Skip to main content
Springer logoLink to Springer
. 2022 Mar 2;33(2):99–116. doi: 10.1007/s10532-022-09976-z

Hydrocarbon-degrading bacteria in Colombia: systematic review

Diana Carolina Rache-Arce 1, Maryuris Machacado-Salas 1, Doris Rosero-García 1,
PMCID: PMC8913561  PMID: 35235111

Abstract

Petroleum industry activities worldwide have caused pollution and resulted in environmental degradation. Microorganisms with the potential to reduce pollutant levels by degradation processes have been reported, and bacteria are among such organisms. The first study on bacterial degradation in Colombia was published in 1996. The study isolated bacteria belonging to the Pseudomonas genus from hydrocarbon-polluted sediments. Since then, different reports on degrading bacteria have been published. The objective of this systematic review is to identify and analyze all the studies on hydrocarbon-degrading bacteria performed in Colombia. To accomplish this goal, a literature search was conducted. Inclusion and exclusion criteria were applied, and 37 relevant articles were obtained. We found that 2018 was the year with the largest number of publications in Colombia, and most frequently identified bacterial genera were Pseudomonas and Bacillus. Some studies showed that the degradation of hydrocarbons is more efficient when bacterial consortia are used rather than pure cultures. This study provides information about bacteria with the potential to degrade hydrocarbons in Colombia, which in turn will be a source of information for future studies in this field.

Keywords: Bacteria, Colombia, Degradation, Hydrocarbons

Introduction

Petroleum hydrocarbons are fossil fuels formed from organic matter; which are distributed in the subsoil layers and used for industrial energy production worldwide (Velásquez- Arias 2017). Currently, the presence of various kind of automobiles, the use of cleaning solvents, and some cosmetics may contain large amounts of hydrocarbons, which has caused an increase in their use (Ahmed and Fakhruddin 2018). The petroleum industry has grown in Colombia in recent years. The reserves of this fossil fuel are estimated to be about 1.5 billion barrels, which represents 26% of the country’s exports (Hernández-Rodríguez 2020). The growth of this industry has provided many benefits to the national economy by actively contributing to exports and the production of goods. The sector has further stimulated the generation of jobs and royalties for the financing of public expenditure (Hernández-Rodríguez 2020). However, unfortunately, petroleum sources also contribute to pollution and changes in land use as well as surface and groundwater utilization owing to exploitation, refining, lack of maintenance, and fuel theft (Sales da Silva et al. 2020). Moreover, Colombia has been affected by terrorist attacks approximately 829 times between 2007 and 2015 caused spills of thousands of barrels of hydrocarbons (Mendizabala et al. 2021). These problems may affect terrestrial and aquatic biodiversity due to landscape alteration (Sales da Silva et al. 2020).

In the abovementioned context, microorganisms with the potential to reduce pollutant levels by degradation processes have gained attention (Garzón et al. 2017; Sales da Silva et al. 2020). Bacteria are among those microorganisms that are able to convert the pollutants to less toxic molecules, and hence, allow the reclamation of large expanses of polluted areas (Hernández Ruiz et al. 2017; Renteria and Rosero 2019). Bacteria are capable of tolerating and using certain pollutants as sources of carbon and energy, contributing to the remediation of affected ecosystems (Marquez-Rocha et al. 2001). The oxygen-dependent enzymes called monooxygenases provide a means to use hydrocarbons as substrates, which allows the survival of bacteria in hydrocarbon-polluted environments (Das and Chandran 2011). Certain bacteria isolates such as Escherichia coli, Alcaligenes sp. and Thiobacter subterraneus can contribute in the degradation process by combining several metabolic pathways in a consortium to increase the extent of degradation of polycyclic aromatics hydrocarbons-PAHs (Pandey and Dubey 2012). Another important aspect is the presence of indigenous bacterial populations, which are of interest in degradation studies as they can be directly isolated from polluted sites and be characterized for a better understanding of the mechanism of biodegradation (Das and Chandran 2011).

The first study on bacterial degradation in Colombia, published in 1996, isolated bacteria belonging to the Pseudomonas genus from sediments highly polluted by PAHs (Vargas et al. 1996). Since then, several studies have been published, including reviews that list hydrocarbon-degrading bacteria (HDB) and discuss the importance of their management in polluted environments (Lozano 2005; Benavides-López et al. 2006; Trujillo-Toro and Ramírez-Quirama 2012; Garzón et al. 2017; De La Rosa Martinez and Rabelo-Florez 2020). However, thus far, there is no known review gathering data from all the research on hydrocarbon-degrading bacteria, advantages, and applications in Colombia. Since the problem of hydrocarbon pollution is of global relevance (Zhang and Chen 2017; Sales da Silva et al. 2020) and Colombia also considers it a critical issue. Therefore, in this review the objective is to identify all the studies on HDB conducted in the country so far. This paper provides an analysis about bacterial hydrocarbon degradation capability, pinpoint the areas in which degradation studies have been performed, and identify the most evaluated hydrocarbon. This information towards the better understanding in bioremediation challenges and will allow researchers interested in this field to have adequate baseline information to plan future studies.

Materials and methods

Investigations were selected from the Scielo, PubMed, Redalyc, ScienceDirect, Scopus, and Dialnet databases. Google Scholar was also used for the search of gray literature, and for peer reviewed articles. The following keywords were defined in Spanish (degradación, Colombia, hidrocarburos, bacterias), and in English (degradation, Colombia, hydrocarbon, bacteria). Different combinations of last keywords were employed to obtain a high number of publications in the exhaustive search. For the selection of publications suitable for analysis, the following inclusion criteria were established: type of study (original articles and theses), place (Colombia), degraded pollutant (petroleum, diesel, gasoline, motor oil), degrading microorganism (bacteria), publication date (between 1996 and 2021), and language (Spanish and English). During the literature search, those articles that did not meet the established criteria were excluded: articles about studies performed outside Colombia, degrading organisms other than bacteria, such as fungi, microalgae, and plants, and degraded pollutants other than hydrocarbons, such as heavy metals and pesticides.

The results of the analysis of the collected studies were recorded in a table using Microsoft® Excel 2019 according to author’s name, year of publication, source in which the study was conducted, type of study, and identified bacterium (genus and/or species). Additionally, an analysis to determine the behavior and the interest in studying HDB between 1996 and 2021 was performed. The impact and the interest in research on this topic in Colombia were assessed and compared with some reviews performed for other regions of the world.

Results

The exhaustive search yielded 1288 articles, 410 of which were published in Spanish and 878 in English (Table 1).

Table 1.

General statistical information for the articles of hydrocarbon-degrading bacteria (until May 2021)

Database Spanish English
Number of articles found in the search results by database
 Scielo 59 154
 PubMed 0 82
 Redalyc 0 137
 ScienceDirect 1 302
 Scopus 0 0
 Dialnet 0 1
 Google Scholar 350 202
Total number of articles 410 878

After removal of the duplicate articles and application of the inclusion criteria, 37 articles were obtained (Fig. 1).

Fig. 1.

Fig. 1

PRISMA flowchart showing the selection of the research articles of hydrocarbon-degrading bacteria in Colombia

From the analysis of the 37 selected publications, it was observed that a high number of studies on bacterial hydrocarbon degradation were published mainly in 2018 (Fig. 2). This study was done in Colombia’s subnational territories, which comprise Bogotá as Capital District (C.D.), and 32 political-administrative entities called departments. Moreover, the country is divided into six natural regions constituted by differences in topography, weather, vegetation, types of soil and oil production. The Andean Region, covering the three branches of the Andes mountains; the Caribbean Region, covering the area adjacent to the Caribbean Sea; the Pacific Region adjacent to the Pacific Ocean; the Orinoquía Region, part of the Llanos plains mainly in the Orinoco River basin along the border with Venezuela; the Amazon Region, part of the Amazon rainforest; and finally the Insular Region, comprising islands in both the Atlantic and Pacific oceans (Fig. 3). Among the departments in which a high number of studies on HDB have been conducted are Antioquia and Cundinamarca with eight and seven publications respectively, located at Andean Region with a oil production of 319 Million barrels per day in 2020 (Minenergía 2021). Remarkably, the Orinoquía Region had the highest oil production, but two studies have been conducted only (Fig. 3).

Fig. 2.

Fig. 2

Number of studies on HDB in Colombia between 1996 and 2020

Fig. 3.

Fig. 3

Map of Colombia showing the number of publications per department and oil production by region

Pseudomonas sp. was the most representative genus of HDB on the papers in Colombia (Table 2). In the present study, 19 publications describing the isolation of bacteria belonging to this genus with Pseudomonas aeruginosa and Pseudomonas putida being the most frequently isolated species (Fig. 4). Furthermore, 7 publications reported bacteria belonging to the Bacillus genus (Table 2). Some studies did not report the bacterial genus and/or species because unidentified strains from bacterial consortia were used (Table 2). Among the analyzed studies, 16 on petroleum, 12 on diesel, 4 on gasoline, 1 on oil motor, 1 on kerosene, and 1 on tar. Three studies did not report the evaluated hydrocarbon (Table 2). In addition, an analysis of the universities, companies, and research groups that participated in the publications was performed (Table 3). The bacterial strains able to degrade hydrocarbons were isolated and identified, from soils samples mainly (Table 2).

Table 2.

Studies of hydrocarbon degrading bacteria conducted in Colombia

Authors and year of publication Source of the environmental samples Hydrocarbon-degrading bacteria (HDB) isolated/identified Evaluated hydrocarbon
Place Department Type of study Environmental sample Methodology for hydrocarbon-degrading bacteria isolation/identification
Vargas et al. (1996) Bucaramanga Santander Original article Contaminated soils Two selection systems called fast route and slow route Pseudomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas resinovarans, Pseudomonas nitroreducens Petroleum
Suárez-Medellin and Vives (2004) Bogotá D.C Cundinamarca Master’s thesis Contaminated soils Direct isolation/traditional microbiology Pseudomonas luteola, Pseudomonas putida, Micrococcus sp., Alcalines denitrificans, Pseudomonas sp., Pseudomonas aeruginosa Gasoline
Perdomo-Rojas and Pardo-Castro (2004) Zipaquirá Cundinamarca Undergraduate thesis Contaminated soils Direct isolation/BBL™ Crystal™ Identification Systems Degrading bacteria: gram-positive and gram-negative bacilli Petroleum
Vallejo et al. (2005) Bogotá D.C Cundinamarca Original article Contaminated soils Direct isolation/biochemical test Stenotrophomonas maltophilia, Acinetobacter iwoffii, Burkholderia cepacia, Pseudomonas putida, Chomobacterium violaceum, Flavimonas oryzihabitants Petroleum
Gomez et al. (2006) Colombian Caribbean Bolívar, Córdoba, Magdalena, Sucre Original article Sediments Direct isolation/Strains were identified by 16S rRNA Klebsiella pneumoniae, Enterobacteriaceae bacterium, Pseudomonas sp., Ralstonia sp., Bacillus pumilus, Acinetobacter sp., Brevibacillus agri Petroleum
Duran-Rincon and Contreras (2006) Pereira Risaralda Original article Soils Direct isolation Arthrobacter sp., Bacillus sp., Pseudomonas sp., Agrobacterium sp., Alcaligenes sp., Flavobacterium sp., Corynebacterium sp., Micrococcus sp., Taphylococcus sp., Xanthomonas sp., Mycobacterium sp. Diesel
Camargo-Millán and Acero-Pérez (2007) Tunja Boyacá Original article Contaminated soils Inoculation with Pseudomonas aeruginosa bacteria Pseudomonas aeruginosa Petroleum
Narváez-Flórez et al. (2008) Colombian Caribbean Bolívar, Córdoba, Magdalena, Sucre Original article Sediments Direct isolation/BBL crystal and API 50 CHB/E Klebsiella sp., Chromobacterium sp., Flavimonas orizihabitans, Enterobacter cloacae, Pseudomonas aeruginosa, Bacillus brevis, B. pumillus, B. cereus, Diesel, petroleum
Kopytko and Ibarra-Mojica (2009) Bucaramanga Santander Original article Soils Direct isolation Serratia sp. Petroleum
Gómez et al. (2009) Medellín Antioquia Original article Soils Direct isolation Bacillus sp. Diesel, gasoline
Nisperuza-Vidal and Montiel-Aroca (2010) San Sebastián Córdoba Undergraduate thesis Crude oil well Direct isolation/Api20E®, Api20NE® and the software ApiWeb® Burkholdelia cepacia, Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas aeruginosa Petroleum
Vásquez et al. (2010) Río Frío Santander Original article Sludge Direct isolation/Biochemical test and BBL CRYSTAL-NF Pseudomonas spp., Acinetobacter spp., Enterobacter cloacae, Citrobacter spp., Bacillus brevis, Micrococcus spp., Nocardia spp. Diesel
Yanine (2010) Complejo Ecorregional Andes del Norte (CEAN), Pereira Risaralda Master’s thesis Soils Direct isolation/Strains were identified by 16S rRNA

49 degrading bacteria species

(See reference for list)

Diesel
Vallejo et al. (2010) Ecoregión cafeteria Valle, Risaralda, Quindío Original article Soils Direct isolation/Inoculation with Acinetobacter sp. bacteria Degrading bacteria: gram-positive No data available
Echeverri Jaramillo et al. (2011) Cartagena Bolívar Original article Biofilms, sediment, or sludge, neuston and water subsurface Direct isolation/Biochemical test Pseudomonas aeruginosa Petroleum
García et al. (2011) Bogotá D.C Cundinamarca Original article Contaminated soils Direct isolation Degrading bacteria Petroleum
Arrieta-Ramírez et al. (2012) Medellín Antioquia Original article Soils Direct isolation/Strains were identified by 16S rRNA Enterobacter sp., Bacillus sp., Staphylococcus aureus, Sanguibacter soli, Arthrobacter sp., Flavobacterium sp. Diesel
Pino et al. (2012) Apartadó Antioquia Original article Soils Direct isolation Degrading bacteria Diesel
Quintana-Saavedra et al. (2012) Cartagena Bolívar Original article Water Direct isolation/Biochemical test

Pseudomonas sp.,

Bacillus subtilis, Staphylococcus sp.

Diesel, gasoline
Gómez-Rivera and Kopitko (2012) Puerto Boyacá Boyacá Undergraduate thesis Soils Direct isolation Pseudomonas spp. Petroleum
Ñuste-Cuartas et al. (2014) Dosquebradas Risaralda Original article Sewage water Direct isolation Degrading bacteria Diesel, gasoline
Pérez-Robles et al. (2015) Medellín Antioquia Original article Soils No data available Degrading bacteria Diesel, gasoline
Barrios-Ziolo et al. (2015) Medellín Antioquia Original article Soil contaminated with used motor oils Direct isolation/Traditional microbiology Coccus and bacilli gram-negatives Oil motor
Mezquida et al. (2015) Lorica Córdoba Original article Soil Direct isolation/ macroscopic and microscopic observations, biochemical tests. Commercial kits Api20E® and Api20NE® Achromobacter denitrificans, Sphingomonas paucimobilis, Pseudomonas putida, Brevundimonas vesicularis, Acinetobacter baumanii, Rhizobium radiobacter, Comamonas testosteroni, Chryseobacterium indologenes Diesel
Vallejo-Quintero et al. (2016) Soacha Cundinamarca Original article Soils Direct isolation Degrading bacteria Not data reported
Álvares et al. (2016) Medellín Antioquia Undergraduate thesis Water Direct isolation/Biochemical test, VITEK® Pseudomonas sp., Serratia sp., Bacillus sp. Tar
Pardo-Díaz et al. (2017) Castilla la Nueva y Apiay Meta Original article Soils Direct isolation/Strains were identified by 16S rRNA Pseudomonas sp., Pseudomonas putida, Achromobacter sp. Petroleum
Delgado-Vallejo (2017) Medellín Antioquia Master’s thesis Soils No data available Degrading bacteria Petroleum
Ordoñez-Burbano et al. (2018) Cali Valle del Cauca Original article Soils Direct isolation/ BBL CRYSTAL™ Burkholderia cepacia Kerosene
Doria-Argumedo (2018) Rioacha La Guajira Original article Soils Direct isolation Pseudomonas spp., Acinetobacter spp., Bacillus spp. Diesel
Martínez-Rivera (2018) Medellín Antioquia Master’s thesis Soils Direct isolation/Metagenomic V3-V4 region/ 16S rRNA

21 degrading bacteria Phyla

(See reference for list)

Petroleum
Malaver and Muñoz (2018) Cajibio Cauca Undergraduate thesis Soils No data available Degrading bacteria Petroleum
Reyes-Reyes et al. (2018) Región centro-oriental Campo petrolero Original article Sludges Direct isolation/Strains were identified by 16S rRNA Bacillus sp., Pseudomonas sp., Serratia sp., Raoultella sp., Enterobactr sp. Petroleum
Pinto-Varón and Sánchez-Vargas (2018) Bogotá D.C Cundinamarca Undergraduate thesis Soils Inoculation with two bacteria Pseudomona putida, Acinetobacter baumannii Diesel, gasoline
Galvis-Ibarra (2019) San Carlos de Guaroa Meta Undergraduate thesis

Oily sludge

(Oil residue)

Inoculation with consortium bacteria Degrading bacteria Petroleum
Garcés-Ordoñez and Espinoza-Díaz (2019) Mira river, Tumaco Nariño Original article Mangrove sediments No data available Degrading bacteria Not data reported
Arenas-Soler (2020) Bogotá, D.C Cundinamarca Undergraduate thesis Bioassays Inoculation with bacteria Chromobacterium violaceum, Pseudomonas aeruginosa Diesel

Fig. 4.

Fig. 4

Hydrocarbon degrading bacteria (HDB) in Colombia and their frequency in the analyzed publications

Table 3.

Universities, companies, and research groups that have published on Hydrocarbon Degrading Bacteria (HDB) in Colombia

Universities and companies Research groups or laboratories # Authors and year of publication
Universidad Nacional de Colombia Biorremediación y Desarrollo Tecnológico 2 Delgado-Vallejo (2017); Martínez-Rivera (2018)
Grupo de investigación en Ciencias de los Alimentos 1 Arrieta-Ramírez et al. (2012)
PARH-Posgrado de Aprovechamiento de Recursos Hidráulicos 1 Pérez-Robles et al. (2015)

Laboratorios de Química de Suelos, Análisis Instrumental, Microbiología

Molecular y Microbiología Industrial / Laboratorio de Hidráulica/Laboratorio de Microbiología Ambiental y Aplicada

3 Gómez et al. (2009); Barrios-Ziolo et al. (2015); Pardo-Díaz et al. (2017)
CIEBREG-Centro de Investigaciones y Estudios en Biodiversidad y Recursos Genéticos 1 Yanine (2010)
Universidad Pedagógica y Tecnológica de Colombia GIGA-Grupo de Investigación en Geomática y Ambiente 1 Camargo-Millán and Acero-Pérez (2007)
Universidad de La Guajira Grupo de Investigación Territorios Semiáridos del Caribe 1 Doria-Argumedo (2018)
Universidad de los Andes CIMIC-Centro de Investigaciones Microbiológicas 2 Suárez-Medellin and Vives (2004); Gomez et al. (2006)
Universidad de San Buenaventura GIMA-Grupo de Microbiología y Ambiente 1 Echeverri Jaramillo et al. (2011)
CIOH-Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe 1 Quintana-Saavedra et al. (2012)
Universidad de Antioquia GDCON-Diagnostic and Pollution Control Group 1 Pino et al. (2012)
Universidad de La Salle Laboratorios de Microbiología de la Universidad de La Salle 2 Perdomo-Rojas and Pardo-Castro (2004); Arenas-Soler (2020)
Universidad Tecnológica de Pereira Agua y Saneamiento 1 Ñuste-Cuartas et al. (2014)
Laboratorio de Oleoquímica de la escuela de Química 2 Duran-Rincon and Contreras (2006)
Pontificia Universidad Javeriana USBA-Unidad de Saneamiento y Biotecnología Ambiental 5 Vallejo et al. (2005); García et al. (2011); Vallejo-Quintero et al. (2016); Pardo-Díaz et al. (2017); Galvis-Ibarra (2019)
A.T.P Ingeniería S.A.S 1 Galvis-Ibarra (2019)
Universidad Pontifica Bolivariana Centro de Investigación en Biotecnología, Biotécnica y Ambiente 1 Kopytko and Ibarra-Mojica (2009)
SINSA 1 Gómez-Rivera and Kopitko (2012)
Universidad de Córdoba GRUBIODEQ-Grupo de Investigación en Biotecnología 2 Nisperuza-Vidal and Montiel-Aroca (2010); Mezquida et al. (2015)
Universidad del Valle Laboratorio de Docencia de Microbiología de la Universidad del Valle 1 Ordoñez-Burbano et al. (2018)
Universidad Libre Laboratorios de Ingeniería Ambiental de la Universidad Libre 1 Pinto-Varón and Sánchez-Vargas (2018)
Universidad de Santander Laboratorio Clínico de la Universidad de Santander (UDES) 1 Vásquez et al. (2010)
Fundación Universidad de America Not information available 1 Arenas-Piza (2018)
Universidad Industrial de Santander Corporación para la Investigación de la Corrosión 1 Reyes-Reyes et al. (2018)
Universidad central de Colombia Agua y Desarrollo Sostenible 1 Gamba and Pedraza (2017)
Institución universitaria colegio mayor de Antioquia Biociencias 1 Álvarez-Mejia et al. (2016)
Corporación Universitaria Autónoma del Cauca Laboratorio de la Facultad Ciencias ambientales y Desarrollo Sostenible 1 Malaver and Muñoz (2018)
Instituto de Investigaciones Marinas y Costeras IVEMAR Laboratorios de Calidad Ambiental Marina 1 Garcés-Ordoñez and Espinoza-Díaz (2019)
Programa Calidad Ambiental Marina 1 Narváez-Flórez et al. (2008)
Fundación Universitaria Tecnológico Comfenalco GIA-Grupo de Investigaciones Ambientales 1 Echeverri Jaramillo et al. (2011)
Ecopetrol—Instituto Colombiano del Petróleo Not information available 1 Vargas et al. (1996)

Discussion

This systematic review was designed to provide the most complete, up-to-date list of studies about hydrocarbon-degrading bacteria (HDB) in Colombia, with a total of 37 investigations. Selecting the HDB is of profound significance in evaluating, developing, and designing strategies for bioremediation studies owing to their potential to adapt to polluted environments and convert the pollutants such as hydrocarbons to innocuous substances by degradation (Das and Chandran 2011). Moreover, it is important to perform studies to identify bacteria with degradation capability like an important step toward successful bioremediation (Reyes-Reyes et al. 2018). In the present review, we found that authors from different universities, companies, and research groups have conducted studies in Colombia to isolate HDB on environmental samples since 1996 (Vargas et al. 1996). For Colombia, 2003 was a year of substantial advances with regard to petroleum exploration given that reforms attracted foreign investment (Trujillo-Quintero et al. 2017). Probably, this is the reason for an increase in publications after 2003. Most of the publications were from 2018, it is likely that the above issue might have aroused the interest of different researchers to study microbial degradation and provide possible solutions for the pollution problem using bioremediation (Renteria and Rosero 2019). Moreover, the increasing available grants to investigations and doctoral formation in last year’s support the results obtained here (Minciencias 2019).

In the Andean Region, the departments of Antioquia and Cundinamarca, there are research groups in microbiology, chemical engineering, and biotechnology, among others. This observation emphasizes the fact that this region is very much interested in and at the cutting edge of studies in HDB. Concerning the research groups, the ones belonging to Universidad Nacional de Colombia, particularly in Medellín at Antioquia department, and Pontificia Universidad Javeriana in Bogotá, D.C. at Cundinamarca department reported the highest number of publications on HDB in Colombia. This establishes the need to continue the search for HDB in all the departments of the country, mainly in those located in regions with high oil production where can provide hydrocarbon residues.

The occurrence of some species belonging to the Pseudomonas and Bacillus genera and others mentioned here, constitutes valuable information for HDB present in Colombia. According to the analyzed publications, Pseudomonas and Bacillus species are the most frequently isolated in hydrocarbon degradation studies in the country. Probably, this result could be attributed to the much higher cultivability of both genera by direct isolation of contaminated samples with hydrocarbons (Gomez et al. 2006; Quintana-Saavedra et al. 2012; Álvares et al. 2016; Doria-Argumedo 2018). However, Pseudomonas and Bacillus are genera truly important and have been found to play vital roles in petroleum hydrocarbon degradation (Vásquez et al. 2010; Yanine 2010; Das and Chandran 2011; Xu et al. 2018). For example, P. aeruginosa has been identified as a HDB capable of degrading aromatic and polyaromatic hydrocarbons because it produces biosurfactants during its stationery growth phase, which facilitates the solubilization and therefore the degradation (Silva et al. 2018). Inoculation with P. aeruginosa bacteria had the highest rates of hydrocarbon removal, in ground contaminated samples with the Castilla`s crude, coming from 10 fields (Camargo-Millán and Acero-Pérez 2007). Pseudomonas putida is part of the soil microbiota and possesses enzymes called dioxygenases that are involved in hydrocarbon degradation (Truskewycz et al. 2019). On the other hand, species belonging to the Bacillus genus present high adaptability and can grow in extreme and hostile environments such as hydrocarbon contaminated soil and water (de Mesa et al. 2006; Valdivia-Anistro et al. 2018). Furthermore, the Bacillus genus is another bacterium reported as petroleum hydrocarbon degrader, and could be useful in reducing the levels of these hydrocarbons (Kolsal et al. 2017; Lima et al. 2020).

Another important result is taxonomic information for some HDB is unknown (Perdomo-Rojas and Pardo-Castro 2004; Vallejo et al. 2010; Yanine 2010; García et al. 2011). Additional investigations using molecular and other tools to identify all HDB is highly desirable in these cases. Overall, the taxonomy of environmental bacteria in Colombia is relatively poorly known. The taxonomic category of HDB is important for planning and interpreting future biodegradation studies (Ławniczak et al. 2020). In addition, the degradation of hydrocarbons is more effective when bacteria work together in a consortium. For example, Arrieta et al. showed the efficiency of a bacterial consortium that included the genera Arthrobacter, Bacillus, Flavobacterium, Sanguibacter, and Staphylococcus in the degradation of diesel (Arrieta-Ramírez et al. 2012). Vásquez et al. used a bacterial consortium composed of Acinetobacter, Bacillus brevis, Citrobacter, Enterobacter cloacae, Micrococcus, Nocardia, and Pseudomonas to study the degradation of oil sludge from a car wash (Vásquez et al. 2010). The hydrocarbons evaluated in the 37 selected publications; petroleum was the most studied one. In general, the authors suggest that short-chain aliphatic hydrocarbons such as those found in gasoline are more likely to volatilize and also tend to be toxic for bacteria (Suárez-Medellin and Vives 2004; Narváez-Flórez et al. 2008). This fact could explain why there are not as many studies on gasoline degradation as on petroleum.

This systematic review addresses studies specifically performed in Columbia with Columbian environmental samples. A more thorough investigation of knowledge about HDBs in different regions and their role in bioremediation of contaminated sites is useful. There are few similar studies that have systematically reviewed HDBs identified from specific regions or countries around the world. A review of remediation approaches for petroleum hydrocarbon contamination in the Arctic and Antarctic regions included bioremediation and identified bacteria isolated from these regions (Camenzuli and Freidman 2015). A recent review of PAH contamination in China, a country where rapid industrialization and urbanization have created fast economic growth, focused more on sources of PAHs in soils, but not on biodegradation (Zhang and Chen 2017). Other recent reviews examined more generally petroleum hydrocarbon biodegradation in aquifers (Logeshwaran et al. 2018) and provided an overview of enhanced hydrocarbon biodegradation strategies (Ławniczak et al. 2020). Notably, in Colombia a review article provided information regarding the most representative bacterium in biodegrading hydrocarbons Pseudomonas sp., Bacillus sp., Bacillus subtilis and Burkholderia sp. (De La Rosa Martinez and Rabelo-Florez 2020). A compilation of investigations conducted inside a specific country is important for establishing a baseline and needs for future research. This is especially pertinent in countries such as Colombia due to the presence of hydrocarbons as substantial contaminants in different ecosystems throughout the country, and where much research is still needed. We considering that it is also important that similar systematic reviews be conducted by researchers in the different countries to know the HDB and the studies that may be required to control hydrocarbons contamination.

Conclusions

A literature search yielded 1288 articles on HDB. After applying the inclusion criteria, 37 published studies were identified in Colombia between 1996 and 2020. However, among these, no doctoral theses were found. Most of the publications were from 2018, and Bacillus sp. and Pseudomonas sp. are the most studied genera in Colombia. Particularly, P. aeruginosa and P. putida are the most assessed species owing to the metabolic variation and enzymatic production that allow them to adapt to environments polluted with hydrocarbons. It was observed in several studies that hydrocarbon degradation is more efficient when bacterial consortia are used rather than pure cultures. The most studied hydrocarbon in Colombia is petroleum, while the least reported ones are oil motor, kerosene, and tar. Finally, this study is important because it provides useful information about bacteria that exhibit the potential to degrade hydrocarbons in Colombia.

Acknowledgements

DRG received financial support for her postdoctoral research from Ministerio de Ciencia Tecnología e Innovación-Minciencias, Colombia, Grant No. 811-2018.

Author contributions

MM-S and DR-G performed the literature search and data analysis and wrote the first draft of the manuscript. DRG came up with the idea for the article and critically reviewed the manuscript drafts. All the authors read and approved the final manuscript.

Funding

This work was funded by Universidad Santiago de Cali, Grants Nos. 934-621119-319 and 934-621120-G03 to DRG.

Data availability

Not applicable.

Code availability

Not applicable.

Material availability

Not applicable.

Declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. Ahmed F, Fakhruddin A. A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int J Environ Sci Nat Resour. 2018;11:63–69. doi: 10.19080/IJESNR.2018.11.555811. [DOI] [Google Scholar]
  2. Álvares S, Arango M, Leudo A, et al (2016) Evaluación de microorganismos viables en medios suplementados con hidrocarburos. Institución Universitaria Colegio Mayor de Cundinamarca. Retrieved from https://www.colmayor.edu.co/wp-content/uploads/2019/08/2-17-evaluacion-microorganismos.pdf. Accessed 1 June 2021
  3. Álvarez-Mejia C, Aguirre-Gomez E, Navarro-Garrido A, Lopez-Ramirez V. Degradación microbiana de gasolina en suelos agrícolas de Pueblo Nuevo, Guanajuato. Rev Ciencias Nat y Agropecu. 2016;3:24–32. [Google Scholar]
  4. Arenas-Piza D (2018) Procesos de biodegradación para el tratamiento de derrames de petróleo por medio de Pseudomonas. Fundación Universidad de América. Retrieved from https://repository.uamerica.edu.co/bitstream/20.500.11839/7130/1/392273-2018-I-GA.pdf. Accessed 1 June 2021
  5. Arenas-Soler J (2020) Evaluación de la capacidad de biodegradación de diésel por células libres e inmovilizadas de Chromobacterium violaceum. Universidad de La Salle. Retrieved from https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/1871. Accessed 1 June 2021
  6. Arrieta-Ramírez O, Rivera-Rivera A, Arias-Marin L, et al. Biorremediación de un suelo con diesel. Gestión y Ambient. 2012;15:27–40. [Google Scholar]
  7. Barrios-Ziolo LF, Robayo-Gómez J, Prieto-Cadavid S, Cardona-Gallo SA. Biorremediación de suelos contaminados con aceites usados de motor. Rev CINTEX. 2015;20:69–96. [Google Scholar]
  8. Benavides-López J, Quintero-Vizcaíno G, Liliana-Guevara A, et al. Bioremediación de suelos contaminados con hidrocarburos derivados del petróleo. Nova. 2006;4:82–90. doi: 10.22490/24629448.351. [DOI] [Google Scholar]
  9. Camargo-Millán G, Acero-Pérez N. Ensayo piloto de biorremediación de suelos contaminados por hidrocarburos. Fase ll. Rev Fac Ing. 2007;16:69–79. [Google Scholar]
  10. Camenzuli D, Freidman B. On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Polar Res. 2015;34:24492. doi: 10.3402/polar.v34.24492. [DOI] [Google Scholar]
  11. Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011;2011:1–13. doi: 10.4061/2011/941810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De La Rosa Martinez D, Rabelo-Florez R. Bacterias biodegradadoras de hidrocarburos. Biociencias. 2020;2:1–12. [Google Scholar]
  13. de Mesa J, Quintero G, Vizcaíno A, et al. Bioremediación de suelos contaminados con hidrocarburos derivados del petróleo. Nova. 2006;4:82–90. doi: 10.22490/24629448.351. [DOI] [Google Scholar]
  14. Delgado-Vallejo A (2017) Gestión de un proceso de biorremediación bacteriana de suelo contaminado con crudo en condiciones anaeróbicas. Universidad Nacional de Colombia, Medellín. Retrieved from https://repositorio.unal.edu.co/handle/unal/63123. Accessed 1 June 2021
  15. Doria-Argumedo CJ. Degradación de residuos aceitosos provenientes de actividades mineras en la Guajira, Colombia. Rev Politéc. 2018;14:42–51. doi: 10.33571/rpolitec.v14n26a4. [DOI] [Google Scholar]
  16. Duran-Rincon M, Contreras N. Alternativa de tratamiento para tierras fuller contaminadas con aceite dielectrico. Sci Tec. 2006;3:419–424. doi: 10.22517/23447214.6329. [DOI] [Google Scholar]
  17. Echeverri Jaramillo GE, Manjarrez Paba G, Cabrera Ospino M. Aislamiento de bacterias potencialmente degradadoras de petróleo en hábitas de ecosistemas costeros en la Bahia de Cartagena, Colombia. Nova, Publicación Científica En Ciencias Biomédicas. 2011;8:76–86. [Google Scholar]
  18. Galvis-Ibarra V (2019) Evaluación de la bioaumentación empleando consorcios de hongos y bacterias en la degradación de borras aceitosas. Pontificia Universidad Javeriana. Retrieved from https://repository.javeriana.edu.co/handle/10554/47160. Accessed 1 June 2021
  19. Gamba KT, Pedraza AM. Evaluación de estrategias de biorremediación para el tratamiento de aguas residuales industriales contaminadas con aceites usados. Ingeciencia. 2017;2:18–30. [Google Scholar]
  20. Garcés-Ordoñez O, Espinoza-Díaz L. Contaminación por hidrocarburos en sedimentos de manglar del estuario del río Mira, Pacífico colombiano, afectados por derrames de petróleo crudo. Boletín Investig Mar y Costeras. 2019;48:159–168. doi: 10.25268/bimc.invemar.2019.48.1.763. [DOI] [Google Scholar]
  21. García E, Roldan F, Garzón L. Evaluación de la bioestimulación (nutrientes) en suelos contaminados con hidrocarburos utilizando respirometría. Acta Biol Colomb. 2011;16:195–208. [Google Scholar]
  22. Garzón J, Rodriguez-Miranda J, Hernández-Gómez C. Aporte de la biorremediación para solucionar problemas de contaminación y su relación con su desarrollo sostenible. Univ y Salud. 2017;19:309–318. doi: 10.22267/rus.171902.93. [DOI] [Google Scholar]
  23. Gomez M, Hurtado C, Dussán J, et al. Determinación de la capacidad de degradación de compuestos orgánicos persistentes por bacterias marinas aisladas de sedimentos en el caribe colombiano. Actual Biol. 2006;28:125–137. [Google Scholar]
  24. Gómez W, Gaviria J, Cardona-Gallo S. Evaluación de la bioestimulación frente a la atenuación natural y la bioaumentación en un suelo contaminado con una mezcla de gasolina-diesel. Dyna. 2009;76:83–93. [Google Scholar]
  25. Gómez-Rivera M, Kopitko M (2012) Estudio comparativo de la biodegradación de hidrocarburos totales del petróleo (HTP’S) a través de la atenuación natural, bioestimulación en un suelo contaminado. Universidad Pontificia Bolivariana, Bucaramanga. Retrieved from https://repository.upb.edu.co/handle/20.500.11912/2022. Accessed 1 June 2021
  26. Hernández-Rodríguez D (2020) La dualidad del petróleo en Colombia: positivo futuro económico basado en su dependencia. Universidad EAN. Retrieved from https://repository.ean.edu.co/handle/10882/10516. Accessed 1 June 2021
  27. Hernández Ruiz G, Álvarez Orozco N, Ríos Osorio L. Biorremediación de organofosforados por hongos y bacterias en suelos agrícolas : revisión sistemática. Corpoica Cinec Tecnal Agropecu. 2017;18:139–159. doi: 10.21930/rcta.vol18_num1_art:564. [DOI] [Google Scholar]
  28. Kolsal F, Akbal Z, Liaqat F, et al. Hydrocarbon degradation abilities of psychrotolerant Bacillus strains. AIMS Microbiol. 2017;3:467–482. doi: 10.3934/microbiol.2017.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kopytko M, Ibarra-Mojica D. Evaluación del potencial de biodegradación de hidrocarburos torales del petróleo (TPH) en suelos contaminados procedentes de Petrosantander (Colombia) Inc. Rev Cient La Univ Pontif Boliv. 2009;3:35–46. doi: 10.18566/puente.v3n1.a04. [DOI] [Google Scholar]
  30. Ławniczak L, Wozniak-Karczewska M, Loibner A, et al. Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. Molecules. 2020;25:1–19. doi: 10.3390/molecules25040856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lima S, Oliveira A, Golin R, et al. Isolation and characterization of hydrocarbon-degrading bacteria from gas station leaking-contaminated groundwater in the Southern Amazon, Brazil. Braz J Biol. 2020;80:354–361. doi: 10.1590/1519-6984.208611. [DOI] [PubMed] [Google Scholar]
  32. Logeshwaran P, Megharaj M, Chadalavada S, et al. Petroleum hydrocarbons (PH) in groundwater aquifers: an overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ Technol Innov. 2018;10:175–193. doi: 10.1016/j.eti.2018.02.001. [DOI] [Google Scholar]
  33. Lozano N. Biorremediación de ambientes contaminados con petróleo. Tecnogestion Una Mirada Al Ambient. 2005;2:51–55. [Google Scholar]
  34. Malaver Y, Muñoz J (2018) Degradación de hidrocarburos totales del petróleo a partir de la población microbiana contenida en estiércol bovino. Corporación Universitaria Autónoma del Cauca. Retrieved from https://repositorio.uniautonoma.edu.co/handle/123456789/307. Accessed 1 June 2021
  35. Marquez-Rocha F, Hernandez-Rodriguez V, Lamela M. Biodegradation of diesel oil in soil by a microbial consortiun. Water Air Soil Pollut. 2001;128:313–320. doi: 10.1023/A:1010392821353. [DOI] [Google Scholar]
  36. Martínez-Rivera A (2018) Biorremediación bacteriana de suelo contaminado con fluidos y residuos de perforación mediante diferentes métodos. Universidad Nacional de Colombia, Medellín. Retrieved from https://repositorio.unal.edu.co/handle/unal/63429. Accessed 1 June 2021
  37. Mendizabala A, Holmes J, Ortiz N, et al. A hotspot analysis of critical hydrocarbons infrastructure in Colombia: ELN (Ejército de Liberación Nacional) and FARC (Fuerzas Armadas Revolucionarias de Colombia) attacks on Colombian pipelines. Appl Geogr. 2021 doi: 10.1016/j.apgeog.2020.102376. [DOI] [Google Scholar]
  38. Mezquida R, Oviedo L, Lara C. Biodegradation in vitro of diesel bilge watrs using a minrobial Native consortium isolated from Cordoba, Colombia. Biotecnol Apl. 2015;32:2201–2205. [Google Scholar]
  39. Minciencias (2019) Gobierno Nacional presenta evolución de la investigación y la innovación durante 2018. https://minciencias.gov.co/sala_de_prensa/gobierno-nacional-presenta-evolucion-la-investigacion-y-la-innovacion-durante-2018. Accessed 1 June 2021
  40. Minenergía (2021) Reservas de crudo se mantienen en 6.3 años, pese a fuerte caída del precio en 2020; reservas de gas bajan por tercer año consecutivo, llegando a 7.7 años. https://www.minenergia.gov.co/historico-de-noticias?idNoticia=24291206. Accessed 1 June 2021
  41. Narváez-Flórez S, Gómez M, Martínez M. Selección de bacterias con capacidad degradadora de hidrocarburos aisladas a partir de sedimentos del caribe Colombiano. Bol Investig Mar y Costeras. 2008;37:61–75. doi: 10.25268/bimc.invemar.2008.37.1.182. [DOI] [Google Scholar]
  42. Nisperuza-Vidal A, Montiel-Aroca M (2010) Caracterización y evaluación de cepas bacterianas nativas con capacidad hidrocarburolítica del pozo petrolero de San Sebastián, Lorica, departamento de Córdoba. Universidad de Cordoba, Monteria. Retrieved from https://repositorio.unicordoba.edu.co/handle/ucordoba/969. Accessed 1 June 2021
  43. Ñuste-Cuartas D, Paredes-Cuervo D, Cubillos-Vargas J. Bioremediation for degradation of total hydrocarbons present in the sediments of a fuel service station. Rev Técnica La Fac Ing Univ Zulia. 2014;37:20–28. [Google Scholar]
  44. Ordoñez-Burbano DE, Abella-Medina CA, Echeverry-Tamayo A, et al. Biodegradación de hidrocarburos alifáticos saturados por microorganismos aislados de suelo contaminado con derivados del petróleo. Rev Cienc. 2018;22:33–44. doi: 10.25100/rc.v22i2.7917. [DOI] [Google Scholar]
  45. Pandey AK, Dubey V. Biodegradation of azo dye Reactive Red BL by Alcaligenes sp. AA09. Int J Eng Sci. 2012;1:54–60. [Google Scholar]
  46. Pardo-Díaz S, Rojas-Tapias D, Roldan F, et al. Biodegradación de fenol en aguas tratadas de la industria petrolera para reutilización en cultivos agrícolas. Rev Biol Trop. 2017;65:685–699. doi: 10.15517/RBT.V65I2.23992. [DOI] [Google Scholar]
  47. Perdomo-Rojas M, Pardo-Castro J (2004) Efecto de la adición de fertilizantes inorgánicos compuestos en la degradación de hidrocarburos en suelos contaminados con petróleo—a nivel laboratorio. Universidad de la Salle. Retrieved from https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/1560/. Accessed 1 June 2021
  48. Pérez-Robles S, Silvia-Melo I, Peñuela-Mesa G, Cardona-Gallo S. Evaluación de biocombustibles e hidrocarburos del petróleo (gasolina y diesel) en un suelo: procesos de transporte y biorremediación. Rev EIA. 2015;12:21–46. doi: 10.14508/reia.2014.11.E2.21-46. [DOI] [Google Scholar]
  49. Pino N, Carvajal S, Gallo A, Peñuela G. Comparación entre bioestimulación y bioaumentación para la recuperación de suelos contaminados con diesel. Prod Limpia. 2012;7:101–108. [Google Scholar]
  50. Pinto-Varón D, Sánchez-Vargas V (2018) Biorremediación de suelos contaminados por hidrocarburos mediante la utilización de diferentes cepas bacterianas a escala de laboratorio. Universidad Libre. Retrieved from https://repository.unilibre.edu.co/handle/10901/15451. Accessed 1 June 2021
  51. Quintana-Saavedra D, Cabrera M, Tous-Herazo G, Cheverry G. Aislamiento de microorganismos oligotróficos degradadores de hidrocarburos en la bahía de Cartagena, Colombia. Boletín Científico CIOH. 2012;30:3–12. doi: 10.26640/01200542.30.3_12. [DOI] [Google Scholar]
  52. Renteria M, Rosero D. Estudios sobre la biorremediación en Colombia. Hechos Microbiol. 2019;10:39–48. doi: 10.17533/udea.hm.v10n1a05. [DOI] [Google Scholar]
  53. Reyes-Reyes MA, Puentes-Cala EA, Casanova-Montes EL, et al. Inmovilización de bacterias potencialmente degradadoras de petróleo crudo en matrices orgánicas naturales y sintéticas. Rev Interncional Contam Ambient. 2018;34:597–609. doi: 10.20937/rica.2018.34.04.04. [DOI] [Google Scholar]
  54. Sales da Silva I, Gomes de Almeida FC, Padilha da Rocha e Silva N, Casazza A, et al. Soil bioremediation: overview of technologies and trends. Energies. 2020;13:1–25. doi: 10.3390/en13184664. [DOI] [Google Scholar]
  55. Silva E, Correa P, Almeida D, et al. Recovery of contaminated marine environments by biosurfactant-enhanced bioremediation. Colloids Surf B Biointerfaces. 2018;172:127–135. doi: 10.1016/j.colsurfb.2018.08.034. [DOI] [PubMed] [Google Scholar]
  56. Suárez-Medellin L, Vives M (2004) Degradación de tolueno y xileno por bacterias nativas Colombianas y detección de los genes TodA y XylB, Universidad de los Andes, Bogota-Colombia. Universidad de los Andes. Retrieved from http://hdl.handle.net/1992/10350. Accessed 1 June 2021
  57. Trujillo-Quintero H, Losada-Cubillos J, Rodríguez-Zambrano H. Amazonia colombiana, petróleo y conflictos socioambientales. Rev Científica Gen José María Córdova. 2017;15:209–223. doi: 10.21830/19006586.181. [DOI] [Google Scholar]
  58. Trujillo-Toro M, Ramírez-Quirama J. Biorremediación en suelos contaminados con hidrocarburos en Colombia. Rev Investig Agrar y Ambient y Ambient. 2012;3:33–48. doi: 10.22490/21456453.952. [DOI] [Google Scholar]
  59. Truskewycz A, Gundry T, Khudur L, et al. Petroleum hydrocarbon contamination in terrestrial ecosystems—fate and microbial responses. Molecules. 2019;24:1–20. doi: 10.3390/molecules24183400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Valdivia-Anistro J, Eguiarte L, Souza V. Ecological adaptability of Bacillus to extreme oligotrophy in the Cuatro Cienegas Basin. In: García-Oliva F, Elser J, Souza V, editors. Ecosystem ecology and geochemistry of Cuatro Cienegas Cuatro. Ciénegas Basin: an endangered hyperdiverse oasis. Cham: Springer; 2018. [Google Scholar]
  61. Vallejo V, Salgado L, Roldan F. Evaluación de la bioestimulación en la biodegradación de TPHs en suelos contaminados con petróleo. Rev Colomb Biotecnol. 2005;7:87–78. [Google Scholar]
  62. Vallejo V, Yanine H, Roldán F. Aplicación de sales de tetrazolio de nueva generación (XTT) para la estimación de la densidad de microorganismos degradadores de hidrocarburos empleando la técnica del número más probable. Acta Biológica Colomb. 2010;15:75–90. [Google Scholar]
  63. Vallejo-Quintero V, Sandoval-Cobo J, Garagoa-Barahona S, Bastos-Arenas J. Evaluación del efecto de la bioestimulación sobre la biorremediación de hidrocarburos en suelos contaminados con alquitrán en Soacha, Cundinamarca—Colombia. Acta Agronómica. 2016;65:354–361. doi: 10.15446/acag.v65n4.51013. [DOI] [Google Scholar]
  64. Vargas M, Ramírez N, Rueda S, Sánches F. Isolation of microorganisms with capability to degrade polycyclic aromatic hydrocarbons (PAH ´s) CT&F-Ciencia, Tecnol y Futur. 1996;1:45–53. [Google Scholar]
  65. Vásquez M, Gerrero-Figueroa J, Quintero A. Biorremediacón de lodos contaminados con aceites lubricantes usados. Rev Colomb Biotecnol. 2010;12:141–157. [Google Scholar]
  66. Velásquez-Arias JA. Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Rev Investig Agrar y Ambient. 2017;8(1):151–167. doi: 10.22490/21456453.1846. [DOI] [Google Scholar]
  67. Xu X, Liu W, Tian S, et al. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol. 2018;9:1–11. doi: 10.3389/fmicb.2018.02885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Yanine H (2010) Evaluación de la diversidad de bacterias degradadoras de hidrocarburos aisladas de suelos de las cuencas de los ríos Otún y la Vieja. Universidad Nacional de Colombia. Retrieved from https://repositorio.unal.edu.co/handle/unal/70322. Accessed 1 June 2021
  69. Zhang P, Chen Y. Polycyclic aromatic hydrocarbons contamination in surface soil of china: a review. Sci Total Envirom. 2017;605–606:1011–1020. doi: 10.1016/j.scitotenv.2017.06.247. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.

Not applicable.

Not applicable.


Articles from Biodegradation are provided here courtesy of Springer

RESOURCES