter et al., 2014; Maia & Cardoso, 2015; Schäfer et al., 2021). Also, antibodies to Leishmania were detected in three domestic cats living in the UK, but in all cases, the travel and clinical history were unknown (Persichetti et al., 2017).

Although blood transfusion is regarded as a probable non-vector-borne transmission pathway of Leishmania in cats, no feline infection cases by this parasite (screened by PCR) were identified among eligible blood donors (Marenzoni et al., 2018; Mesa-Sanchez et al., 2020).

Several factors have been highlighted as possibly associated with Leishmania infection in cats based on univariate analysis, including old age (Akhtardanesh et al., 2017; Junsiri et al., 2017; Morganti et al., 2019; Asgari et al., 2020), male sex (Cardoso et al., 2010; Sobrinho et al., 2012; Montoya et al., 2018a; Asgari et al., 2020; Latrofa et al., 2020), non-neutered status (Otranto et al., 2017; Latrofa et al., 2020), presence of clinical or clinicopathological abnormalities (such as crusting skin lesions, leukopaenia, increase in alanine aminotransferase (ALT) levels, lymphadenomegaly, lymphocytosis and neutrophilia) (Ayllón et al., 2008; Sherry et al., 2011; Sobrinho et al., 2012; Spada et al., 2013; Akhtardanesh et al., 2017; Otranto et al., 2017; Latrofa et al., 2020), concomitant infections (such as feline coronavirus (FCoV), feline immunodeficiency virus (FIV), feline leukemia virus and Toxoplasma gondii) (Sherry et al., 2011; Sobrinho et al., 2012; Spada et al., 2013, 2016; Montoya et al., 2018a), geographical area/local environment (such as altitude and rural areas) (Nasereddin et al., 2008; Cardoso et al., 2010; Asgari et al., 2020), lifestyle (such as access to the outdoors) (Rocha et al., 2019) and cohabitation with dogs (Rocha et al., 2019; Morelli et al., 2020). Epidemiological studies using logistic regression models (a powerful analytic research tool that avoids confounding effects) have evidenced that adult cats (Iatta et al., 2019; Akhtardanesh et al., 2020), males (Iatta et al., 2019; Akhtardanesh et al., 2020), non-neutered (Iatta et al., 2019), or with concomitant infections by FeLV (Martín-Sánchez et al., 2007; Sherry et al., 2011; Spada et al., 2013; Akhtardanesh et al., 2020), FIV (Iatta et al., 2019; Akhtardanesh et al., 2020), “Candidatus Mycoplasma turicensis” or Hepatozoon spp. (Attipa et al., 2017b) have an increased risk for Leishmania infection.

4. Immunopathogenesis

In dogs, several studies have provided evidence demonstrating that the course of L. infantum infection is directly linked to the immune response. Development of progressive disease in susceptible dogs is typically characterised by high antibody levels and an impaired ability to mount a strong and effective cell-mediated response characterised by the expression of interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), and interleukin (IL)-2 (reviewed by Maia & Campino, 2018). However, very limited data are available on the pathogenesis of leishmaniosis in cats. Experimental studies involving intravenous/intraperitoneal inoculation of axenic promastigotes suggest that cats are hypothetically less susceptible to developing disease by L. infantum when compared to dogs, despite also presenting a long-lasting parasitaemia (Kirkpatrick et al., 1984; Akhtardanesh et al., 2018). Recently, Priolo et al. (2019) demonstrated that cats naturally exposed to L. infantum infection produce IFN-γ following ex vivo blood stimulation with parasite antigens, as reported in dogs (Solano-Gallego et al., 2016). This finding is important to highlight that Leishmania parasites can elicit a protective cell-mediated immune response in cats. The only study assessing the role of the complement system in feline L. infantum infection showed that, contrary to humans and dogs, catʼs proteins are consumed by parasites in the lectin pathway, which hypothetically may justify their low predisposition to develop clinical disease (Tirado et al., 2021).

5. Clinical presentation and clinicopathological findings

Feline leishmaniosis caused by L. infantum is mostly reported in adult (median age: 7 years; range: 2–21 years) domestic short-hair cats living in or travelling to endemic countries of southern Europe and Brazil. The disease has a chronic course and may be manifested by a plethora of clinical signs and/or clinicopathological abnormalities, which are summarised in Table 3 and Table 4, respectively. About one-third of cats with leishmaniosis showed concomitant infections/diseases including FIV (Hervás et al., 2001; Poli et al., 2002; Pennisi et al., 2004; Grevot et al., 2005; Pocholle et al., 2012; Pimenta et al., 2015; Fernandez-Gallego et al., 2020), FeLV (Poli et al., 2002; Grevot et al., 2005; Pereira et al., 2019c), FCoV (Pennisi et al., 2004; Savani et al., 2004), T. gondii (Pennisi et al., 2004), Bartonella henselae (Pennisi et al., 2004), diabetes mellitus (Leiva et al., 2005), pemphigus foliaceus (Rüfenacht et al., 2005), neoplasia (Grevot et al., 2005; Pocholle et al., 2012; Maia et al., 2015b) and/or were under immunosuppressive therapies at the time of diagnosis (Fernandez-Gallego et al., 2020).

Table 3.

Frequency of clinical signs in domestic cats (Felis catus) with clinical leishmaniosis caused by Leishmania infantum

Historical or physical signs Frequency (%)a Reference
Dermatological
 Nodules 38 Poli et al. (2002); Savani et al. (2004); Rüfenacht et al. (2005); Richter et al. (2014); Pimenta et al. (2015); Basso et al. (2016); Attipa et al., 2017a, Attipa et al., 2017b; Leal et al. (2018); Brianti et al. (2019); Headley et al. (2019); Pereira Mondolfi et al. (2019); Fernandez-Gallego et al. (2020); Silva et al. (2020)
 Erosive/ulcerative skin disease 37 Ozon et al. (1998); Hervás et al. (1999, 2001); Pennisi et al. (2004); Grevot et al. (2005); Rüfenacht et al. (2005); Coelho et al. (2010); Pocholle et al. (2012); Maia et al. (2015); Basso et al. (2016); Brianti et al. (2019); Headley et al. (2019); Fernandez-Gallego et al. (2020); Silva et al. (2020)
 Scaling/crusting 21 Ozon et al. (1998); Hervás et al. (1999); Pennisi et al. (2004); Rüfenacht et al. (2005); Coelho et al. (2010); da Silva et al. (2010); Headley et al. (2019); Fernandez-Gallego et al. (2020)
 Alopecia 12 Hervás et al. (1999); Pennisi et al. (2004); Rüfenacht et al. (2005); Fernandez-Gallego et al. (2020)
 Onychogryphosis 6 da Silva et al. (2010); Headley et al. (2019)
 Bloody cyst 4 Pennisi et al. (2004)
 Depigmentation 4 Rüfenacht et al. (2005); Pocholle et al. (2012)
 Pruritus 4 Rüfenacht et al. (2005); Pocholle et al. (2012)
 Pustule/papule 4 Rüfenacht et al. (2005); Pocholle et al. (2012)
 Footpad hyperkeratosis 2 Fernandez-Gallego et al. (2020)
General/miscellaneous
 Lymphadenomegaly 27 Hervás et al. (1999, 2001); Poli et al. (2002); Pennisi et al. (2004); Savani et al. (2004); Maroli et al. (2007); da Silva et al. (2010); Brianti et al. (2019); Fernandez-Gallego et al. (2020); Silva et al. (2020)
 Lethargy/depression 25 Poli et al. (2002); Pennisi et al. (2004); Leiva et al. (2005); Rüfenacht et al. (2005); Marcos et al. (2009); Pocholle et al. (2012); Richter et al. (2014); Fernandez-Gallego et al. (2020)
 Anorexia/inappetence 21 Pennisi et al. (2004); Rüfenacht et al. (2005); Marcos et al. (2009); da Silva et al. (2010); Fernandez-Gallego et al. (2020)
 Weight loss 21 Ozon et al. (1998); Hervás et al. (1999); Pennisi et al. (2004); Savani et al. (2004); da Silva et al. (2010); Fernandez-Gallego et al. (2020); Silva et al. (2020)
 Hyperthermia 12 Leiva et al. (2005); Basso et al. (2016); Headley et al. (2019); Fernandez-Gallego et al. (2020)
 Hepatomegaly 4 Pennisi et al. (2004); Leiva et al. (2005)
 Splenomegaly 4 Poli et al. (2002); Leal et al. (2018)
 Bruising 2 Maia et al. (2015)
 Mastitis 2 Pereira Mondolfi et al. (2019)
Ocular
 Uveitis 27 Hervás et al. (2001); Pennisi et al. (2004); Verneuil (2013); Richter et al. (2014); Pimenta et al. (2015); Leal et al. (2018); Pereira Mondolfi et al. (2019); Fernandez-Gallego et al. (2020)
 Corneal oedema 10 Hervás et al. (2001); Pimenta et al. (2015); Fernandez-Gallego et al. (2020)
 Conjunctivitis 8 Migliazzo et al. (2015); Brianti et al. (2019); Fernandez-Gallego et al. (2020)
 Chorioretinitis 4 Pennisi et al. (2004); Fernandez-Gallego et al. (2020)
 Corneal opacification 4 Hervás et al. (2001); Pimenta et al. (2015)
 Glaucoma 4 Leiva et al. (2005); Richter et al. (2014)
 Keratitis 4 Richter et al. (2014); Fernandez-Gallego et al. (2020)
 Blepharitis 2 Brianti et al. (2019)
 Chemosis 2 Fernandez-Gallego et al. (2020)
 Masse 2 Hervás et al. (2001)
Gastrointestinal/abdominal
 Stomatitis 21 Hervás et al. (2001); Leiva et al. (2005); Maroli et al. (2007); Verneuil (2013); Maia et al. (2015); Migliazzo et al. (2015); Fernandez-Gallego et al. (2020)
 Glossitis 4 Fernandez-Gallego et al. (2020)
 Jaundice 4 Hervás et al. (1999); Fernandez-Gallego et al. (2020)
 Vomiting 4 Hervás et al. (1999); Fernandez-Gallego et al. (2020)
 Abdominal distension 2 Leiva et al. (2005)
 Diarrhoea 2 Fernandez-Gallego et al. (2020)
Cardiorespiratory
 Dispnoea/tachypnoea 12 da Silva et al. (2010); Basso et al. (2016); Leal et al. (2018); Headley et al. (2019); Silva et al. (2020)
 Pallor 10 Hervás et al. (2001); Pennisi et al. (2004); Marcos et al. (2009); Maia et al. (2015); Richter et al. (2014)
 Abnormal respiratory sounds 4 Leal et al. (2018); Altuzarra et al. (2020)
 Nasal discharge 4 Migliazzo et al. (2015); Altuzarra et al. (2020)
 Sneezing 2 Leal et al. (2018)
Musculoskeletal
 Muscle atrophy 2 da Silva et al. (2010)
Neurological
 Ataxia 2 Fernandez-Gallego et al. (2020)
Urogenital
 Vaginal bleeding 2 Maia et al. (2015)
a

n = 52.

Table 4.

Frequency of clinicopathological abnormalities in domestic cats (Felis catus) with leishmaniosis caused by Leishmania infantum

Parameter Frequency (%)a Reference
Hemogram
 Anaemia 31 Hervás et al. (1999); Pennisi et al. (2004); Marcos et al. (2009); Richter et al. (2014); Pereira Mondolfi et al. (2019); Fernandez-Gallego et al. (2020); Pimenta et al. (2015)
 Neutrophilia 19 Poli et al. (2002); Leiva et al. (2005); da Silva et al. (2010); Verneuil (2013); Fernandez-Gallego et al. (2020); Silva et al. (2020)
 Thrombocytopaenia 17 Pennisi et al. (2004); Marcos et al. (2009); Richter et al. (2014); Pimenta et al. (2015); Basso et al. (2016); Pereira Mondolfi et al. (2019)
 Leukocytosis 10 Ozon et al. (1998); da Silva et al. (2010); Fernandez-Gallego et al. (2020)
 Leukopaenia 10 Pennisi et al. (2004); Rüfenacht et al. (2005); Richter et al. (2014)
 Eosinophilia 7 Ozon et al. (1998); Hervás et al. (1999); Marcos et al. (2009); Altuzarra et al. (2020)
 Neutropaenia 5 Fernandez-Gallego et al. (2020)
 Lymphopaenia 2 Rüfenacht et al. (2005)
 Monocytosis 2 Leiva et al. (2005)
Blood chemistry
 Hyperproteinaemia 36 Ozon et al. (1998); Hervás et al. (1999); Poli et al. (2002); Pennisi et al. (2004); Pimenta et al. (2015); Attipa et al., 2017a, Attipa et al., 2017b; Leal et al. (2018); Brianti et al. (2019); Pereira Mondolfi et al. (2019); Fernandez-Gallego et al. (2020)
 Hyperglobulinaemia 31 Pennisi et al. (2004); Leiva et al. (2005); Richter et al. (2014); Pimenta et al. (2015); Brianti et al. (2019); Altuzarra et al. (2020)
 Azotemia 21 Pennisi et al. (2004); Leiva et al. (2005); Marcos et al. (2009); da Silva et al. (2010); Leal et al. (2018); Fernandez-Gallego et al. (2020)
 Hypoalbuminaemia 10 Hervás et al. (1999; Rüfenacht et al. (2005); Richter et al. (2014); Fernandez-Gallego et al. (2020)
 Hyperglycaemia 8 Leiva et al. (2005); Richter et al. (2014); Fernandez-Gallego et al. (2020)
 Bilirrubinaemia 5 Fernandez-Gallego et al. (2020)
 Hyperphosphataemia 3 Fernandez-Gallego et al. (2020)
 Hypophosphataemia 3 Fernandez-Gallego et al. (2020)
 Increased alanine aminotransferase 3 Fernandez-Gallego et al. (2020)
 Increased aspartate transaminase 3 da Silva et al. (2010)
 Increased creatinine kinase 3 Fernandez-Gallego et al. (2020)
Protein electrophoresis
 Hypergammaglobulinaemia 84 Ozon et al. (1998); Hervás et al. (1999); Poli et al. (2002); Pennisi et al. (2004); Leiva et al. (2005); Marcos et al. (2009); Richter et al. (2014); Basso et al. (2016); Leal et al. (2018); Brianti et al. (2019); Pereira Mondolfi et al. (2019); Altuzarra et al. (2020); Fernandez-Gallego et al. (2020)
 Increased α2 globulins 13 Basso et al. (2016); Fernandez-Gallego et al. (2020)
 Hyperbetaglobulinaemia 3 Hervás et al. (1999)
Urinalysis
 Proteinuria 25 Marcos et al. (2009); Leal et al. (2018); Fernandez-Gallego et al. (2020)
 Bilirrubinuria 4 Marcos et al. (2009)
 Glycosuria 4 Leiva et al. (2005)
a

Hemogram, n = 42; Blood chemistry, n = 39; Serum protein electrophoresis, n = 32; Urianalysis, n = 24.

Dermatological disorders were found in about 75% of reported clinical cases. Although uncommon, they may occur in the apparent absence of other obvious signs of disease (Fernandez-Gallego et al., 2020). Nodular dermatitis seems to be the main cutaneous lesion associated with FeL and is typically found on the eyelids (Hervás et al., 2001; Richter et al., 2014; Pimenta et al., 2015; Leal et al., 2018; Pereira et al., 2019c; Fernandez-Gallego et al., 2020; Silva et al., 2020). Erosive/ulcerative dermatitis is another clinical finding suggestive of FeL and has been identified on the head (Hervás et al., 2001; Grevot et al., 2005; Coelho et al., 2010; Pocholle et al., 2012; Maia et al., 2015b; Basso et al., 2016; Brianti et al., 2019; Headley et al., 2019; Fernandez-Gallego et al., 2020), extremities (Rüfenacht et al., 2005; Coelho et al., 2010; Basso et al., 2016; Fernandez-Gallego et al., 2020; Silva et al., 2020), trunk (Pocholle et al., 2012; Fernandez-Gallego et al., 2020), and over bony prominences (Hervás et al., 1999). Although less frequent, some cats with clinical leishmaniosis showed onychogryphosis (da Silva et al., 2010; Headley et al., 2019), a rather specific sign of canine leishmaniosis (CanL) (Maia & Campino, 2018). Generalised or focal lymphadenopathy appears as a common finding in FeL (Hervás et al., 1999; 2001; Poli et al., 2002; Savani et al., 2004; Pennisi et al., 2004; Maroli et al., 2007; da Silva et al., 2010; Brianti et al., 2019; Fernandez-Gallego et al., 2020; Silva et al., 2020) as well as non-specific signs including lethargy/depression (Poli et al., 2002; Pennisi et al., 2004; Leiva et al., 2005; Rüfenacht et al., 2005; Marcos et al., 2009; Pocholle et al., 2012; Richter et al., 2014; Fernandez-Gallego et al., 2020), anorexia/inappetence (Pennisi et al., 2004; Rüfenacht et al., 2005; Marcos et al., 2009; da Silva et al., 2010; Fernandez-Gallego et al., 2020), and weight loss (Ozon et al., 1998; Hervás et al., 1999; Pennisi et al., 2004; Savani et al., 2004; da Silva et al., 2010; Fernandez-Gallego et al., 2020; Silva et al., 2020).

Approximately one-fourth of cats with clinical leishmaniosis showed uveitis (Hervás et al., 2001; Pennisi et al., 2004; Verneuil, 2013; Richter et al., 2014; Pimenta et al., 2015; Leal et al., 2018; Pereira et al., 2019c; Fernandez-Gallego et al., 2020); stomatitis (Hervás et al., 2001; Leiva et al., 2005; Maroli et al., 2007; Verneuil, 2013; Maia et al., 2015b; Migliazzo et al., 2015; Fernandez-Gallego et al., 2020) and/or cardiorespiratory signs such as dyspnoea/tachypnoea, pallor, abnormal respiratory sounds, nasal discharge and sneezing (Hervás et al., 2001; Pennisi et al., 2004; Marcos et al., 2009; da Silva et al., 2010; Richter et al., 2014; Migliazzo et al., 2015; Maia et al., 2015b; Basso et al., 2016; Leal et al., 2018; Headley et al., 2019; Altuzarra et al., 2020; Silva et al., 2020). Musculoskeletal (i.e. muscle atrophy; da Silva et al., 2010), neurological (i.e. ataxia; Fernandez-Gallego et al., 2020), and urogenital (i.e. vaginal bleeding; Maia et al., 2015b) signs were also occasionally described, but in some cases, they appear to be secondary to concomitant diseases (Maia et al., 2015b; Fernandez-Gallego et al., 2020). Other clinical manifestations rarely found and which may represent a further diagnostic challenge to veterinarians include: depigmentation (Rüfenacht et al., 2005; Pocholle et al., 2012), cutaneous bloody cyst (Pennisi et al., 2004), pruritus (Rüfenacht et al., 2005; Pocholle et al., 2012), footpad hyperkeratosis (Fernandez-Gallego et al., 2020), hepatomegaly (Pennisi et al., 2004; Leiva et al., 2005), splenomegaly (Poli et al., 2002; Leal et al., 2018), bruising (Maia et al., 2015b), mastitis (Pereira et al., 2019c), chorioretinitis (Pennisi et al., 2004; Fernandez-Gallego et al., 2020), corneal opacification (Hervás et al., 2001; Pimenta et al., 2015), glaucoma (Leiva et al., 2005; Richter et al., 2014), blepharitis (Brianti et al., 2019), chemosis (Fernandez-Gallego et al., 2020), ocular masses (Hervás et al., 2001), glossitis (Fernandez-Gallego et al., 2020), jaundice (Hervás et al., 1999; Fernandez-Gallego et al., 2020), abdominal distension (Leiva et al., 2005), and vomiting/diarrhoea (Hervás et al., 1999; Fernandez-Gallego et al., 2020).

Most consistent laboratory abnormalities found in FeL cases include anaemia (generally of the normochromic, normocytic type) (Hervás et al., 1999; Pennisi et al., 2004; Marcos et al., 2009; Richter et al., 2014; Pimenta et al., 2015; Pereira et al., 2019c; Fernandez-Gallego et al., 2020) and hyperproteinaemia with hypergammaglobulinaemia (Ozon et al., 1998; Hervás et al., 1999; Poli et al., 2002; Pennisi et al., 2004; Leiva et al., 2005; Marcos et al., 2009; Richter et al., 2014; Basso et al., 2016; Leal et al., 2018; Brianti et al., 2019; Pereira et al., 2019c; Altuzarra et al., 2020; Fernandez-Gallego et al., 2020). The latter was detected in more than 80% of sick cats and should be investigated as a possible biomarker of FeL. Leukocytosis (Ozon et al., 1998; da Silva et al., 2010; Fernandez-Gallego et al., 2020) and leukopaenia (Pennisi et al., 2004; Rüfenacht et al., 2005; Richter et al., 2014) are inconsistent findings, whereas thrombocytopenia (Pennisi et al., 2004; Marcos et al., 2009; Richter et al., 2014; Pimenta et al., 2015; Basso et al., 2016; Pereira et al., 2019c) and azotaemia (Pennisi et al., 2004; Leiva et al., 2005; Marcos et al., 2009; da Silva et al., 2010; Leal et al., 2018; Fernandez-Gallego et al., 2020) have been frequently reported. About a quarter of the sick cats presented proteinuria (Marcos et al., 2009; Leal et al., 2018; Fernandez-Gallego et al., 2020), suggesting a possible association between FeL and kidney disease as described in dogs. Recently, Chatzis et al. (2020) observed that cats infected with Leishmania parasites had higher concentrations of inorganic phosphorus than non-infected cats, reinforcing this assumption. Mild increases of liver enzyme activities are also described (Fernandez-Gallego et al., 2020), but less frequently than in cases of CanL (Maia & Campino, 2018).

6. Diagnosis

Clinical presentation combined with epidemiological context may lead to suspicion of FeL, but for a definitive diagnosis, Leishmania-specific laboratory tests are required (Table 5). These include direct tests (cytology, histology, immunohistochemistry, culture, and PCR), demonstrating the presence of the parasite or its components, and indirect tests (serology) assessing the hostʼs response to infection.

Table 5.

Common laboratory tests performed for diagnostics of Leishmania infection in domestic cats (Felis catus)

Type/test Aim Confirmation of clinical disease Confirmation of subclinical disease Preferential sample Advantages Disadvantages Observations
Parasitological
Cytology Detection of parasites +++ +
  • Bone-marrow (FNB);

  • Lymph node (FNB);

  • Nodular lesions (FNB);

  • Erosive/ulcerative skin lesions (scraping)

  • Does not require specific laboratory equipment;

  • Low cost;

  • Rapid;

  • High specificity

  • Requires experienced observers;

  • Strictly qualitative;

  • Not suitable for identification at the species level

  • Amastigotes can be found in both intracellular and extracellular areas

Histopathology Detection of parasites +++ +
  • Skin/ocular lesions;

  • Bone marrow;

  • Lymph-nodes;

  • Spleen

  • Preserves structure and maintains tissue pathology;

  • High specificity;

  • Good sensitivity using IHC

  • Invasive;

  • Requires experienced observers;

  • Requires specific laboratory equipment;

  • More laborious and time-consuming;

  • IHC is not widely available;

  • Only qualitative;

  • Not suitable for identification at the species level

Parasite culture Isolation of viable parasites ++ +
  • Biopsy lesions;

  • Bone marrow;

  • Lymph nodes

  • Provides parasites for further analysis;

  • Confirms active infection;

  • High specificity

  • Labour-intensive;

  • Restricted to specialised reference laboratories;

  • Up to more than 30 days to provide a result;

  • Only qualitative;

  • Not suitable for identification at the species level

  • Aseptic sampling should be ensured;

  • Biopsy sample must be homogenised in saline or culture medium under sterile conditions

Molecular
PCR Detection of parasite DNA +++ +++
  • Biopsy lesions;

  • Bone marrow;

  • Lymph nodes

  • Allows identification at the species level;

  • High sensitivity and specificity

  • Transient infection cannot be excluded;

  • Requires specific laboratory equipment;

  • Requires vigilance against false-positive results;

  • Only qualitative;

  • Expensive

  • Protocols targeting multicopy genes are preferable for diagnosis;

  • Nested PCR has more sensitivity than conventional PCR

qPCR Detection of parasite DNA +++ +++
  • Biopsy lesions

  • Bone marrow

  • Lymph nodes

  • Allows identification at the species level;

  • High sensitivity and specificity;

  • Quantification of parasite load;

  • Reduced cross-contamination probability;

  • Valuable for treatment follow-up;

  • Qualitative/quantitative

  • Transient infection cannot be excluded;

  • Standardised methods to parasite load quantification may not be offered by some laboratories;

  • Expensive

  • Protocols targeting multicopy genes are preferable for diagnosis

Serological
 ELISA Detection of specific antibodies +++ ++
  • Serum;

  • Plasma

  • Valuable for treatment follow-up;

  • Relatively low cost;

  • Qualitative/quantitative

  • Possible cross-reactivity;

  • Difficult to assess results at threshold of positivity;

  • Not suitable for unambiguous identification at the species level

  • Established cut-off (40 EU)

 IFAT Detection of specific antibodies ++ +++
  • Serum;

  • Plasma

  • Valuable for treatment follow-up;

  • Relatively low cost;

  • Qualitative/quantitative

  • Requires experienced observers;

  • Subjective interpretation;

  • Possible cross-reactivity;

  • Not suitable for unambiguous identification at the species level

  • Reference method for the serodiagnosis of human and canine leishmanioses;

  • Established cut-off (1:80)

 Western blot Detection of specific antibodies +++ +++
  • Serum;

  • Plasma

  • High sensitivity and specificity

  • Labour-intensive;

  • Expensive;

  • Not available in routine practice

  • Marker for positivity: 18 kDA band

Abbreviations: ELISA, enzyme-linked immunosorbent assay; EU, ELISA units; FNB, fine needle biopsy; IFAT, immunofluorescence antibody test; IHC, immunohistochemistry, KDa, kilodaltons; PCR, conventional/nested polymerase chain reaction; qPCR, real-time polymerase chain reaction; WB, western blot. +++, recommended test; ++ suitable test; +, limited test.

Cytology is strongly advised in cats presenting erosive/ulcerative skin disease, nodular lesions and/or lymphadenomegaly (Hervás et al., 1999; Poli et al., 2002; Savani et al., 2004; Coelho et al., 2010; Richter et al., 2014; Maia et al., 2015b; Pimenta et al., 2015; Basso et al., 2016; Attipa et al., 2017a; Leal et al., 2018; Brianti et al., 2019; Headley et al., 2019; Pereira et al., 2019c; Silva et al., 2020). Material for diagnosis can be obtained by fine-needle biopsy (with or without aspiration), scraping or imprinting. The presence of Leishmania parasites has been demonstrated in cytological examinations of feline nodular lesions (Poli et al., 2002; Savani et al., 2004; Richter et al., 2014; Pimenta et al., 2015; Basso et al., 2016; Attipa et al., 2017a; Leal et al., 2018; Brianti et al., 2019; Pereira et al., 2019c; Fernandez-Gallego et al., 2020; Silva et al., 2020), erosive/ulcerative lesions (Maia et al., 2015b; Headley et al., 2019; Fernandez-Gallego et al., 2020; Silva et al., 2020), whole-blood (Marcos et al., 2009; Metzdorf et al., 2017), buffy coat/leucoconcentrate (Martín-Sánchez et al., 2007; Marcos et al., 2009), lymph nodes (Hervás et al., 1999; Poli et al., 2002; Pennisi et al., 2004; Bresciani et al., 2010; Coelho et al., 2010, 2011b; Vides et al., 2011; Sobrinho et al., 2012; Metzdorf et al., 2017; Berenguer et al., 2020; Fernandez-Gallego et al., 2020; Silva et al., 2020), bone marrow (Pennisi et al., 2004; Marcos et al., 2009; Vides et al., 2011; Sobrinho et al., 2012; Metzdorf et al., 2017; Marcondes et al., 2018; Fernandez-Gallego et al., 2020), liver (Vides et al., 2011; Mohebali et al., 2017; Fernandez-Gallego et al., 2020), spleen (Vides et al., 2011; Mohebali et al., 2017; Fernandez-Gallego et al., 2020), nasal exudate (Migliazzo et al., 2015), corneal impression (Pimenta et al., 2015), and inflammatory breast fluid (Pereira et al., 2019c). Cytological preparations consistent with FeL typically have a cell composition characteristic of pyogranulomatous, granulomatous or lymphoplasmacytic inflammation (Poli et al., 2002; Headley et al., 2019; Pereira et al., 2019c). Similar patterns are reported in histological studies on feline paraffin-embedded specimens (Poli et al., 2002; Navarro et al., 2010; Migliazzo et al., 2015; Di Mattia et al., 2018; Leal et al., 2018; Altuzarra et al., 2020). Nevertheless, compared with cytology, histology has the main advantage of providing a more detailed diagnostic information on the tissue architecture, which allows understanding if parasites are indeed associated with lesions (Paltrinieri et al., 2016). Immunohistochemistry may be further performed to confirm the presence of Leishmania organisms in biological samples obtained from cats (Poli et al., 2002; Navarro et al., 2010; Migliazzo et al., 2015). Based on histological and immunohistochemical examinations, it has been observed that this parasite may invade several feline organs/tissues such as skin (Ozon et al., 1998; Poli et al., 2002; Grevot et al., 2005; Rüfenacht et al., 2005; Attipa et al., 2017a; Rivas et al., 2018; Fernandez-Gallego et al., 2020; Silva et al., 2020), nasal and oral mucosa (Pennisi et al., 2004; Migliazzo et al., 2015; Leal et al., 2018), eyes (Hervás et al., 2001; Fernandez-Gallego et al., 2020), nasopharynx (Leal et al., 2018), stomach (Hervás et al., 1999), liver (Hervás et al., 1999; Silva et al., 2020), kidneys (Ozon et al., 1998), spleen (Hervás et al., 1999; Grevot et al., 2005; Marcos et al., 2009; Maia et al., 2015b; Fernandez-Gallego et al., 2020; Silva et al., 2020), bone marrow (Ozon et al., 1998; Pimenta et al., 2015; Silva et al., 2020), and lymph nodes (Hervás et al., 1999), and may also be associated with neoplasia (Grevot et al., 2005; Rüfenacht et al., 2005; Pocholle et al., 2012; Maia et al., 2015b; Altuzarra et al., 2020).

Parasite culture is an accurate test allowing conclusive diagnosis of an active infection. However, this test is not suitable for rapid diagnosis and is restricted to specialised laboratories. Parasite culture is a starting point for parasite identification and characterisation by isoenzyme electrophoresis (Pratlong et al., 2004). Viable parasites have been isolated from whole blood (Pocholle et al., 2012), nodular lesions (Poli et al., 2002; Basso et al., 2016), liver (Maia et al., 2015b; Silva et al., 2020), spleen (Maia et al., 2015b; Silva et al., 2020), lymph nodes (Pennisi et al., 2004; Maroli et al., 2007; Maia et al., 2015b; Basso et al., 2016; Silva et al., 2020), and bone marrow (Silva et al., 2020) of cats with leishmaniosis.

Polymerase chain reaction (PCR)-based tests have allowed the detection of Leishmania DNA in several feline samples, including whole blood (Marcos et al., 2009; Pocholle et al., 2012; Pimenta et al., 2015; Basso et al., 2016; Attipa et al., 2017a; Brianti et al., 2019; Fernandez-Gallego et al., 2020; Silva et al., 2020), buffy coat (Pereira et al., 2019c), conjunctival and oral swabs (Migliazzo et al., 2015; Brianti et al., 2019; da Costa-Val et al., 2020), hair (Urbani et al., 2020), skin (Rüfenacht et al., 2005; da Silva et al., 2010; Richter et al., 2014; Maia et al., 2015b; Basso et al., 2016; Fernandez-Gallego et al., 2020; Silva et al., 2020), nasal tissue (Leal et al., 2018), liver (Maia et al., 2015b; Silva et al., 2020), spleen (Savani et al., 2004; Coelho et al., 2010; da Silva et al., 2010; Maia et al., 2015b; Pimenta et al., 2015; Fernandez-Gallego et al., 2020; Silva et al., 2020), kidneys (da Silva et al., 2010), lymph nodes (Poli et al., 2002; Pennisi et al., 2004; Coelho et al., 2010; da Silva et al., 2010; Maia et al., 2015b; Migliazzo et al., 2015; Pimenta et al., 2015; Silva et al., 2020), bone marrow (da Silva et al., 2010; Richter et al., 2014; Pimenta et al., 2015; Fernandez-Gallego et al., 2020; Silva et al., 2020), and inflammatory breast fluid (Pereira et al., 2019c). Conventional PCR, nested PCR, and real-time PCR (qPCR) targeting kinetoplast minicircle DNA (kDNA) or the small subunit ribosomal DNA (SSU rDNA) multicopy genes have been widely used in routine veterinary practise for FeL diagnosis (Pimenta et al., 2015; Brianti et al., 2019; Pereira et al., 2019c) as well as in epidemiological studies concerning Leishmania infection in cats (Maia et al., 2014; Vilhena et al., 2013; Pereira et al., 2020). Nevertheless, two-step PCR when used to amplify stretches of multicopy genes has increased the sensitivity of detection, and should be preferred for sample testing under suboptimal conditions (i.e. where the parasite load tends to be low) such as when whole blood is used (Pereira et al., 2020). On the other hand, quantitative PCR (qPCR) may further provide information about the amount of parasite DNA present in the sample (Galluzzi et al., 2018). This aspect is particularly relevant for monitoring the efficacy of anti-Leishmania treatments (Pocholle et al., 2012; Basso et al., 2016). However, it is important to highlight that a PCR-positive result may only reflect a transient infection and, for this reason, should be carefully interpreted in a clinical context. PCR products may be subsequently analysed by restriction enzyme digestion (i.e. restriction fragment length polymorphism) and/or DNA sequencing for parasite species identification (Metzdorf et al., 2017; Pereira et al., 2020).

The most common serological tests used to detect anti-Leishmania antibodies in cats are based on enzyme-linked immunosorbent assay (ELISA) and immunofluorescent antibody test (IFAT). The latter is considered as the reference test for the serodiagnosis of canine and human leishmaniosis (OIE, 2018; WHO, 2010). Persichetti et al. (2017) established 1:80 serum dilution as IFAT cut-off for FeL serodiagnosis, and demonstrated that this test helps to detect subclinical or early Leishmania infections in cats. More recently, Iatta et al. (2020) validated IFAT as an accurate test to assess the exposure of cats to L. infantum, reporting positive and negative predictive values of 80.7% and 89.9%, respectively. Compared to IFAT, ELISA (cut-off 40 ELISA units) presents a better performance for the serodiagnosis of clinical FeL (Persichetti et al., 2017). Western blot analysis is mainly intended for research and is rarely available in routine practice. However, this test seems to offer the best diagnostic performance (considering an 18 kDa band as a marker for positivity) to detect antibodies against L. infantum in cats (Persichetti et al., 2017). Direct agglutination test has also occasionally been used in both clinical and epidemiological contexts for serological diagnosis of FeL (Pimenta et al., 2015; Asgari et al., 2020). Some authors have considered a cut-off value of 1:100 to distinguish infected from uninfected cats (Kongkaew et al., 2007; Cardoso et al., 2010; Maia et al., 2015a; Lopes et al., 2017; Asgari et al., 2020; Neves et al., 2020). Indirect hemagglutination was exclusively performed in epidemiological studies in domestic cats in Egypt (Michael et al., 1982; Morsy et al., 1988; Morsy & Abou el Seoud, 1994).

Cats with clinical leishmaniosis tend to present high antibody levels (Richter et al., 2014; Maia et al., 2015b; Pimenta et al., 2015; Basso et al., 2016), and specific treatment frequently leads to the reduction of anti-Leishmania antibodies (Pennisi et al., 2004; Richter et al., 2014; Basso et al., 2016; Pereira et al., 2019c). In some cases, an increase of antibody titres was associated with clinical relapse. Nevertheless, it is essential to emphasise that a positive serological result formally only reflects exposure to pathogens and should be interpreted in a clinical context (Paltrinieri et al., 2016).

In conclusion, the diagnosis of FeL can be a real challenge for veterinarians and is seldom considered during the differential diagnosis. Therefore, the algorithm illustrated in Fig. 3 is proposed for clinically healthy cats used as blood donors or for breeding purposes, and for cats with suspected leishmaniosis.

Fig. 3.

Fig. 3

Proposed diagnostic algorithm for clinically healthy cats used as blood donors or for breeding, and cats with suspected leishmaniosis

7. Treatment and prognosis

Treatment should be considered only after confirmation of disease (see Section 6). Although several treatment regimens have been empirically used for FeL (Table 6), no controlled studies on their efficacy and safety have yet been performed. Long-term administration of allopurinol as monotherapy is the most common regimen prescribed for FeL (Pennisi et al., 2004; Leiva et al., 2005; Rüfenacht et al., 2005; Marcos et al., 2009; Pocholle et al., 2012; Richter et al., 2014; Maia et al., 2015b; Migliazzo et al., 2015; Pimenta et al., 2015; Basso et al., 2016; Attipa et al., 2017a; Leal et al., 2018; Brianti et al., 2019; Pereira et al., 2019c; Altuzarra et al., 2020; Fernandez-Gallego et al., 2020). This drug is generally well-tolerated, but possible cases of cutaneous adverse reactions (Leal et al., 2018; Brianti et al., 2019), coprostasis (Maia et al., 2015b), and elevated liver enzymes (Rüfenacht et al., 2005) have been sporadically reported. Favourable results (i.e. clinical cure or improvement of clinical status) with allopurinol as monotherapy have been commonly obtained (Pennisi et al., 2004; Leiva et al., 2005; Rüfenacht et al., 2005; Pocholle et al., 2012; Richter et al., 2014; Migliazzo et al., 2015; Pimenta et al., 2015; Attipa et al., 2017a; Fernandez-Gallego et al., 2020; Altuzarra et al., 2020). Nevertheless, relapse after discontinuation or low-dose administration (Pennisi et al., 2004; Leiva et al., 2005; Brianti et al., 2019; Pereira et al., 2019c) and no or poor response to allopurinol therapy have been occasionally reported, even in cats with no apparent history of concomitant infections or immunosuppressive therapies (Rüfenacht et al., 2005; Marcos et al., 2009; Basso et al., 2016; Fernandez-Gallego et al., 2020). Therefore, the combination of meglumine antimoniate and allopurinol has been proposed for FeL treatment, appearing to be more effective (Basso et al., 2016; Pereira et al., 2019c), but acute kidney injury has already been reported (Leal et al., 2018). Although controversial, this drug is suspected of inducing nephrotoxicity in dogs (reviewed by Roura et al., 2021). Thus, its use in cats with altered renal function should be carefully considered. Meglumine antimoniate plus ketoconazole was used in a cat with cutaneous and systemic signs of FeL, resulting in apparent clinical cure (Hervás et al., 1999). Miltefosine was recently adopted as an alternative to meglumine antimoniate in an azotemic cat, resulting in rapid clinical improvement (Leal et al., 2018). In this case, transient vomiting episodes were reported in the first week of treatment but were managed using antiemetics (i.e. maropitant). Nevertheless, Fernandez-Gallego et al. (2020) recently reported a case of FeL with concomitant FIV infection not responsive to miltefosine plus allopurinol (combination therapy). Pennisi et al. (2004) reported treatment failure in a seropositive cat for FIV, T. gondii and B. henselae suffering from leishmaniosis. In this case, three distinct regimens were used (i.e. metronidazole plus spiramycin, fluconazole and itraconazole) (Pennisi et al., 2004). In another cat with leishmaniosis associated with an invasive squamous cell carcinoma, domperidone was used after unsuccessful allopurinol monotherapy, but clinical signs remained after one month of treatment (Maia et al., 2015b). The dietary supplement active hexose correlated compound (AHCC) was recently suggested as a possible alternative maintenance therapy to allopurinol (Leal et al., 2018). Surgical removal of lesions was also reported as an additional therapeutic approach (Hervás et al., 2001; Rüfenacht et al., 2005; Basso et al., 2016).

Table 6.

Treatment regimens used for feline leishmaniosis

Type Drug (regimen and dose) Outcome Adverse reactionsa Issues to consider Reference
Monotherapy
Allopurinol (10–30 mg/kg or 100 mg/cat PO q12–24 h; for long-term) Variable (no response to clinical cure) Increased liver enzymes; coprostasisb; toxidermia Secondary xanthine urolithiasis has been reported in dogs Pennisi et al. (2004); Rüfenacht et al. (2005); Marcos et al. (2009); Pocholle et al. (2012); Richter et al. (2014); Maia et al. (2015); Migliazzo et al. (2015); Pimenta et al. (2015); Basso et al. (2016); Leal et al. (2018); Attipa et al., 2017a, Attipa et al., 2017b; Brianti et al. (2019); Pereira Mondolfi et al. (2019); Altuzarra et al. (2020); Fernandez-Gallego et al. (2020)
Domperidone (0.5 mg/kg PO q24 h for 1 month) No improvement Not reported Immunomodulatory drug used on prevention and treatment of CanL Maia et al. (2015)
Fluconazole (5 mg/kg PO q24 h for 2 months) No response Not reported May be hepatotoxic Pennisi et al. (2004)
Itraconazole (50 mg/cat PO q24 h for 2 months) No response Not reported Hepatotoxic drug; may lead to suppression of adrenal function Pennisi et al. (2004)
Meglumine antimoniate (50 mg/kg SC q24 h for 25 days) Not applicable AKI - suspected Treatment stopped due to AKI development; painful to administer; may be nephrotoxic (controversial) Leal et al. (2018)
Meglumine antimoniate (300 mg/cat SC q24 h for 4 months) Resolution of clinical signs See previous line See previous line Fernandez-Gallego et al. (2020)
Combination therapy
Meglumine antimoniate (50 mg/kg SC q24 h for 30 days) plus allopurinol (10 mg/kg PO q12–24 h for long-term) Variable (partial resolution of clinical signs to clinical cure) See meglumine antimoniate and allopurinol monotherapy Proposed for FeL refractory cases Pimenta et al. (2015); Basso et al. (2016); Pereira Mondolfi et al. (2019); Fernandez-Gallego et al. (2020)
Meglumine antimoniate (5 mg/kg SC q24 h) plus ketoconazole (10 mg/kg q24 h); 3 cycles of 4 weeks, 10 days apart Resolution of lesions Not reported; see meglumine antimoniate monotherapy According to BSAVA (2020) ketoconazole is not recommended for cats Hervás et al. (1999)
Metronidazole (25 mg/kg PO q24 h for 35 days) plus spiramycin (150,000 IU/kg PO q24 h for 35 days) No response Not reported Pennisi et al. (2004)
Miltefosine (2 mg/kg PO q24 h for 28 days) plus N-AHCC (½ tablet once daily for long-term) Resolution of clinical signs Transient vomiting associated with miltefosine administration Miltefosine licenced formulations for CanL contain propylene glycol which can hypothetically induce Heinz body haemolytic anaemia in cats (Pennisi and Persichetti, 2018) Leal et al. (2018)
Miltefosine (2 mg/kg PO q24 h for 28 days) plus allopurinol (10 mg/kg PO q12 for long-term) No response See previous line See previous line Fernandez-Gallego et al. (2020)

Abbreviations: AHCC, active hexose correlated compounds; AKI, acute kidney injury; CanL, canine leishmanosis; FeL, feline leishmaniosis; IU, internacional unit; PO, per os; SC, subcutaneous.

a

Reported during treatment of cats with clinical leishmaniosis.

b

Associated with high doses (50 mg/kg q24 h).

Like in dogs, Leishmania parasites may persist in treated cats (Pocholle et al., 2012; Pimenta et al., 2015; Attipa et al., 2017a), suggesting that treatment may lead to clinical cure but may not eliminate the infection.

Overall, FeL has a good prognosis even in cases with underlying viral infections (i.e. FIV or FeLV) (Hervás et al., 1999; Pennisi et al., 2004; Rüfenacht et al., 2005; Richter et al., 2014; Migliazzo et al., 2015; Pimenta et al., 2015; Basso et al., 2016; Attipa et al., 2017a; Leal et al., 2018; Pereira et al., 2019c; Altuzarra et al., 2020; Fernandez-Gallego et al., 2020). On the other hand, panleukopaenia, acute kidney injury and lack of treatment seem to be critical factors associated with poor prognosis (Ozon et al., 1998; Hervás et al., 1999; Poli et al., 2002; Pennisi et al., 2004; Pimenta et al., 2015; Fernandez-Gallego et al., 2020).

8. Prophylaxis and control

No vaccines or drugs preventing leishmaniosis are currently available for use in cats, and most repellents avoiding infection in dogs are toxic to these felids. In endemic areas, cats are frequently exposed to phlebotomine sand fly bites, and this is associated with an increased risk of Leishmania infection (Pereira et al., 2019b). Chemoprophylaxis may be achieved by using a matrix collar containing 10% imidacloprid and 4.5% flumethrin. This formulation showed to be safe and effective in reducing infection risk by L. infantum in cats (Brianti et al., 2017). Nevertheless, keeping cats indoors from dusk to dawn during the period of vector activity (April to November in Mediterranean areas, see Alten et al., 2016), as well as using physical barriers such as nets (i.e. mesh size 1,240 holes/in2) on windows and doors (Faiman et al., 2009) may eschew exposure to phlebotomine sand fly bites, thereby minimising the risk of Leishmania infection. Spraying with residual insecticides on walls and roofs of human houses and animal shelters has been proposed as an additional measure for preventing CanL (Maroli et al., 2010). However, their use in environments with cats should be carefully considered since most of these products contain compounds (i.e. pyrethrins or pyrethroids) that can induce feline toxicosis. Isoxazolines, namely afoxolaner and fluralaner, have been regarded as a new promising class of drugs for controlling CanL and human leishmaniosis in endemic areas (Miglianico et al., 2018; Bongiorno et al., 2020; Queiroga et al., 2020). A spot-on formulation of fluralaner (112.5–500 mg) is licensed for ectoparasite (i.e. ticks, fleas and mites) control in cats. This systemic insecticide induced long-term mortality of Lutzomyia longipalpis and Phlebotomus perniciosus (vectors of L. infantum in the New and Old Worlds, respectively) after feeding on treated dogs (Bongiorno et al., 2020; Queiroga et al., 2020). Similar results are expected to be observed in cats. Although studies are undoubtedly needed, this drug may also hypothetically represent an affordable indirect method for reducing Leishmania infection in cats in endemic areas. The detection and treatment of cats with leishmaniosis is also likely a beneficial control measure, as they may serve as a source of infection to phlebotomine sand fly vectors (Maroli et al., 2007; da Silva et al., 2010; Mendonça et al., 2020). In the absence of evidence indicating otherwise, Leishmania-infected cats should not be used for breeding or as blood donors due to the potential risk of transmission through blood transfusion and venereal/congenital infection, as reported in dogs (Owens et al., 2001; Naucke & Lorentz, 2012).

In summary, and according to the current knowledge, the following prophylactic measures are proposed to prevent and control &feline infection:

  • In endemic areas, keeping cats indoors from dusk to dawn during the phlebotomine sand fly season should be encouraged.

  • Use of physical barriers on houses and animal shelters located in endemic areas with high vector density.

  • Use of a matrix collar containing 10% imidacloprid and 4.5% flumethrin as well topical solutions containing 112.5–500 mg of fluralaner in cats living in or travelling to (cover the time of travel) endemic areas during the known transmission season.

  • After the return from endemic areas, cats should be clinically evaluated and tested.

  • Cats eligible for breeding and blood transfusion should be periodically tested.

  • Infected cats should not be used for breeding or as blood donors.

  • Cats with leishmaniosis should be treated and periodically monitored.

9. Public health considerations

Zoonotic visceral leishmaniosis (ZVL) caused by L. infantum is a life-threatening human disease endemic in the Mediterranean Basin, the Middle East, western Asia, and Brazil (WHO, 2010). Domestic dogs are considered the primary source of human infection, which typically occurs via the bites of female phlebotomine sand flies (WHO, 2010). Nevertheless, during the last years, cats have been deserved attention due to their potential enrolment in ZVL epidemiology, appearing now as possible primary or secondary reservoir hosts (Asfaram et al., 2019). This hypothesis arises by the following reasons (Maroli et al., 2007; da Silva et al., 2010; GfK, 2016; Pereira et al., 2019b; 2019c; 2020; Carneiro et al., 2020; Fernandez-Gallego et al., 2020; Mendonça et al., 2020):

  • Cats are frequently exposed to the bites of competent vectors.

  • Cats are naturally susceptible to L. infantum infection.

  • Feline infection often runs a subclinical course.

  • Parasites are frequently found in the skin and blood of infected cats.

  • Naturally infected cats are infectious to competent vectors.

  • Naturally infected cats may be the source of infection to other mammals through competent vectors.

  • Strains of feline origin seem to be indistinguishable from those isolated from dogs, humans, and competent vectors.

  • Cats are among the most popular animals owned as a pet.

  • Cats are often present in domestic/peridomestic areas where transmission cycles occur.

10. Conclusions

During the last years, several studies concerning Leishmania infection in cats were conducted. Feline leishmaniosis has also gained importance appearing nowadays as an emergent disease. Nevertheless, its immunopathogenesis is poorly known. This protozoonosis is manifested by a broad spectrum of clinical signs and clinicopathological abnormalities, which, associated with the lack of standardised protocols, make its diagnosis further challenging for veterinarians. In this review, a diagnostic algorithm for FeL is proposed for clinical decision support. Treatment options currently available are empirical and suboptimal. The main form to prevent disease is to avoid infection. However, in contrast to dogs, very limited options are currently available to keep infective sand flies away from cats. Thus, a set of prevention guidelines are herein suggested.

Funding

The Global Health and Tropical Medicine centre is funded by the Fundação para a Ciência e a Tecnologia, I.P. (FCT) (GHTM-UID/Multi/04413/2013), Portugal. AP was supported by the Portuguese Ministry of Science, Technology and Higher Education (via FCT) through a PhD grant (SFRH/BD/116516/2016).

CRediT author statement

André Pereira: Conceptualisation, Methodology, Validation, Formal analysis, Investigation, Writing – Original Draft, Writing - Review & Editing. Carla Maia: Conceptualisation, Methodology, Validation, Writing - Review & Editing, Supervision. The authors read and approved the final manuscript.

Declaration of competing interests

The authors declare that they have no competing interests.

References

  1. Abbate J.M., Arfuso F., Napoli E., Gaglio G., Giannetto S., Latrofa M.S., et al. Leishmania infantum in wild animals in endemic areas of southern Italy. Comp. Immunol. Microbiol. Infect. Dis. 2019;67:101374. doi: 10.1016/j.cimid.2019.101374. [DOI] [PubMed] [Google Scholar]
  2. Akhtardanesh B., Kheirandish R., Sharifi I., Mohammadi A., Mostafavi A., Mahmoodi T., Ebrahimi M. Low susceptibility of domestic cats to experimental Leishmania infantum infection. J. Vector Borne Dis. 2018;55:230–234. doi: 10.4103/0972-9062.249481. [DOI] [PubMed] [Google Scholar]
  3. Akhtardanesh B., Moeini E., Sharifi I., Saberi M., Sadeghi B., Ebrahimi M., Otranto D. Leishmania infection in cats positive for immunodeficiency virus and feline leukemia virus in an endemic region of Iran. Vet. Parasitol. Reg. Stud. Rep. 2020;20:100387. doi: 10.1016/j.vprsr.2020.100387. [DOI] [PubMed] [Google Scholar]
  4. Akhtardanesh B., Sharifi I., Mohammadi A., Mostafavi M., Hakimmipour M., Pourafshar N.G. Feline visceral leishmaniasis in Kerman, southeast of Iran: serological and molecular study. J. Vector Borne Dis. 2017;54:96–102. [PubMed] [Google Scholar]
  5. Alcover M.M., Ribas A., Guillén M.C., Berenguer D., Tomás-Pérez M., Riera C., Fisa R. Wild mammals as potential silent reservoirs of Leishmania infantum in a Mediterranean area. Prev. Vet. Med. 2020;175:104874. doi: 10.1016/j.prevetmed.2019.104874. [DOI] [PubMed] [Google Scholar]
  6. Alten B., Maia C., Afonso M.O., Campino L., Jiménez M., González E., et al. Seasonal dynamics of phlebotomine sand fly species proven vectors of Mediterranean leishmaniasis caused by Leishmania infantum. PLoS Negl. Trop. Dis. 2016;10 doi: 10.1371/journal.pntd.0004458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Altuzarra R., Movilla R., Roura X., Espada Y., Majo N., Novellas R. Computed tomographic features of destructive granulomatous rhinitis with intracranial extension secondary to leishmaniasis in a cat. Vet. Radiol. Ultrasound. 2020;61:E64–E68. doi: 10.1111/vru.12666. [DOI] [PubMed] [Google Scholar]
  8. Asfaram S., Fakhar M., Teshnizi S.H. Is the cat an important reservoir host for visceral leishmaniasis? A systematic review with meta-analysis. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019;25 doi: 10.1590/1678-9199-jvatitd-2019-0012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Asgari Q., Mohammadpour I., Bozorg-Ghalati F., Motazedian M.H., Kalantari M., Hosseini S. Alarming: high prevalence of Leishmania infantum infection in cats from southern Iran based on molecular and serological methods. Ann. Parasitol. 2020;66:143–156. doi: 10.17420/ap6602.249. [DOI] [PubMed] [Google Scholar]
  10. Attipa C., Neofytou K., Yiapanis C., Martínez-Orellana P., Baneth G., Nachum-Biala Y., et al. Follow-up monitoring in a cat with leishmaniosis and coinfections with Hepatozoon felis and “Candidatus Mycoplasma haemominutum”. J. Feline Med. Surg. Open Rep. 2017;3 doi: 10.1177/2055116917740454. 205511691774045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Attipa C., Papasouliotis K., Solano-Gallego L., Baneth G., Nachum-Biala Y., Sarvani E., et al. Prevalence study and risk factor analysis of selected bacterial, protozoal and viral, including vector-borne, pathogens in cats from Cyprus. Parasit. Vectors. 2017;10:130. doi: 10.1186/s13071-017-2063-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ayllón T., Diniz P.P.V.P., Breitschwerdt E.B., Villaescusa A., Rodríguez-Franco F., Sainz A. Vector-borne diseases in client-owned and stray cats from Madrid, Spain. Vector Borne Zoonotic Dis. 2012;12:143–150. doi: 10.1089/vbz.2011.0729. [DOI] [PubMed] [Google Scholar]
  13. Ayllón T., Tesouro M.A., Amusategui I., Villaescusa A., Rodriguez-Franco F., Sainz Á. Serologic and molecular evaluation of Leishmania infantum in cats from central Spain. Ann. N. Y. Acad. Sci. 2008;1149:361–364. doi: 10.1196/annals.1428.019. [DOI] [PubMed] [Google Scholar]
  14. Baneth G., Nachum-Biala Y., Zuberi A., Zipori-Barki N., Orshan L., Kleinerman G., et al. Leishmania infection in cats and dogs housed together in an animal shelter reveals a higher parasite load in infected dogs despite a greater seroprevalence among cats. Parasit. Vectors. 2020;13:115. doi: 10.1186/s13071-020-3989-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Basso M.A., Marques C., Santos M., Duarte A., Pissarra H., Carreira L.M., et al. Successful treatment of feline leishmaniosis using a combination of allopurinol and N-methyl-glucamine antimoniate. J. Feline Med. Surg. Open Rep. 2016;2 doi: 10.1177/2055116916630002. 205511691663000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Benassi J.C., Benvenga G.U., Ferreira H.L., Pereira V.F., Keid L.B., Soares R., de S. Oliveira T.M.F. Detection of Leishmania infantum DNA in conjunctival swabs of cats by quantitative real-time PCR. Exp. Parasitol. 2017;177:93–97. doi: 10.1016/j.exppara.2017.04.004. [DOI] [PubMed] [Google Scholar]
  17. Berenguer L.K.A.R., de A. Gomes C.F.C., de O. Nascimento J., Bernardi J.C.M., Lima V.F.S., de Oliveira J.B., et al. Leishmania infantum infection in a domestic cat: a real threat or an occasional finding? Acta Parasitol. 2020;66:673–676. doi: 10.1007/s11686-020-00294-z. [DOI] [PubMed] [Google Scholar]
  18. Bezerra J.A.B., De Medeiros Oliveira I.V.P., Yamakawa A.C., Nilsson M.G., Tomaz K.L.R., De Oliveira K.D.S., et al. Serological and molecular investigation of Leishmania spp. infection in cats from an area endemic for canine and human leishmaniasis in northeast Brazil. Rev. Bras. Parasitol. Vet. 2019;28:790–796. doi: 10.1590/s1984-29612019082. [DOI] [PubMed] [Google Scholar]
  19. Bonfante-Garrido R., Urdaneta I., Urdaneta R., Alvarado J. Natural infection of cats with leishmania in Barquisimeto, Venezuela. Trans. R. Soc. Trop. Med. Hyg. 1991;85:53. doi: 10.1016/0035-9203(91)90153-. [DOI] [PubMed] [Google Scholar]
  20. Bongiorno G., Meyer L., Evans A., Lekouch N., Bianchi R., Khoury C., Chiummo R., Thomas E., Gradoni L. A single oral dose of fluralaner (Bravecto®) in dogs rapidly kills 100% of blood-fed Phlebotomus perniciosus , a main visceral leishmaniasis vector, for at least 1 month after treatment. Med. Vet. Entomol. 2020;34:240–243. doi: 10.1111/mve.12420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Braga A.R.C., Corrêa A.P.F.L., Camossi L.G., Da Silva R.C., Langoni H., Lucheis S.B. Coinfection by Toxoplasma gondii and Leishmania spp. in domestic cats (Felis catus) in state of Mato Grosso do Sul. Rev. Soc. Bras. Med. Trop. 2014;47:796–797. doi: 10.1590/0037-8682-0041-2014. [DOI] [PubMed] [Google Scholar]
  22. Braga A.R.C., Langoni H., Lucheis S.B. Evaluation of canine and feline leishmaniasis by the association of blood culture, immunofluorescent antibody test and polymerase chain reaction. J. Venom. Anim. Toxins Incl. Trop. Dis. 2014;20:5. doi: 10.1186/1678-9199-20-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bresciani K.D.S., Serrano A.C.M., de Matos L.V.S., Savani E.S.M.M., D’Auria S.R.N., Perri S.H.V., et al. Ocorrência de Leishmania spp. em felinos do município de Araçatuba. SP. Rev. Bras. Parasitol. Vet. 2010;19:127–129. doi: 10.4322/rbpv.01902012. [DOI] [PubMed] [Google Scholar]
  24. Brianti E., Celi N., Napoli E., Abbate J.M., Arfuso F., Gaglio G., et al. Treatment and long-term follow-up of a cat with leishmaniosis. Parasit. Vectors. 2019;12:121. doi: 10.1186/s13071-019-3388-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Brianti E., Falsone L., Napoli E., Gaglio G., Giannetto S., Pennisi M.G., et al. Prevention of feline leishmaniosis with an imidacloprid 10%/flumethrin 4.5% polymer matrix collar. Parasit. Vectors. 2017;10 doi: 10.1186/s13071-017-2258-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. BSAVA . 10th ed. British Small Animal Veterinary Association,; Gloucester: 2020. Small Animal Formulary, Part A: Canine and Feline. [Google Scholar]
  27. Can H., Döşkaya M., Özdemir H.G., Şahar E.A., Karakavuk M., Pektaş B., et al. Seroprevalence of Leishmania infection and molecular detection of Leishmania tropica and Leishmania infantum in stray cats of İzmir, Turkey. Exp. Parasitol. 2016;167:109–114. doi: 10.1016/j.exppara.2016.05.011. [DOI] [PubMed] [Google Scholar]
  28. Cardia D.F.F., Camossi L.G., Neto L. da S., Langoni H., Bresciani K.D.S. Prevalence of Toxoplasma gondii and Leishmania spp. infection in cats from Brazil. Vet. Parasitol. 2013;197:634–637. doi: 10.1016/j.vetpar.2013.07.017. [DOI] [PubMed] [Google Scholar]
  29. Cardoso L., Lopes A.P., Sherry K., Schallig H., Solano-Gallego L. Low seroprevalence of Leishmania infantum infection in cats from northern Portugal based on DAT and ELISA. Vet. Parasitol. 2010;174:37–42. doi: 10.1016/j.vetpar.2010.08.022. [DOI] [PubMed] [Google Scholar]
  30. Carneiro L.A., Vasconcelos dos Santos T., do R. do Rêgo Lima L.V., Ramos P.K.S., Campos M.B., Silveira F.T. First report on feline leishmaniasis caused by Leishmania (Leishmania) amazonensis in Amazonian Brazil. Vet. Parasitol. Reg. Stud. Rep. 2020;19:100360. doi: 10.1016/j.vprsr.2019.100360. [DOI] [PubMed] [Google Scholar]
  31. Chatzis M.K., Andreadou M., Leontides L., Kasabalis D., Mylonakis M., Koutinas A.F., et al. Cytological and molecular detection of Leishmania infantum in different tissues of clinically normal and sick cats. Vet. Parasitol. 2014;202:217–225. doi: 10.1016/j.vetpar.2014.02.044. [DOI] [PubMed] [Google Scholar]
  32. Chatzis M.K., Leontides L., Athanasiou L.V., Papadopoulos E., Kasabalis D., Mylonakis M., et al. Evaluation of indirect immunofluorescence antibody test and enzyme-linked immunosorbent assay for the diagnosis of infection by Leishmania infantum in clinically normal and sick cats. Exp. Parasitol. 2014;147:54–59. doi: 10.1016/j.exppara.2014.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Chatzis M.K., Xenoulis P.G., Leontides L., Kasabalis D., Mylonakis M.E., Andreadou M., et al. Evaluation of clinicopathological abnormalities in sick cats naturally infected by Leishmania infantum. Heliyon. 2020;6 doi: 10.1016/j.heliyon.2020.e05177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Coelho W.M.D., de Lima V.M.F., do Amarante A.F.T., Langoni H., Pereira V.B.R., Abdelnour A., Bresciani K.D.S. Occurrence of Leishmania (Leishmania) chagasi in a domestic cat (Felis catus) in Andradina, São Paulo, Brazil: case report. Rev. Bras. Parasitol. Vet. 2010;19:256–258. doi: 10.1590/s1984-29612010000400013. [DOI] [PubMed] [Google Scholar]
  35. Coelho W.M.D., Do Amarante A.F.T., De Carvalho Apolinário J., Coelho N.M.D., De Lima V.M.F., Perri S.H.V., Bresciani K.D.S. Seroepidemiology of Toxoplasma gondii, Neospora caninum, and Leishmania spp. infections and risk factors for cats from Brazil. Parasitol. Res. 2011;109:1009–1013. doi: 10.1007/s00436-011-2461-x. [DOI] [PubMed] [Google Scholar]
  36. Coelho W.M.D., Richini-Pereira V.B., Langoni H., Bresciani K.D.S. Molecular detection of Leishmania sp. in cats (Felis catus) from andradina municipality, São Paulo State, Brazil. Vet. Parasitol. 2011;176:281–282. doi: 10.1016/j.vetpar.2010.10.052. [DOI] [PubMed] [Google Scholar]
  37. Colella V., Hodžić A., Iatta R., Baneth G., Alić A., Otranto D. Zoonotic leishmaniasis, Bosnia and Herzegovina. Emerg. Infect. Dis. 2019;25:385–386. doi: 10.3201/eid2502.181481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Coura F.M., Passos S.K.P., de O.F. Pelegrino M., de O.P. Leme F., Paz G.F., Gontijo C.M.F., da Costa-Val A.P. Serological, molecular, and microscopic detection of Leishmania in cats (Felis catus) in Belo Horizonte, Minas Gerais State, Brazil. Rev. Bras. Parasitol. Vet. 2018;27:570–574. doi: 10.1590/s1984-296120180052. [DOI] [PubMed] [Google Scholar]
  39. Craig M.T., Barton C.L., Mercer S.H., Droleskey B.E., Jones P. Dermal leishmaniasis in a Texas cat. Am. J. Trop. Med. Hyg. 1986;35:1100–1102. doi: 10.4269/ajtmh.1986.35.1100. [DOI] [PubMed] [Google Scholar]
  40. da Costa-Val A.P., Coura F.M., de M. Barbieri J., Diniz L., Sampaio A., Dos Reis J.K.P., et al. Serological study of feline leishmaniasis and molecular detection of Leishmania infantum and Leishmania braziliensis in cats (Felis catus) Rev. Bras. Parasitol. Vet. 2020;29:1–12. doi: 10.1590/s1984-29612020023. [DOI] [PubMed] [Google Scholar]
  41. da Silva A.V.M., de Souza Cândido C.D., de Pita Pereira D., Brazil R.P., Carreira J.C.A. The first record of American visceral leishmaniasis in domestic cats from Rio de Janeiro, Brazil. Acta Trop. 2008;105:92–94. doi: 10.1016/j.actatropica.2007.09.001. [DOI] [PubMed] [Google Scholar]
  42. da Silva S.M., Rabelo P.F.B., de F. Gontijo N., Ribeiro R.R., Melo M.N., Ribeiro V.M., Michalick M.S.M. First report of infection of Lutzomyia longipalpis by Leishmania (Leishmania) infantum from a naturally infected cat of Brazil. Vet. Parasitol. 2010;174:150–154. doi: 10.1016/j.vetpar.2010.08.005. [DOI] [PubMed] [Google Scholar]
  43. da Silveira Neto L., Sobrinho L.S.V., Martins C.O., Machado R.Z., Marcondes M., De Lima V.M.F. Use of crude, FML and rK39 antigens in ELISA to detect anti-Leishmania spp. antibodies in Felis catus. Vet. Parasitol. 2011;177:374–377. doi: 10.1016/j.vetpar.2010.11.055. [DOI] [PubMed] [Google Scholar]
  44. de C.N. Silva R., Ramos R.A.N., de S. Pimentel D., de A. Oliveira G.M., de Carvalho G.A., de A. Santana M., et al. Detection of antibodies against Leishmania infantum in cats (Felis catus) from the state of Pernambuco, Brazil. Rev. Soc. Bras. Med. Trop. 2014;47:108–109. doi: 10.1590/0037-8682-0005-2012. [DOI] [PubMed] [Google Scholar]
  45. De Matos A.M.R.N., Caldart E.T., Ferreira F.P., Monteiro K.C., De Souza M., Brunieri D.T.S.C., et al. Antibodies anti-trypanosomatides in domestic cats in Paraná: who is at highest risk of infection? Rev. Bras. Parasitol. Vet. 2018;27:232–236. doi: 10.1590/S1984-296120180033. [DOI] [PubMed] [Google Scholar]
  46. de Mendonça I.L., Batista J.F., do P. Lopes K.S.P., Magalhães Neto F., das C.R., Alcântara D.S., Merigueti Y.F.F.B., Costa C.H.N. Infection of Lutzomyia longipalpis in cats infected with Leishmania infantum. Vet. Parasitol. 2020;280:109058. doi: 10.1016/j.vetpar.2020.109058. [DOI] [PubMed] [Google Scholar]
  47. de Morais R.C.S., Gonçalves S. da C., Costa P.L., da Silva K.G., da Silva F.J., Silva R.P.E., et al. Detection of Leishmania infantum in animals and their ectoparasites by conventional PCR and real time PCR. Exp. Appl. Acarol. 2013;59:473–481. doi: 10.1007/s10493-012-9611-4. [DOI] [PubMed] [Google Scholar]
  48. de Sousa K.C.M., Herrera H.M., Domingos I.H., Campos J.B.V., dos Santos I.M.C., Neves H.H., et al. Detecção sorológica de Toxoplasma gondii, Leishmania infantum e Neospora caninum em gatos de uma área endêmica para leishmaniose no Brasil. Rev. Bras. Parasitol. Vet. 2014;23:449–455. doi: 10.1590/S1984-29612014078. [DOI] [PubMed] [Google Scholar]
  49. De Sousa Oliveira T.M.F., vanessa Pereira F., Benvenga G.U., Martin M.F.A., Benassi J.C., Da Silva D.T., Starke-Buzetti W.A. Conjunctival swab PCR to detect Leishmania spp. in cats. Rev. Bras. Parasitol. Vet. 2015;24:220–222. doi: 10.1590/S1984-29612015016. [DOI] [PubMed] [Google Scholar]
  50. De Souza A.I., Barros E.M.S., Ishikawa E., Novaes Ilha I.M., Barbosa Marin G.R., Brandão Nunes V.L. Feline leishmaniasis due to Leishmania (Leishmania) amazonensis in Mato Grosso do Sul State, Brazil. Vet. Parasitol. 2005;128:41–45. doi: 10.1016/j.vetpar.2004.11.020. [DOI] [PubMed] [Google Scholar]
  51. Dedola C., Zobba R., Varcasia A., Visco S., Alberti A., Pipia A.P., et al. Serological and molecular detection of Leishmania infantum in cats of northern Sardinia, Italy. Vet. Parasitol. Reg. Stud. Rep. 2018;13:120–123. doi: 10.1016/j.vprsr.2018.05.003. [DOI] [PubMed] [Google Scholar]
  52. Del Río L., Chitimia L., Cubas A., Victoriano I., De la Rúa P., Gerrikagoitia X., et al. Evidence for widespread Leishmania infantum infection among wild carnivores in L. infantum periendemic northern Spain. Prev. Vet. Med. 2014;113:430–435. doi: 10.1016/j.prevetmed.2013.12.001. [DOI] [PubMed] [Google Scholar]
  53. Di Mattia D., Fondevila D., Abramo F., Fondati A. A retrospective histopathological, immunohistochemical and molecular study of the presence of Leishmania spp. in the skin of cats with head and neck ulcerative dermatitis. Vet. Dermatol. 2018;29:212. doi: 10.1111/vde.12535. e76. [DOI] [PubMed] [Google Scholar]
  54. Diakou A., Di Cesare A., Accettura P.M., Barros L., Iorio R., Paoletti B., et al. Intestinal parasites and vector-borne pathogens in stray and free-roaming cats living in continental and insular Greece. PLoS Negl. Trop. Dis. 2017;11 doi: 10.1371/journal.pntd.0005335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Diakou A., Papadopoulos E., Lazarides K. Specific anti-Leishmania spp. antibodies in stray cats in Greece. J. Feline Med. Surg. 2009;11:728–730. doi: 10.1016/j.jfms.2008.01.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Dincer E., Karapinar Z., Oktem M., Ozbaba M., Ozkul A., Ergunay K. Canine infections and partial S segment sequence analysis of Toscana virus in Turkey. Vector Borne Zoonotic Dis. 2016;16:611–618. doi: 10.1089/vbz.2016.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Dincer E., Ozkul A., Gargari S., Ergunay K. Potential animal reservoirs of Toscana virus and coinfections with Leishmania infantum in Turkey. Am. J. Trop. Med. Hyg. 2015;92:690–697. doi: 10.4269/ajtmh.14-0322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Dinçer D., Arca E., Koç E., Topal Y., Özkan A.T., Celebi B. A case of cutaneous leishmaniasis caused by Leishmania infantum in a non-endemic province (Ankara) of Turkey. Mikrobiyol. Bul. 2012;46:499–506. [PubMed] [Google Scholar]
  59. Duarte A., Castro I., Pereira da Fonseca I.M., Almeida V., Madeira de Carvalho L.M., Meireles J., et al. Survey of infectious and parasitic diseases in stray cats at the Lisbon Metropolitan Area, Portugal. J. Feline Med. Surg. 2010;12:441–446. doi: 10.1016/j.jfms.2009.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Ebani V.V., Guardone L., Marra F., Altomonte I., Nardoni S., Mancianti F. Arthropod-borne pathogens in stray cats from northern Italy: a serological and molecular survey. Animals. 2020;10:2334. doi: 10.3390/ani10122334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Faiman R., Cuño R., Warburg A. Control of phlebotomine sand flies with vertical fine-mesh nets. J. Med. Entomol. 2009;46:820–831. doi: 10.1603/033.046.0412. [DOI] [PubMed] [Google Scholar]
  62. Fatollahzadeh M., Khanmohammadi M., Bazmani A., Mirsamadi N., Jafari R., Mohebali M., et al. Survey of feline visceral leishmaniasis in Azarshahr area, north west of Iran, 2013. J. Parasit. Dis. 2016;40:683–687. doi: 10.1007/s12639-014-0559-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Fernandez-Gallego A., Feo Bernabe L., Dalmau A., Esteban-Saltiveri D., Font A., Leiva M., et al. Feline leishmaniosis: diagnosis, treatment and outcome in 16 cats. J. Feline Med. Surg. 2020;22:993–1007. doi: 10.1177/1098612X20902865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Figueiredo F.B., Bonna I.C.F., Nascimento L.D., Da Costa T., Baptista C., Pacheco T.M.V., et al. Avaliação sorológica para detecção de anticorpos anti-Leishmania em cães e gatos no bairro de Santa Rita de Cássia, Município de Barra Mansa, Estado do Rio de Janeiro. Rev. Soc. Bras. Med. Trop. 2009;42:141–145. doi: 10.1590/S0037-86822009000200009. [DOI] [PubMed] [Google Scholar]
  65. Galluzzi L., Ceccarelli M., Diotallevi A., Menotta M., Magnani M. Real-time PCR applications for diagnosis of leishmaniasis. Parasit. Vectors. 2018;11:273. doi: 10.1186/s13071-018-2859-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. GfK Pet ownership. 2016. https://cdn2.hubspot.net/hubfs/2405078/cms-pdfs/fileadmin/user_upload/country_one_pager/nl/documents/global-gfk-survey_pet-ownership_2016.pdf
  67. Grevot A., Jaussaud Hugues P., Marty P., Pratlong F., Ozon C., Haas P., et al. Leishmaniosis due to Leishmania infantum in a FIV and FelV positive cat with a squamous cell carcinoma diagnosed with histological, serological and isoenzymatic methods. Parasite. 2005;12:271–275. doi: 10.1051/parasite/2005123271. [DOI] [PubMed] [Google Scholar]
  68. Hatam G.R., Adnani S.J., Asgari Q., Fallah E., Motazedian M.H., Sadjjadi S.M., Sarkari B. First report of natural infection in cats with Leishmania infantum in Iran. Vector Borne Zoonotic Dis. 2010;10:313–316. doi: 10.1089/vbz.2009.0023. [DOI] [PubMed] [Google Scholar]
  69. Headley S.A., Pimentel L.A., de Amorim I.F.G., Amude A.M., Viana N.E., Muraro L.S., et al. Immunohistochemical characterization of cutaneous leishmaniasis in cats from Central-West Brazil. Vet. Parasitol. Reg. Stud. Rep. 2019;17:100290. doi: 10.1016/j.vprsr.2019.100290. [DOI] [PubMed] [Google Scholar]
  70. Hervás J., Chacón-M De Lara F., Sdnchez-lsarria M.A., Pellicer S., Carrasco L., Castillo J.A., et al. Two cases of feline visceral and cutaneous leishmaniosis in Spain. J. Feline Med. Surg. 1999;1:101–105. doi: 10.1016/S1098-612X(99)90066-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Hervás J., Chacón-Manrique De Lara F., López J., Gómez-Villamandos J.C., Guerrero M.J., Moreno A. Granulomatous (pseudotumoral) iridociclitis associated with leishmaniasis in a cat. Vet. Rec. 2001;149:624–625. doi: 10.1136/vr.149.20.624. [DOI] [PubMed] [Google Scholar]
  72. Iatta R., Furlanello T., Colella V., Tarallo V.D., Latrofa M.S., Brianti E., et al. A nationwide survey of Leishmania infantum infection in cats and associated risk factors in Italy. PLoS Negl. Trop. Dis. 2019;13 doi: 10.1371/journal.pntd.0007594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Iatta R., Trerotoli P., Lucchese L., Natale A., Buonavoglia C., Nachum-Biala Y., et al. Validation of a new immunofluorescence antibody test for the detection of Leishmania infantum infection in cats. Parasitol. Res. 2020;119:1381–1386. doi: 10.1007/s00436-020-06627-1. [DOI] [PubMed] [Google Scholar]
  74. Junsiri W., Wongnarkpet S., Chimnoi W., Kengradomkij C., Kajeerum W., Pangjai D., Nimsuphan B. Seroprevalence of Leishmania infection in domestic animals in Songkhla and Satun provinces, southern Thailand. Trop. Biomed. 2017;34:352–362. [PubMed] [Google Scholar]
  75. Karakuş M., Arserim S.K., Erişöz Kasap Ö., Pekağırbaş M., Aküzüm D., Alten B., et al. Vector and reservoir surveillance study in a canine and human leishmaniasis endemic area in most western part of Turkey, Karaburun. Acta Trop. 2019;190:177–182. doi: 10.1016/j.actatropica.2018.11.020. [DOI] [PubMed] [Google Scholar]
  76. Kirkpatrick C.E., Farrell J.P., Goldschmidt M.H. Leishmania chagasi and L. donovani: experimental infections in domestic cats. Exp. Parasitol. 1984;58:125–131. doi: 10.1016/0014-4894(84)90027-4. [DOI] [PubMed] [Google Scholar]
  77. Kongkaew W., Siriarayaporn P., Leelayoova S., Supparatpinyo K., Areechokchai D., Duang-ngern P., et al. Autochthonous visceral leishmaniasis: a report of a second case in Thailand. Southeast Asian J. Trop. Med. Publ. Health. 2007;38:8–12. [PubMed] [Google Scholar]
  78. Kovalenko D.A., Nasyrova R.M., Ponomareva V.I., Fatullaeva A.A., Razakov S.A., Ponirovskiĭ E.N., et al. Human and canine visceral leishmaniasis in the Papsky District, Namangan Region, Uzbekistan: seroepidemiological and seroepizootological surveys. Med. Parazitol. (Mosk.) 2011;3:32–37. [PubMed] [Google Scholar]
  79. Latrofa M.S., Iatta R., Toniolo F., Furlanello T., Ravagnan S., Capelli G., et al. A molecular survey of vector-borne pathogens and haemoplasmas in owned cats across Italy. Parasit. Vectors. 2020;13:116. doi: 10.1186/s13071-020-3990-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Leal R.O., Pereira H., Cartaxeiro C., Delgado E., Peleteiro M. da C., Pereira da Fonseca I. Granulomatous rhinitis secondary to feline leishmaniosis: report of an unusual presentation and therapeutic complications. JFMS Open Rep. 2018;4 doi: 10.1177/2055116918811374. 2055116918811374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Leiva M., Lloret A., Peña T., Roura X. Therapy of ocular and visceral leishmaniasis in a cat. Vet. Ophthalmol. 2005;8:71–75. doi: 10.1111/j.1463-5224.2005.00342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Leonel J.A.F., Vioti G., Alves M.L., Benassi J.C., Silva D.T. da, Spada J.C.P., et al. Leishmaniasis in cat shelters: a serological, molecular and entomological study. Transbound. Emerg. Dis. 2020;67:2013–2019. doi: 10.1111/tbed.13544. [DOI] [PubMed] [Google Scholar]
  83. Lima C., Colella V., Latrofa M.S., Cardoso L., Otranto D., Alho A.M. Molecular detection of Leishmania spp. in dogs and a cat from Doha. Qatar. Parasit. Vectors. 2019;12:125. doi: 10.1186/s13071-019-3394-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Longoni S.S., López-Cespedes A., Sánchez-Moreno M., Bolio-Gonzalez M.E., Sauri-Arceo C.H., Rodríguez-Vivas R.I., Marín C. Detection of different Leishmania spp. and Trypanosoma cruzi antibodies in cats from the Yucatan Peninsula (Mexico) using an iron superoxide dismutase excreted as antigen. Comp. Immunol. Microbiol. Infect. Dis. 2012;35:469–476. doi: 10.1016/j.cimid.2012.04.003. [DOI] [PubMed] [Google Scholar]
  85. Lopes A.P., Oliveira A.C., Granada S., Rodrigues F.T., Papadopoulos E., Schallig H., et al. Antibodies to Toxoplasma gondii and Leishmania spp. in domestic cats from Luanda, Angola. Vet. Parasitol. 2017;239:15–18. doi: 10.1016/j.vetpar.2017.04.009. [DOI] [PubMed] [Google Scholar]
  86. Maia C., Campino L. Biomarkers associated with Leishmania infantum exposure, infection, and disease in dogs. Front. Cell. Infect. Microbiol. 2018;8:302. doi: 10.3389/fcimb.2018.00302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Maia C., Cardoso L. Spread of Leishmania infantum in Europe with dog travelling. Vet. Parasitol. 2015;213:2–11. doi: 10.1016/j.vetpar.2015.05.003. [DOI] [PubMed] [Google Scholar]
  88. Maia C., Gomes J., Cristóvão J., Nunes M., Martins A., Rebêlo E., Campino L. Feline Leishmania infection in a canine leishmaniasis endemic region, Portugal. Vet. Parasitol. 2010;174:336–340. doi: 10.1016/j.vetpar.2010.08.030. [DOI] [PubMed] [Google Scholar]
  89. Maia C., Nunes M., Campino L. Importance of cats in zoonotic leishmaniasis in Portugal. Vector Borne Zoonotic Dis. 2008;8:555–560. doi: 10.1089/vbz.2007.0247. [DOI] [PubMed] [Google Scholar]
  90. Maia C., Ramos C., Coimbra M., Bastos F., Martins Â., Pinto P., et al. Bacterial and protozoal agents of feline vector-borne diseases in domestic and stray cats from southern Portugal. Parasit. Vectors. 2014;7:115. doi: 10.1186/1756-3305-7-115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Maia C., Ramos C., Coimbra M., Cardoso L., Campino L. Prevalence of Dirofilaria immitis antigen and antibodies to Leishmania infantum in cats from southern Portugal. Parasitol. Int. 2015;64:154–156. doi: 10.1016/j.parint.2014.11.006. [DOI] [PubMed] [Google Scholar]
  92. Maia C., Sousa C., Ramos C., Cristóvão J.M., Faísca P., Campino L. First case of feline leishmaniosis caused by Leishmania infantum genotype E in a cat with a concurrent nasal squamous cell carcinoma. JFMS Open Rep. 2015;1 doi: 10.1177/2055116915593969. 2055116915593969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Marcondes M., Hirata K.Y., Vides J.P., Sobrinho L.S.V., Azevedo J.S., Vieira T.S.W.J., Vieira R.F.C. Infection by Mycoplasma spp., feline immunodeficiency virus and feline leukemia virus in cats from an area endemic for visceral leishmaniasis. Parasit. Vectors. 2018;11 doi: 10.1186/s13071-018-2716-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Marcos R., Santos M., Malhaõ F., Pereira R., Fernandes A.C., Montenegro L., Roccabianca P. Pancytopenia in a cat with visceral leishmaniasis. Vet. Clin. Pathol. 2009;38:201–205. doi: 10.1111/j.1939-165X.2009.00111.x. [DOI] [PubMed] [Google Scholar]
  95. Marenzoni M.L., Lauzi S., Miglio A., Coletti M., Arbia A., Paltrinieri S., Antognoni M.T. Comparison of three blood transfusion guidelines applied to 31 feline donors to minimise the risk of transfusion-transmissible infections. J. Feline Med. Surg. 2018;20:663–673. doi: 10.1177/1098612X17727233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Maroli M., Gradoni L., Oliva G., Castagnaro M., Crotti A., Lubas G., et al. Guidelines for prevention of leishmaniasis in dogs. J. Am. Vet. Med. Assoc. 2010;236:1200–1206. doi: 10.2460/javma.236.11.1200. [DOI] [PubMed] [Google Scholar]
  97. Maroli M., Pennisi M.G., Di Muccio T., Khoury C., Gradoni L., Gramiccia M. Infection of sandflies by a cat naturally infected with Leishmania infantum. Vet. Parasitol. 2007;145:357–360. doi: 10.1016/j.vetpar.2006.11.009. [DOI] [PubMed] [Google Scholar]
  98. Martín-Sánchez J., Acedo C., Muñoz-Pérez M., Pesson B., Marchal O., Morillas-Márquez F. Infection by Leishmania infantum in cats: epidemiological study in Spain. Vet. Parasitol. 2007;145:267–273. doi: 10.1016/j.vetpar.2006.11.005. [DOI] [PubMed] [Google Scholar]
  99. Mccown M., Grzeszak B. Zoonotic and infectious disease surveillance in central America: honduran feral cats positive for Toxoplasma, Trypanosoma, Leishmania, Rickettsia, and Lyme disease. J. Spec. Oper. Med. 2010;10:41–43. doi: 10.55460/13SQ-OK4V. [DOI] [PubMed] [Google Scholar]
  100. Mesa-Sanchez I., Ferreira R.R.F., Cardoso I., Morais M., Flamínio M., Vieira S., et al. Transfusion transmissible pathogens are prevalent in healthy cats eligible to become blood donors. J. Small Anim. Pract. 2020;62:107–113. doi: 10.1111/jsap.13257. [DOI] [PubMed] [Google Scholar]
  101. Metzdorf I.P., da Costa Lima M.S., de Fatima Cepa Matos M., de Souza Filho A.F., de Souza Tsujisaki R.A., Franco K.G., et al. Molecular characterization of Leishmania infantum in domestic cats in a region of Brazil endemic for human and canine visceral leishmaniasis. Acta Trop. 2017;166:121–125. doi: 10.1016/j.actatropica.2016.11.013. [DOI] [PubMed] [Google Scholar]
  102. Michael S.A., Morsy T.A., El-Seoud A.F., Saleh M.S. Leishmaniasis antibodies in stray cats in Ismailiya Governorate, Egypt. J. Egypt. Soc. Parasitol. 1982;12:283–286. [PubMed] [Google Scholar]
  103. Miglianico M., Eldering M., Slater H., Ferguson N., Ambrose P., Lees R.S., et al. Repurposing isoxazoline veterinary drugs for control of vector-borne human diseases. Proc. Natl. Acad. Sci. U.S.A. 2018;115:E6920–E6926. doi: 10.1073/pnas.1801338115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Migliazzo A., Vitale F., Calderone S., Puleio R., Binanti D., Abramo F. Feline leishmaniosis: a case with a high parasitic burden. Vet. Dermatol. 2015;26:69–70. doi: 10.1111/vde.12180. [DOI] [PubMed] [Google Scholar]
  105. Millán J., Zanet S., Gomis M., Trisciuoglio A., Negre N., Ferroglio E. An investigation into alternative reservoirs of canine leishmaniasis on the endemic Island of Mallorca (Spain) Transbound. Emerg. Dis. 2011;58:352–357. doi: 10.1111/j.1865-1682.2011.01212.x. [DOI] [PubMed] [Google Scholar]
  106. Minard H.M., Daniel A.K., Pool R.R., Snowden K.F., Levine G.J. Pathology in practice. J. Am. Vet. Med. Assoc. 2017;251:57–59. doi: 10.2460/javma.251.1.57. [DOI] [PubMed] [Google Scholar]
  107. Miró G., Hernández L., Montoya A., Arranz-Solís D., Dado D., Rojo-Montejo S., Mendoza-Ibarra J.A., et al. First description of naturally acquired Tritrichomonas foetus infection in a Persian cattery in Spain. Parasitol. Res. 2011;109:1151–1154. doi: 10.1007/s00436-011-2359-7. [DOI] [PubMed] [Google Scholar]
  108. Miró G., Rupérez C., Checa R., Gálvez R., Hernández L., García M., et al. Current status of L. infantum infection in stray cats in the Madrid region (Spain): Implications for the recent outbreak of human leishmaniosis? Parasit. Vectors. 2014;7:112. doi: 10.1186/1756-3305-7-112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Mohebali M., Malmasi A., Khodabakhsh M., Zarei Z., Akhoundi B., Hajjaran H., Azarm A. Feline leishmaniosis due to Leishmania infantum in Northwest Iran: the role of cats in endemic areas of visceral leishmaniosis. Vet. Parasitol. Reg. Stud. Rep. 2017;9:13–16. doi: 10.1016/j.vprsr.2017.03.010. [DOI] [PubMed] [Google Scholar]
  110. Montoya A., García M., Gálvez R., Checa R., Marino V., Sarquis J., et al. Implications of zoonotic and vector-borne parasites to free-roaming cats in central Spain. Vet. Parasitol. 2018;251:125–130. doi: 10.1016/j.vetpar.2018.01.009. [DOI] [PubMed] [Google Scholar]
  111. Montoya A., Miró G., Saugar J.M., Fernández B., Checa R., Gálvez R., et al. Detection and molecular characterization of Acanthamoeba spp. in stray cats from Madrid, Spain. Exp. Parasitol. 2018;188:8–12. doi: 10.1016/j.exppara.2018.02.011. [DOI] [PubMed] [Google Scholar]
  112. Morelli S., Colombo M., Dimzas D., Barlaam A., Traversa D., Di Cesare A., et al. Leishmania infantum seroprevalence in cats from touristic areas of Italy and Greece. Front. Vet. Sci. 2020;7:616566. doi: 10.3389/fvets.2020.616566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Morelli S., Crisi P.E., Di Cesare A., De Santis F., Barlaam A., Santoprete G., et al. Exposure of client-owned cats to zoonotic vector-borne pathogens: clinic-pathological alterations and infection risk analysis. Comp. Immunol. Microbiol. Infect. Dis. 2019;66:101344. doi: 10.1016/j.cimid.2019.101344. [DOI] [PubMed] [Google Scholar]
  114. Moreno I., Álvarez J., García N., de la Fuente S., Martínez I., Marino E., et al. Detection of anti-Leishmaniainfantum antibodies in sylvatic lagomorphs from an epidemic area of Madrid using the indirect immunofluorescence antibody test. Vet. Parasitol. 2014;199:264–267. doi: 10.1016/j.vetpar.2013.10.010. [DOI] [PubMed] [Google Scholar]
  115. Morganti G., Veronesi F., Stefanetti V., Di Muccio T., Fiorentino E., Diaferia M., et al. Emerging feline vector-borne pathogens in Italy. Parasit. Vectors. 2019;12:193. doi: 10.1186/s13071-019-3409-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Morsy T., Aldakhil M.A., el-Bahrawy A. Natural Leishmania infection in sand cats captured in Riyadh district, Saudi Arabia. J. Egypt. Soc. Parasitol. 1999;29:69–74. [PubMed] [Google Scholar]
  117. Morsy T.A., Abou el Seoud S.M. Natural infection in two pet cats in a house of a zoonotic cutaneous leishmaniasis patient in Imbaba area, Giza Governorate, Egypt. J. Egypt. Soc. Parasitol. 1994;24:199–204. [PubMed] [Google Scholar]
  118. Morsy T.A., Michael S.A., Makhlouf M., Sibai M. Leishmania infection sought in non human hosts in Suez Governorate, Egypt. J. Egypt. Soc. Parasitol. 1988;18:539–545. [PubMed] [Google Scholar]
  119. Nasereddin A., Salant H., Abdeen Z. Feline leishmaniasis in Jerusalem: serological investigation. Vet. Parasitol. 2008;158:364–369. doi: 10.1016/j.vetpar.2008.09.022. [DOI] [PubMed] [Google Scholar]
  120. Naucke T.J., Lorentz S. First report of venereal and vertical transmission of canine leishmaniosis from naturally infected dogs in Germany. Parasit. Vectors. 2012;5:67. doi: 10.1186/1756-3305-5-67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Navarro J.A., Sánchez J., Peñafiel-Verdú C., Buendía A.J., Altimira J., Vilafranca M. Histopathological lesions in 15 cats with leishmaniosis. J. Comp. Pathol. 2010;143:297–302. doi: 10.1016/j.jcpa.2010.03.003. [DOI] [PubMed] [Google Scholar]
  122. Neves M., Lopes A.P., Martins C., Fino R., Paixão C., Damil L., et al. Survey of Dirofilaria immitis antigen and antibodies to Leishmania infantum and Toxoplasma gondii in cats from Madeira Island, Portugal. Parasit. Vectors. 2020;13:117. doi: 10.1186/s13071-020-3988-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. OIE . Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2018. Leishmaniosis; pp. 491–502.https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.01.11_LEISHMANIOSIS.pdf [Google Scholar]
  124. Oliveira G.C., Paiz L.M., Menozzi B.D., Lima M. de S., de Moraes C.C.G., Langoni H. Antibodies to Leishmania spp. in domestic felines. Rev. Bras. Parasitol. Vet. 2015;24:464–470. doi: 10.1590/S1984-29612015071. [DOI] [PubMed] [Google Scholar]
  125. Otranto D., Iatta R., Baneth G., Cavalera M.A., Bianco A., Parisi A., et al. High prevalence of vector-borne pathogens in domestic and wild carnivores in Iraq. Acta Trop. 2019;197:105058. doi: 10.1016/j.actatropica.2019.105058. [DOI] [PubMed] [Google Scholar]
  126. Otranto D., Napoli E., Latrofa M.S., Annoscia G., Tarallo V.D., Greco G., et al. Feline and canine leishmaniosis and other vector-borne diseases in the Aeolian Islands: pathogen and vector circulation in a confined environment. Vet. Parasitol. 2017;236:144–151. doi: 10.1016/j.vetpar.2017.01.019. [DOI] [PubMed] [Google Scholar]
  127. Owens S.D., Oakley D.A., Marryott K., Hatchett W., Walton R., Nolan T.J., et al. Transmission of visceral leishmaniasis through blood transfusions from infected English Foxhounds to anemic dogs. J. Am. Vet. Med. Assoc. 2001;219:1076–1083. doi: 10.2460/javma.2001.219.1076. [DOI] [PubMed] [Google Scholar]
  128. Ozon C., Marty P., Pratlong F., Breton C., Blein M., Lelièvre A., Haas P. Disseminated feline leishmaniosis due to Leishmania infantum in southern France. Vet. Parasitol. 1998;75:273–277. doi: 10.1016/S0304-4017(97)00174-X. [DOI] [PubMed] [Google Scholar]
  129. Paltrinieri S., Gradoni L., Roura X., Zatelli A., Zini E. Laboratory tests for diagnosing and monitoring canine leishmaniasis. Vet. Clin. Pathol. 2016;45:552–578. doi: 10.1111/vcp.12413. [DOI] [PubMed] [Google Scholar]
  130. Paniz Mondolfi A.E., Colmenares Garmendia A., Mendoza Pérez Y., Hernández-Pereira C.E., Medina C., Vargas F., et al. Autochthonous cutaneous leishmaniasis in urban domestic animals (Felis catus/Canis lupus familiaris) from central-western Venezuela. Acta Trop. 2019;191:252–260. doi: 10.1016/j.actatropica.2019.01.006. [DOI] [PubMed] [Google Scholar]
  131. Paşa S., Tetik Vardarlı A., Erol N., Karakuş M., Töz S., Atasoy A., et al. Detection of Leishmania major and Leishmania tropica in domestic cats in the Ege region of Turkey. Vet. Parasitol. 2015;212:389–392. doi: 10.1016/j.vetpar.2015.07.042. [DOI] [PubMed] [Google Scholar]
  132. Pedrassani D., Biolchi J., Gonçalves L.R., Mendes N.S., Zanatto D.C. de S., Calchi A.C., et al. Molecular detection of vector-borne agents in cats in southern Brazil. Rev. Bras. Parasitol. Vet. 2019;28:632–643. doi: 10.1590/s1984-29612019077. [DOI] [PubMed] [Google Scholar]
  133. Pennisi M.G., Persichetti M.F. Feline leishmaniosis: is the cat a small dog? Vet. Parasitol. 2018;251:131–137. doi: 10.1016/J.VETPAR.2018.01.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Pennisi M.G., Venza M., Reale S., Vitale F., Lo Giudice S. Case report of leishmaniasis in four cats. Vet. Res. Commun. 2004;28:363–366. doi: 10.1023/B:VERC.0000045447.96444.be. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Pereira A., Ayhan N., Cristóvão J.M.J.M., Vilhena H., Martins Â., Cachola P., et al. Antibody response to Toscana virus and sandfly fever Sicilian virus in cats naturally exposed to phlebotomine sand fly bites in Portugal. Microorganisms. 2019;7 doi: 10.3390/microorganisms7090339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Pereira A., Cristóvão J.M., Vilhena H., Martins Â., Cachola P., Henriques J., et al. Antibody response to Phlebotomus perniciosus saliva in cats naturally exposed to phlebotomine sand flies is positively associated with Leishmania infection. Parasit. Vectors. 2019;12:128. doi: 10.1186/s13071-019-3376-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Pereira A., Parreira R., Cristóvão J.M., Castelli G., Bruno F., Vitale F., Campino L., Maia C. Phylogenetic insights on Leishmania detected in cats as revealed by nucleotide sequence analysis of multiple genetic markers. Infect. Genet. Evol. 2020;77:104069. doi: 10.1016/j.meegid.2019.104069. [DOI] [PubMed] [Google Scholar]
  138. Pereira A., Valente J., Parreira R., Cristovão J.M.J.M., Azinheira S., Campino L., Maia C. An unusual case of feline leishmaniosis with involvement of the mammary glands. Top. Companion Anim. Med. 2019;37:2017–2020. doi: 10.1016/j.tcam.2019.100356. [DOI] [PubMed] [Google Scholar]
  139. Persichetti M.-F., Solano-Gallego L., Serrano L., Altet L., Reale S., Masucci M., Pennisi M.-G. Detection of vector-borne pathogens in cats and their ectoparasites in southern Italy. Parasit. Vectors. 2016;9:247. doi: 10.1186/s13071-016-1534-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Persichetti M.F., Pennisi M.G., Vullo A., Masucci M., Migliazzo A., Solano-Gallego L. Clinical evaluation of outdoor cats exposed to ectoparasites and associated risk for vector-borne infections in southern Italy. Parasit. Vectors. 2018;11:136. doi: 10.1186/s13071-018-2725-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Persichetti M.F., Solano-Gallego L., Vullo A., Masucci M., Marty P., Delaunay P., et al. Diagnostic performance of ELISA, IFAT and Western blot for the detection of anti-Leishmania infantum antibodies in cats using a Bayesian analysis without a gold standard. Parasit. Vectors. 2017;10:119. doi: 10.1186/s13071-017-2046-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Pimenta P., Alves-Pimenta S., Barros J., Barbosa P., Rodrigues A., Pereira M.J., et al. Feline leishmaniosis in Portugal: 3 cases (year 2014) Vet. Parasitol. Reg. Stud. Rep. 2015;1:65–69. doi: 10.1016/j.vprsr.2016.02.003. [DOI] [PubMed] [Google Scholar]
  143. Pocholle E., Reyes-Gomez E., Giacomo A., Delaunay P., Hasseine L., Marty P. A case of feline leishmaniasis in the south of France. Parasite. 2012;19:77–80. doi: 10.1051/parasite/2012191077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Poli A., Abramo F., Barsotti P., Leva S., Gramiccia M., Ludovisi A., Mancianti F. Feline leishmaniosis due to Leishmania infantum in Italy. Vet. Parasitol. 2002;106:181–191. doi: 10.1016/S0304-4017(02)00081-X. [DOI] [PubMed] [Google Scholar]
  145. Pratlong F., Rioux J.A., Marry P., Faraut-Gambarelli F., Dereure J., Lanotte G., Dedet J.P. Isoenzymatic analysis of 712 strains of Leishmania infantum in the south of France and relationship of enzymatic polymorphism to clinical and epidemiological features. J. Clin. Microbiol. 2004;42:4077–4082. doi: 10.1128/JCM.42.9.4077-4082.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Priolo V., Martínez-Orellana P., Pennisi M.G., Masucci M., Prandi D., Ippolito D., et al. Leishmania infantum-specific IFN-γ production in stimulated blood from cats living in areas where canine leishmaniosis is endemic. Parasit. Vectors. 2019;12:133. doi: 10.1186/s13071-019-3386-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Queiroga T.B.D., Ferreira H.R.P., dos Santos W.V., de Assis A.B.L., de Araújo Neto V.T., da Câmara A.C.J., et al. Fluralaner (Bravecto®) induces long-term mortality of Lutzomyia longipalpis after a blood meal in treated dogs. Parasit. Vectors. 2020;13:609. doi: 10.1186/s13071-020-04489-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Richter M., Schaarschmidt-Kiener D., Krudewig C. Ocular signs, diagnosis and long-term treatment with allopurinol in a cat with leishmaniasis. Schweiz. Arch. Tierheilkd. 2014;156:289–294. doi: 10.1024/0036-7281/a000593. [DOI] [PubMed] [Google Scholar]
  149. Risueño J., Ortuño M., Pérez-Cutillas P., Goyena E., Maia C., Cortes S., et al. Epidemiological and genetic studies suggest a common Leishmania infantum transmission cycle in wildlife, dogs and humans associated to vector abundance in Southeast Spain. Vet. Parasitol. 2018;259:61–67. doi: 10.1016/j.vetpar.2018.05.012. [DOI] [PubMed] [Google Scholar]
  150. Rivas A.K., Alcover M., Martínez-Orellana P., Montserrat-Sangrà S., Nachum-Biala Y., Bardagí M., et al. Clinical and diagnostic aspects of feline cutaneous leishmaniosis in Venezuela. Parasit. Vectors. 2018;11 doi: 10.1186/s13071-018-2747-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Rocha A.V.V.O., Moreno B.F.S., Cabral A.D., Louzeiro N.M., Miranda L.M., dos Santos V.M.B., et al. Diagnosis and epidemiology of Leishmania infantum in domestic cats in an endemic area of the Amazon region, Brazil. Vet. Parasitol. 2019;273:80–85. doi: 10.1016/j.vetpar.2019.08.007. [DOI] [PubMed] [Google Scholar]
  152. Rougeron V., Catzeflis F., Hide M., De Meeus T., Bañuls A.L. First clinical case of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis in a domestic cat from French Guiana. Vet. Parasitol. 2011;181:325–328. doi: 10.1016/j.vetpar.2011.04.028. [DOI] [PubMed] [Google Scholar]
  153. Roura X., Cortadellas O., Day M.J., Benali S.L., DʼAnna N., Fondati A., et al. Canine leishmaniosis and kidney disease: Q&A for an overall management in clinical practice. J. Small Anim. Pract. 2021;62:E1–E19. doi: 10.1111/jsap.13237. [DOI] [PubMed] [Google Scholar]
  154. Rüfenacht S., Sager H., Müller N., Schaerer V., Heier A., Welle M.M., Roosje P.J. Two cases of feline leishmaniosis in Switzerland. Vet. Rec. 2005;156:542–545. doi: 10.1136/vr.156.17.542. [DOI] [PubMed] [Google Scholar]
  155. Sarkari B., Hatam G.R., Adnani S.J., Asgari Q. Seroprevalence of feline leishmaniasis in areas of Iran where Leishmania infantum is endemic. Ann. Trop. Med. Parasitol. 2009;103:275–277. doi: 10.1179/136485909X398276. [DOI] [PubMed] [Google Scholar]
  156. Savani E.S.M.M., De Oliveira Camargo M.C.G., De Carvalho M.R., Zampieri R.A., Dos Santos M.G., D’Áuria S.R.N., et al. The first record in the Americas of an autochthonous case of Leishmania (Leishmania) infantum chagasi in a domestic cat (Felix catus) from Cotia County, São Paulo State, Brazil. Vet. Parasitol. 2004;120:229–233. doi: 10.1016/j.vetpar.2004.01.008. [DOI] [PubMed] [Google Scholar]
  157. Schäfer I., Kohn B., Volkmann M., Müller E. Retrospective evaluation of vector-borne pathogens in cats living in Germany (2012–2020) Parasit. Vectors. 2021;14:123. doi: 10.1186/s13071-021-04628-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Schubach T.M.P., Figueiredo F.B., Pereira S.A., Madeira M.F., Santos I.B., Andrade M.V., et al. American cutaneous leishmaniasis in two cats from Rio de Janeiro, Brazil: first report of natural infection with Leishmania (Viannia) braziliensis. Trans. R. Soc. Trop. Med. Hyg. 2004;98:165–167. doi: 10.1016/S0035-9203(03)00040-3. [DOI] [PubMed] [Google Scholar]
  159. Sherry K., Miró G., Trotta M., Miranda C., Montoya A., Espinosa C., et al. A serological and molecular study of Leishmania infantum infection in cats from the Island of Ibiza (Spain) Vector Borne Zoonotic Dis. 2011;11:239–245. doi: 10.1089/vbz.2009.0251. [DOI] [PubMed] [Google Scholar]
  160. Silaghi C., Knaus M., Rapti D., Kusi I., Shukullari E., Hamel D., et al. Survey of Toxoplasma gondii and Neospora caninum, haemotropic mycoplasmas and other arthropod-borne pathogens in cats from Albania. Parasit. Vectors. 2014;7:62. doi: 10.1186/1756-3305-7-62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Silva R.B.S., de A. Portela R., Arruda L.F.B., Ferreira J. da S., Souto E.P.F., de Araújo A.L., et al. Natural infection by Leishmania infantum in domestic cats (Felis catus) in a municipality of moderate transmission in the Brazilian semi-arid region. Rev. Bras. Parasitol. Vet. 2020;29 doi: 10.1590/S1984-29612020102. [DOI] [PubMed] [Google Scholar]
  162. Sobrinho L.S.V., Rossi C.N., Vides J.P., Braga E.T., Gomes A.A.D., de Lima V.M.F., et al. Coinfection of Leishmania chagasi with Toxoplasma gondii, feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) in cats from an endemic area of zoonotic visceral leishmaniasis. Vet. Parasitol. 2012;187:302–306. doi: 10.1016/j.vetpar.2012.01.010. [DOI] [PubMed] [Google Scholar]
  163. Solano-Gallego L., Montserrrat-Sangrà S., Ordeix L., Martínez-Orellana P. Leishmania infantum-specific production of IFN-γ and IL-10 in stimulated blood from dogs with clinical leishmaniosis. Parasit. Vectors. 2016;9:459. doi: 10.1186/s13071-016-1598-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Solano-Gallego L., Rodríguez-Cortés A., Iniesta L., Quintana J., Pastor J., Espada Y., et al. Cross-sectional serosurvey of feline leishmaniasis in ecoregions around the Northwestern Mediterranean. Am. J. Trop. Med. Hyg. 2007;76:676–680. [PubMed] [Google Scholar]
  165. Spada E., Canzi I., Baggiani L., Perego R., Vitale F., Migliazzo A., Proverbio D. Prevalence of Leishmania infantum and co-infections in stray cats in northern Italy. Comp. Immunol. Microbiol. Infect. Dis. 2016;45:53–58. doi: 10.1016/j.cimid.2016.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Spada E., Perego R., Vitale F., Bruno F., Castelli G., Tarantola G., et al. Feline Leishmania spp. infection in a non-endemic area of northern Italy. Animals. 2020;10:817. doi: 10.3390/ani10050817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Spada E., Proverbio D., Migliazzo A., Della Pepa A., Perego R., Bagnagatti De Giorgi G. Serological and molecular evaluation of Leishmania infantum infection in stray cats in a nonendemic area in northern Italy. ISRN Parasitol. 2013;2013:916376. doi: 10.5402/2013/916376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Sukmee T., Siripattanapipong S., Mungthin M., Worapong J., Rangsin R., Samung Y., et al. A suspected new species of Leishmania, the causative agent of visceral leishmaniasis in a Thai patient. Int. J. Parasitol. 2008;38:617–622. doi: 10.1016/j.ijpara.2007.12.003. [DOI] [PubMed] [Google Scholar]
  169. Tabar M.D., Altet L., Francino O., Sánchez A., Ferrer L., Roura X. Vector-borne infections in cats: molecular study in Barcelona area (Spain) Vet. Parasitol. 2008;151:332–336. doi: 10.1016/j.vetpar.2007.10.019. [DOI] [PubMed] [Google Scholar]
  170. Tirado T.C., Bavia L., Ambrosio A.R., Campos M.P., de Almeida Santiago M., Messias-Reason I.J., Figueiredo F.B. A comparative approach on the activation of the three complement system pathways in different hosts of visceral leishmaniasis after stimulation with Leishmania infantum. Dev. Comp. Immunol. 2021;120:104061. doi: 10.1016/j.dci.2021.104061. [DOI] [PubMed] [Google Scholar]
  171. Trainor K.E., Porter B.F., Logan K.S., Hoffman R.J., Snowden K.F. Eight cases of feline cutaneous leishmaniasis in Texas. Vet. Pathol. 2010;47:1076–1081. doi: 10.1177/0300985810382094. [DOI] [PubMed] [Google Scholar]
  172. Urbani L., Tirolo A., Salvatore D., Tumbarello M., Segatore S., Battilani M., et al. Serological, molecular and clinicopathological findings associated with Leishmania infantum infection in cats in northern Italy. J. Feline Med. Surg. 2020;22:935–943. doi: 10.1177/1098612X19895067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Verneuil M. Leishmaniose oculaire féline: À propos d’un cas. J. Fr. Ophtalmol. 2013;36:e67–e72. doi: 10.1016/j.jfo.2012.09.006. [DOI] [PubMed] [Google Scholar]
  174. Veronesi F., Ravagnan S., Cerquetella M., Carli E., Olivieri E., Santoro A., et al. First detection of Cytauxzoon spp. infection in European wildcats (Felis silvestris silvestris) of Italy. Ticks Tick Borne Dis. 2016;7:853–858. doi: 10.1016/j.ttbdis.2016.04.003. [DOI] [PubMed] [Google Scholar]
  175. Vides J.P., Schwardt T.F., Sobrinho L.S.V., Marinho M., Laurenti M.D., Biondo A.W., et al. Leishmania chagasi infection in cats with dermatologic lesions from an endemic area of visceral leishmaniosis in Brazil. Vet. Parasitol. 2011;178:22–28. doi: 10.1016/j.vetpar.2010.12.042. [DOI] [PubMed] [Google Scholar]
  176. Viettri M., Herrera L., Aguilar C.M., Morocoima A., Reyes J., Lares M., et al. Molecular diagnosis of Trypanosoma cruzi/Leishmania spp. coinfection in domestic, peridomestic and wild mammals of Venezuelan co-endemic areas. Vet. Parasitol. Reg. Stud. Rep. 2018;14:123–130. doi: 10.1016/j.vprsr.2018.10.002. [DOI] [PubMed] [Google Scholar]
  177. Vilhena H., Martinez-Díaz V.L., Cardoso L., Vieira L., Altet L., Francino O., et al. Feline vector-borne pathogens in the north and centre of Portugal. Parasit. Vectors. 2013;6:99. doi: 10.1186/1756-3305-6-99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Villanueva-Saz S., Giner J., Tobajas A.P., Pérez M.D., González-Ramírez A.M., Macías-León J., et al. Serological evidence of SARS-CoV-2 and co-infections in stray cats in Spain. Transbound. Emerg. Dis. 2021 doi: 10.1111/tbed.14062. tbed.14062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Vita S., Santori D., Aguzzi I., Petrotta E., Luciani A. Feline leishmaniasis and ehrlichiosis: serological investigation in Abruzzo region. Vet. Res. Commun. 2005;29:319–321. doi: 10.1007/s11259-005-0071-8. [DOI] [PubMed] [Google Scholar]
  180. WHO . WHO Technical Report Series; 2010. Control of the Leishmaniasis: Report of the WHO Expert Committee on the Control of Leishmaniases.https://apps.who.int/iris/bitstream/handle/10665/44412/WHO_TRS_949_eng.pdf?sequence=1&isAllowed=y [Google Scholar]

Articles from Current Research in Parasitology & Vector-borne Diseases are provided here courtesy of Elsevier

RESOURCES