Abstract
目的
构建替米沙坦/胶原蛋白/聚己内酯(polycaprolactone,PCL)神经导管,观察其修复大鼠坐骨神经缺损的效果。
方法
制备质量浓度为60%的胶原蛋白/六氟异丙醇混合液、40%PCL/六氟异丙醇溶液并混匀后,分别将0、5、10、20 mg替米沙坦溶于10 mL混合液。利用高压静电纺丝技术构建替米沙坦/胶原蛋白/PCL神经导管;扫描电镜观察京尼平交联前后神经导管结构;体外缓释方法检测药物释放率。取RAW264.7细胞与脂多糖培养使其致炎后,与负载不同浓度替米沙坦的神经导管共培养24 h, 实时荧光定量PCR检测诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)和精氨酸酶 1(Arginase 1,Arg-1)mRNA的表达。 将40只成年Wistar大鼠随机分成A、B、C、D组(n=10),制备坐骨神经15 mm长缺损后,分别以交联后负载0、5、10、20 mg替米沙坦的神经导管桥接修复缺损。术后观察大鼠一般情况,检测坐骨神经运动功能指数(sciatic functional index,SFI),大体观察神经导管与坐骨神经桥接情况以及导管完整性,HE染色观察神经导管内组织生长和材料降解情况,免疫组织化学染色观察新生组织中M1型巨噬细胞标志分子CD86和M2型巨噬细胞标志分子CD206、髓磷脂碱基蛋白(myelin basic protein,MBP)和髓磷脂蛋白0(myelin protein 0,P0)的表达,免疫荧光染色观察新生组织中神经丝蛋白200(neurofilament 200,NF200)和S-100β表达。
结果
大体观察示制备的神经导管内径为 1.8 mm、外径2.0 mm,呈白色;交联后纳米纤维变粗,结构更致密。药物缓释检测示神经导管负载的替米沙坦能实现缓释效应。实时荧光定量PCR检测示,随着替米沙坦浓度增加,iNOS mRNA相对表达量下调,Arg-1 mRNA相对表达量上调,其中20 mg组与其他各组比较差异均有统计学意义(P<0.05)。动物体内实验观测示,术后各组大鼠均存活至实验完成。术后各时间点,C、D 组SFI均高于A、B 组(P<0.05),且6个月时D组高于C组(P<0.05)。HE染色示术后D组神经导管中段新生组织明显多于其他各组。免疫组织化学染色示,各组术后1个月时CD86及CD206均呈阳性,其中D组CD86阳性率最低、CD206阳性率最高,其中CD206差异有统计学意义(P<0.05);6个月时仅C、D组MBP和P0染色呈阳性,且D组阳性率高于C组(P<0.05)。免疫荧光染色观察示D组NF-200和S-100β表达明显强于其他各组。
结论
替米沙坦/胶原蛋白/PCL神经导管通过促进M1型巨噬细胞向M2型巨噬细胞极化,促进大鼠坐骨神经缺损修复,其中负载20 mg替米沙坦的神经导管促进效果最显著。
Keywords: 替米沙坦, 胶原蛋白, 聚己内酯, 巨噬细胞极化, 神经再生, 大鼠
Abstract
Objective
To construction the telmisartan/collagen/polycaprolactone (PCL) nerve conduit and assess its effect on repairing sciatic nerve defect in rats.
Methods
The 60% collagen/hexafluoroisopropanol (HFIP) solution and 40% PCL/HFIP solution were prepared and mixed (collagen/PCL solution). Then the 0, 5, 10, and 20 mg of telmisartan were mixed with the 10 mL collagen/PCL solution, respectively. Telmisartan/collagen/PCL nerve conduits were fabricated via high voltage electrospinning technology. The structure of nerve conduit before and after crosslinking was observed by using scanning electron microscope (SEM). The drug release efficiency was detected by in vitro sustained release method. RAW264.7 cells were cultured with lipopolysaccharide to induce inflammation, and then co-cultured with nerve conduits loaded with different concentrations of telmisartan for 24 hours. The mRNA expressions of inducible nitric oxide synthase (iNOS) and Arginase 1 (Arg-1) were detected by using real-time fluorescence quantitative PCR. Forty adult Wistar rats were randomly divided into 4 groups (n=10). After preparing 15-mm-long sciatic nerve defect, the defect was repaired by cross-linked nerve conduits loaded with 0, 5, 10, and 20 mg telmisartan in groups A, B, C, and D, respectively. After operation, the general condition of rats was observed after operation; the sciatic function index (SFI) was tested; the bridging between the nerve conduit and sciatic nerve, and the integrity of nerve conduit were observed; the tissue growth in nerve conduit and material degradation were observed by HE staining; the expressions of CD86 (M1 macrophage marker), CD206 (M2 macrophage marker), myelin basic protein (MBP), and myelin protein 0 (P0) in new tissues were also observed by immunohistochemical staining; the expressions of neurofilament 200 (NF-200) and S-100β in new tissues were assessed by immunofluorescence staining.
Results
The general observation showed that the inner diameter of the nerve conduit was 1.8 mm and the outer diameter was 2.0 mm. After cross-linking by genipin, the nanofiber became thicker and denser. The drug release test showed that the telmisartan loaded nerve conduit could be released gradually. With the increase of telmisartan content in nerve conduit, the iNOS mRNA expression decreased and the Arg-1 mRNA expression increased; and the differences between 20 mg group and other groups were significant (P<0.05).In vivo experiment showed that all animals in each group survived until the completion of the experiment. The SFI was significantly higher in groups C and D than in groups A and B at different time points (P<0.05) and in group D than in group C at 6 months after operation (P<0.05). HE staining showed that there were significantly more new tissues in the middle of the nerve conduit in group D after operation than in other groups. Immunohistochemical staining showed that CD86 and CD206 stainings were positive in each group at 1 month after operation, among which group D had the lowest positive rate of CD86 and the highest positive rate of CD206, and there were significant differences in the positive rate of CD206 between group D and groups A, B, and C (P<0.05); the MBP and P0 stainings were positive in groups C and D at 6 months, and the positive rate in group D was significantly higher than that in group C (P<0.05). Immunofluorescence staining showed that the NF-200 and S-100β expressions in group D were significantly higher than those in other groups.
Conclusion
Telmisartan/collagen/PLC nerve conduit can promote the sciatic nerve defect repair in rats through promoting the polarization of M1 macrophages to M2 macrophages, and the nerve conduit loaded with20 mg telmisartan has the most significant effect.
Keywords: Telmisartan, collagen, polycaprolactone, macrophage polarization, nerve regeneration, rat
自体神经移植是周围神经损伤修复的金标准,但来源有限,无法满足临床需求[1]。随着组织工程技术的发展,组织工程神经导管成为解决周围神经损伤修复问题的重要手段之一[2]。高压静电纺丝技术具有易成型、操作简单以及制备的材料具备纳米纤维结构等优势。已有研究采用该技术成功构建神经导管,其能引导缺损神经再生修复和功能重建[3-4]。植入材料引起宿主过度免疫反应是值得关注的问题,因过度免疫反应极易形成纤维化瘢痕组织,进而影响神经组织再生修复。针对该问题,有研究通过对神经导管材料进行表面改性和修饰,降低材料与宿主的免疫反应[5-7]。
替米沙坦是一种特异性血管紧张素Ⅱ受体拮抗剂[8],具有促进M1型巨噬细胞向M2型巨噬细胞极化作用[9-10]。而M2型巨噬细胞能分泌IL-10、TGF-β等抗炎因子,内源性抗炎因子不仅能降低免疫反应对组织的致炎作用,还能增加抗炎效应,抑制过度免疫反应导致的组织纤维化,通过内源性免疫调节促进组织再生修复和功能重建[11-12]。
基于上述相关研究,本实验以替米沙坦作为免疫调节药物,运用高压静电纺丝技术构建替米沙坦/胶原蛋白/聚己内酯(polycaprolactone,PCL)神经导管,通过动物实验评价该神经导管修复坐骨神经缺损的效果。
1. 材料与方法
1.1. 实验动物及主要试剂、仪器
健康雌性成年Wistar大鼠40只,体质量为(200±10)g,由苏州大学动物实验中心提供。RAW264.7细胞购于上海细胞库。PCL(相对分子质量80×103)、六氟异丙醇(Sigma公司,美国);替米沙坦(Aladding上海分公司);京尼平(和光纯药工业株式会社,日本);胶原蛋白(本实验室纯化制备);DMEM培养基(GIBCO公司,美国);小鼠CD86单克隆抗体、兔CD206多克隆抗体(Santa Cruz 公司,美国);兔髓磷脂碱基蛋白(myelin basic protein,MBP)多克隆抗体、小鼠髓磷脂蛋白0(myelin protein 0,P0)单克隆抗体、小鼠神经丝蛋白200 (neurofilament 200,NF-200)单克隆抗体、兔S-100β多克隆抗体、Cy5标记兔抗小鼠IgG、FITC标记羊抗兔IgG (Abcam公司,美国);HRP标记羊抗小鼠、羊抗兔IgG二抗(上海碧云天生物技术有限公司);免疫组织化学染色试剂盒(武汉博士德生物工程技术有限公司);NucleoZol 试剂盒(Macherey-Nagel公司,德国);Hiscript Ⅱ Q RT SuperMix试剂盒(南京诺唯赞生物公司)。高压静电纺丝机(天津云帆科技有限公司);JSM-6701F扫描电镜(JEOL公司,日本)。
1.2. 神经导管构建及表征
1.2.1. 电纺溶液的制备
将6 g胶原蛋白、3 g PCL分别溶于100 mL六氟异丙醇(质量体积百分比为6%),以450 r/min搅拌12 h形成均匀的混合液。将胶原蛋白溶液(质量体积百分比为60%)和PCL溶液(质量体积百分比为40%)混合后,以450 r/min搅拌6 h形成均一的胶原蛋白/PCL混合液。根据前期药物筛选实验结果,确定本次研究负载替米沙坦浓度。取0、5、10、20 mg替米沙坦分别溶于10 mL胶原蛋白/PCL混合液中,制备替米沙坦/胶原蛋白/PCL电纺溶液。
1.2.2. 神经导管的构建
基于课题组前期电纺实验[13],确立本次研究电纺参数。电纺参数:电压16 kV,接收距离12 cm,针头大小21G,推进速度0.5 mL/h,转速150 r/min。将制备的替米沙坦/胶原蛋白/PCL电纺溶液置入10 mL医用注射器中行高压静电纺丝。电纺完毕后,将获得的神经导管置于37℃恒温箱中挥发72 h,真空环境中48 h,以完全除去残留的六氟异丙醇。待完全干燥后将神经导管剪成长15 mm 小段,4℃保存备用。
1.2.3. 神经导管交联及观测
将神经导管置入1%京尼平溶液中,37℃交联1 h,无水乙醇洗10 min,水洗3次×10 min,−40℃真空冷冻干燥后封装,60Co辐照灭菌后备用。取交联前后神经导管,常规程序喷金后,扫描电镜观察材料微观结构。
1.2.4. 药物缓释评价
将交联后负载 20 mg 替米沙坦的神经导管(质量约30 mg)置入50 mL离心管中,加入50 mL 0.01 mol/L PBS(pH7.4),置于37℃恒温摇床上,分别于30 min及1、2、4、8、12、24、48、72、96 h直至700 h(96 h后间隔7 d取材1次),各取出 1 mL PBS,−20℃保存;同时回补等量PBS液。待实验结束后,利用酶标仪于 270 nm处检测不同时间点样品的吸光度(A)值,绘制替米沙坦标准曲线,依据标准曲线计算不同时间点药物浓度并计算累积释放率。
1.3. 替米沙坦体外免疫调节功能检测
将RAW 264.7细胞接种于6孔板中,每孔4×105个细胞,加入1 mL含10%FBS 的DMEM 完全培养基,置于37℃、5% CO2培养箱培养,每周更换2次培养液。待细胞达80%~90%融合后,更换含100 ng/mL脂多糖的DMEM完全培养基,刺激细胞6 h,以1%胰蛋白酶消化。取交联后负载不同浓度替米沙坦的神经导管,分别与1.5×105个细胞共培养24 h。采用NucleoZol试剂盒分离细胞总RNA,Hiscript Ⅱ Q RT SuperMix试剂盒行逆转录PCR获得cDNA,实时荧光定量PCR检测M1型巨噬细胞标志分子诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)和M2 型巨噬细胞标志分子精氨酸酶1(Arginase 1,Arg-1)mRNA表达。采用2−∆∆方法计算目的基因相对表达量。引物序列见表1。
表 1.
Primer sequences of real-time fluorescence quantitative PCR
实时荧光定量PCR引物序列
| 基因
Gene |
引物序列(5'→3')
Primer sequence(5'→3') |
| GAPDH
|
上游CACCACCAACTGCTTAGC
Upstream |
| 下游TTCACCACCTTCTTGATGTC
Downstream |
|
| iNOS
|
上游ACTCAGCCAAGCCCTCACCTAC
Upstream |
| 下游TCCAATCTCTGCCTATCCGTCTCG
Downstream |
|
| Arg-1
|
上游AACCTTGGCTTGCTTCGGAACTC
Upstream |
| 下游GTTCTGTCTGCTTTGCTGTGATGC
Downstream |
1.4. 动物体内实验
1.4.1. 大鼠坐骨神经缺损及修复模型制备
将40只成年Wistar大鼠随机分为A、B、C、D组,每组10只。各组大鼠首先经腹腔注射10%水合氯醛(0.3 mL/100 g)麻醉,左后肢剃毛后依次切开皮肤和皮下组织,显露股后肌群,沿肌间隙钝性分离肌肉,暴露坐骨神经并充分游离。自梨状肌下缘锐性切断坐骨神经,并切除部分坐骨神经,自然回缩后形成长约15 mm 的缺损。A、B、C、D组分别以交联后负载0、5、10、20 mg替米沙坦的神经导管桥接坐骨神经两断端,10-0无创可吸收缝合线缝合固定2针,缝合时始终保持神经导管与神经断端无张力。各组大鼠术后均常规饲养。见图1。
图 1.
Preparation of rat sciatic nerve defect repair model
大鼠坐骨神经缺损修复模型制备
a. 神经缺损;b. 神经导管桥接
a. Defect model; b. After nerve conduit bridging
1.4.2. 观测指标
① 一般情况:术后观察各组大鼠存活情况、切口愈合、有无感染及术侧后肢活动恢复情况。
② 坐骨神经功能评估:术后1、3、6个月,各组取3只大鼠测量坐骨神经运动功能指数(sciatic functional index,SFI)。其中,SFI为0表示神经功能正常,−100表示神经功能完全丧失[14]。
③ 大体观察:术后6个月时,每组取3只大鼠腹腔注射过量10%水合氯醛(0.6 mL/100 g)处死后,按照原切口入路,观察有无感染、神经导管两端与坐骨神经桥接情况以及神经导管完整性。
④ 组织学观察:术后1、3、6个月,每组取3只大鼠(术后6个月为大体观察后),同上法处理后分离神经导管周围组织,距神经导管两端0.5 cm处切断坐骨神经,置于10%甲醛固定72 h后,将每个样品按照近、中、远端切开。其中,中段样品系列乙醇脱水,常规石蜡包埋切片,片厚5 µm,常规HE染色后,光镜下观察神经组织再生及神经导管材料降解情况。
⑤ 免疫组织化学染色观测:取各组术后1、6个月中段组织切片,依次以0.01%Triton X-100作用10 min,3%H2O2作用10 min,5% BSA室温作用20 min。术后1个月切片加入CD86一抗(1∶200)、CD206一抗(1∶200),6个月切片加入P0一抗(1∶100)、MBP一抗(1∶100),4℃过夜;加入对应的二抗(1∶1 000),置于37℃温箱中作用30 min,PBS冲洗;SABC 37℃温箱中作用30 min,PBS冲洗;DAB避光显色5~10 min,苏木素复染,中性树胶封片。光镜下观察CD86和CD206蛋白定位于巨噬细胞胞膜,MBP和P0蛋白定位于雪旺细胞胞膜,阳性染色均呈棕黄色。每组切片选取5个具有代表性的区域,利用Image Pro Plus图像分析软件测量阳性面积及总面积,计算阳性率(阳性面积/总面积×100%),取均值。
⑥ 免疫荧光染色观察:取各组术后6个月近端及远端组织切片,分别加入小鼠NF-200单克隆抗体和兔S-100β多克隆抗体,4℃孵育过夜;加入Cy5标记兔抗小鼠IgG(1∶1000)和FITC标记羊抗兔IgG(1∶1000)二抗置湿盒内,37℃温箱中避光作用30 min; DAPI染色细胞核 10 min;磷酸甘油封片,荧光显微镜下观察NF-200和S-100β表达情况,其中NF-200(红色)和S-100β(绿色)定位于细胞质。
1.5. 统计学方法
采用SPSS19.0统计软件进行分析。计量资料均符合正态分布,数据以均数±标准差表示;组间比较采用单因素方差分析,两两比较采用LSD检验。检验水准取α=0.05。
2. 结果
2.1. 神经导管观测
经高压静电纺丝技术可获得内径1.8 mm、外径2.0 mm的神经导管,大体观察导管呈白色、粗细均匀。扫描电镜观察示,交联前神经导管纳米纤维呈有序排列,纤维直径为250~800 nm;交联后纳米纤维相互粘连,纤维变粗,直径为350~1 200 nm,且结构致密。药物缓释评价显示48 h内药物释放呈快速增加,累积释放率达15.0%;48~100 h时药物累积释放率达22.5%;500 h时药物累积释放率达32.5%;500~700 h时药物累积释放率维持在32.5%。见图2。
图 2.
Observation of nerve conduit
神经导管观测
a. 大体观察;b. 交联前扫描电镜观察(× 3 000);c. 交联后扫描电镜观察(×3 000);d. 药物缓释评价
a. Gross observation; b. SEM observation before crosslinking (× 3 000); c. SEM observation after crosslinking (×3 000); d. Drug release observation

2.2. 替米沙坦体外免疫调节功能观察
实时荧光定量PCR检测显示,随着负载替米沙坦浓度增加,iNOS mRNA相对表达量下调,Arg-1 mRNA相对表达量上调,其中20 mg组与其他各组比较差异均有统计学意义(P<0.05)。见图3。
图 3.
In vivo immunomodulatory effect of nerve conduit by using real-time fluorescence quantitative PCR
实时荧光定量PCR检测神经导管体外免疫调节作用
a. iNOS;b. Arg-1
a. iNOS; b. Arg-1
2.3. 动物体内实验
2.3.1. 一般情况
术后各组大鼠均存活至实验完成,切口愈合良好。A、B组大鼠左后肢逐步萎缩,失去运动功能;C、D组大鼠左后肢部分萎缩,存在一定运动功能,D组功能最好。
2.3.2. 坐骨神经功能评估
术后各时间点,C、D 组SFI均高于A、B 组,差异有统计学意义(P<0.05);6个月时D组高于C组,差异有统计学意义(P<0.05);其余各组间比较,差异均无统计学意义(P>0.05)。各组组内各时间点SFI比较,差异均有统计学意义(P<0.05)。见表2。
表 2.
Comparison of SFI between groups after operation (n=3,
)
各组术后SFI比较(n=3,
)
| 组别
Group |
1个月
One month |
3个月
Three months |
6个月
Six months |
统计值
Statistic |
|
*与A组比较P<0.05,#与B组比较P<0.05,△与C组比较P<0.05
*Compared with group A, P<0.05;#compared with group B, P<0.05;△compared with group C, P<0.05 | ||||
| A | −68.11±2.30△ | −66.06±5.62△ | −64.22±3.92△ |
F=6.260
P=0.014 |
| B | −67.54±1.83△ | −65.77±7.76△ | −59.45±0.82△ |
F=4.808
P=0.038 |
| C | −58.24±1.86*# | −44.65±3.88*# | −39.20±6.01*# |
F=28.463
P<0.001 |
| D | −54.37±1.08*# | −40.23±1.90*# | −32.66±4.02*#△ |
F=55.333
P<0.001 |
| 统计值
Statistic |
F=30.743
P<0.001 |
F=50.445
P<0.001 |
F=112.386
P<0.001 |
|
2.3.3. 大体观察
术后6个月,A组神经/导管复合体明显肿胀,神经端有结缔组织附着;B组神经/导管复合体肿胀,但肿胀程度明显低于A组;C、D组神经/导管复合体无肿胀,可见残存的神经导管材料,导管两端坐骨神经清晰可见。见图4。
图 4.
Gross observation of each group at 6 months after operation
各组术后6个月大体观察
从左至右分别为A、B、C、D组 a. 取材前;b. 取材后
From left to right for groups A, B, C, and D, respectively a. Before taking materials; b. After taking materials

2.3.4. 组织学观察
HE染色示,术后1个月,各组神经导管中段未见新生组织生长。3个月,仅D组神经导管中段可见少量新生组织,其他各组中段未见新生组织生长。6个月,A组神经导管中段仅见极少量新生组织生长;B、C组可见少量新生组织生长;D组可见大量新生组织,明显多于其他各组。见图5。
图 5.
HE staining observation of each group after operation (×40)
术后各组HE染色观察(×40)
红箭头示新生组织,黑箭头示神经导管 从左至右依次为A、B、C、D组 a. 术后1个月;b. 术后3个月;c. 术后6个月
Red arrow for new tissue, black arrow for nerve conduit From left to right for groups A, B, C, and D, respectively a. One month after operation; b. Three months after operation; c. Six months after operation

2.3.5. 免疫组织化学染色观测
术后1个月,各组CD86、CD206染色均呈阳性;A、B、C、D组CD86阳性率分别为36.15%±9.21%、19.94%±6.25%、17.39%±2.49%和14.92%±3.35%;CD206阳性率分别为4.22%±1.29%、12.52%±2.89%、30.48%±9.08%、60.89%±14.05%。其中,A组CD86阳性率高于其他各组,CD206阳性率低于其他各组,差异均有统计学意义(P<0.05)。B、C、D组间CD86阳性率比较,差异均无统计学意义(P>0.05);CD206阳性率比较,差异均有统计学意义(P<0.05)。见图6。
图 6.
Immunohistochemical staining observation of CD86 and CD206 expressions in each group at 1 month after operation (×40)
术后1个月各组CD86和CD206免疫组织化学染色观察 (×40)
从左至右依次为A、B、C、D组 a. CD86;b. CD206
From left to right for groups A, B, C, and D, respectively a. CD86; b. CD206

术后6个月,A 、B组MBP和P0染色均呈阴性,C、D组呈阳性。D组MBP和P0染色阳性率分别为76.21%±10.13%和69.16%±11.87%,明显高于C组32.32%±8.79%和39.43%±12.14%,差异均有统计学意义(F=348.939,P<0.001;F=232.925,P<0.001)。见图7。
图 7.
Immunohistochemical staining observation of MBP and P0 expressions in each group at 6 months after operation (×40)
术后6个月各组MBP和P0免疫组织化学染色观察 (×40)
从左至右依次为A、B、C、D组 a. MBP; b. P0
From left to right for groups A, B, C, and D, respectively a. MBP; b. P0

2.3.6. 免疫荧光染色观察
术后6个月,A 组NF-200蛋白表达为阴性;B、C、D组均为阳性,且D组明显强于B、C组。A 组S-100β蛋白表达为阴性,B组为弱阳性,C、D组为强阳性。见图8。
图 8.
Immunofluorescence staining observation of each group at 6 months after operation (Fluorescence microscope×40)
术后6个月各组免疫荧光染色观察(荧光显微镜×40)
从左至右依次为A、B、C、D组 a. NF-200(白色箭头);b. S-100β(红色箭头)
From left to right for groups A, B, C, and D, respectively a. NF-200 (white arrow); b. S-100β (red arrow)

3. 讨论
研究表明内植物材料不仅影响细胞黏附、生长和分化,还能调节宿主局部免疫反应,进而影响损伤组织再生和修复[15-16]。由于机体免疫反应极为复杂以及内植物材料理化特性不同,其植入体内后宿主的免疫反应也不完全相同[17-19]。如何通过材料改性和表面修饰制备具有免疫调节功能的免疫活性生物材料,加速损伤组织再生和修复,是目前组织工程研究热点之一[20]。
本研究利用高压静电纺丝技术构建了替米沙坦/胶原蛋白/PCL神经导管,以期通过替米沙坦促进宿主M1型巨噬细胞向M2型巨噬细胞极化的作用,实现周围神经缺损的再生和修复。药物缓释实验显示,制备的神经导管具有良好药物缓释效果,8 h时呈现药物突释,72 h时累积释放达平台期,而替米沙坦快速释放有助于早期实现宿主M1型巨噬细胞向M2型巨噬细胞极化。扫描电镜观察显示,京尼平交联后神经导管结构发生明显改变,与交联前相比纳米纤维相互粘连,纤维直径增加且结构致密,与课题组前期研究结果一致[21]。神经导管纳米纤维致密具有两方面优势,一方面有利于阻止神经导管外部非神经组织的迁入和生长,影响神经组织再生;另一方面胶原蛋白交联后降低了材料降解率,为神经组织在导管内部生长提供了充足空间[22]。
SFI是反映坐骨神经运动功能的重要指标,SFI值越高、坐骨神经运动功能越好[23]。动物体内实验结果显示,术后各时间点C、D 组SFI均高于A、B 组,6个月时D组高于C组,差异均有统计学意义,提示负载替米沙坦的神经导管能明显提升大鼠坐骨神经运动功能。大体及HE染色观察结果示,随时间延长,采用负载替米沙坦神经导管修复的各组均有逐渐增加的新生组织,6个月时D组新生组织最多,且大部分神经导管材料已降解,与SFI检测结果一致。
植入宿主体内的材料主要通过中性粒细胞、T细胞和巨噬细胞影响宿主免疫反应和组织再生[24-25],其中材料对宿主巨噬细胞功能的影响是研究热点[26-27]。大量研究已证明,通过对材料表面改性或负载免疫抑制因子,能促进宿主M1型巨噬细胞向M2型巨噬细胞极化,极化的M2型巨噬细胞通过释放相关生长因子,促进损伤组织修复[28-29]。体外实验结果显示,神经导管能显著抑制iNOS mRNA表达,上调Arg-1 mRNA表达,提示通过释放替米沙坦能使M1型巨噬细胞向M2型巨噬细胞极化,进而抑制M1型巨噬细胞的致炎作用,增强M2型巨噬细胞的抗炎功能。动物体内实验结果显示,负载不同浓度替米沙坦的神经导管对宿主巨噬细胞影响也不同。CD86、CD206分别是M1、M2型巨噬细胞标志分子,通过检测两者变化能反映M1型巨噬细胞向M2型巨噬细胞极化的程度。本研究发现,随着神经导管中负载替米沙坦浓度的增加,神经新生组织中CD86表达明显降低,相反CD206表达显著增加,与体外实验结果一致。
髓鞘是脊椎动物周围神经系统中雪旺细胞胞质向其附近神经轴突延伸并包绕形成的膜结构,具有良好绝缘效果,在神经冲动传导过程中发挥重要作用[30]。MBP和P0是神经髓鞘结构主要成分,其功能是维持周围神经结构的完整性和神经冲动的传导[31-32]。免疫组织化学染色观测结果显示,术后6个月时C、D组MBP和P0蛋白表达明显增加,提示神经导管内的新生组织为神经纤维组织,而非结缔组织或成纤维组织,同时也证明了再生的神经纤维具有髓鞘结构[33]。S-100β主要存在于神经胶质细胞和雪旺细胞,是雪旺细胞标志分子。NF-200与微管和微丝一起形成神经元细胞骨架,主要为轴突提供结构支持并调节轴突直径,影响神经传导速度[34-35]。免疫荧光染色结果显示,随着替米沙坦浓度增加,S-100β和NF-200表达程度逐渐增加,与MBP和P0蛋白表达结果一致。
综上述,本研究利用高压静电纺丝技术构建了替米沙坦/胶原蛋白/PCL神经导管,利用替米沙坦缓释作用能促进M1型巨噬细胞向M2型巨噬细胞极化,通过M2型巨噬细胞的抗炎功能促进缺损周围神经再生和修复。但替米沙坦促进神经组织再生的具体分子机制尚不清楚,有待进一步研究。后续还需要对该神经导管不断优化,为其作为组织工程周围神经修复材料用于临床奠定实验基础。
利益冲突 所有作者声明,在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道
伦理声明 研究方案经南京医科大学附属常州第二人民医院伦理委员会批准;所有实验大鼠符合国家一级动物标准;实验动物生产许可证号:SCXK(苏)2018-0006,实验动物使用许可证号:SYXK(苏)2017-0009
作者贡献声明 武小煜负责研究实施、文章撰写等所有工作;李海波、尹健健参与复制动物模型和神经导管桥接;刘纯参与材料构建;吴思宇、刘均、马佳义参与材料构建和材料性能评价;戴婷参与组织学染色和分析;赵红斌参与研究设计、组织及其指导
Funding Statement
常州市科技支撑社会发展项目(CE20185047)
Science and Technology Support Plan of Changzhou City (Social Development) (CE20185047)
References
- 1.Moucharafieh RC, Badra MI, Boulos KA, et al Nerve transfers in the upper extremity: A review. Injury. 2020;51(12):2804–2810. doi: 10.1016/j.injury.2020.04.015. [DOI] [PubMed] [Google Scholar]
- 2.Mobini S, Song YH, McCrary MW, et al Advances in ex vivo models and lab-on-a-chip devices for neural tissue engineering . Biomaterials. 2019;198:146–166. doi: 10.1016/j.biomaterials.2018.05.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Entekhabi E, Haghbin Nazarpak M, Shafieian M, et al Fabrication and in vitro evaluation of 3D composite scaffold based on collagen/hyaluronic acid sponge and electrospun polycaprolactone nanofibers for peripheral nerve regeneration. J Biomed Mater Res A. 2021;109(3):300–312. doi: 10.1002/jbm.a.37023. [DOI] [PubMed] [Google Scholar]
- 4.Niu Y, Stadler FJ, Fu M. Biomimetic electrospun tubular PLLA/gelatin nanofiber scaffold promoting regeneration of sciatic nerve transection in SD rat. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111858. doi: 10.1016/j.msec.2020.111858.
- 5.Ye K, Kuang H, You Z, et al. Electrospun nanofibers for tissue engineering with drug loading and release. Pharmaceutics, 2019, 11(4): 182. doi: 10.3390/pharmaceutics11040182.
- 6.Xi K, Gu Y, Tang J, et al. Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nat Commun, 2020, 11(1): 4504. doi: 10.1038/s41467-020-18265-3.
- 7.Zheng ZW, Chen YH, Wu DY, et al Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis. Theranostics. 2018;8(19):5482–5500. doi: 10.7150/thno.28315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Zhao D, Liu H, Dong P A Meta-analysis of antihypertensive effect of telmisartan versus candesartan in patients with essential hypertension. Clin Exp Hypertens. 2019;41(1):75–79. doi: 10.1080/10641963.2018.1445750. [DOI] [PubMed] [Google Scholar]
- 9.Choe SH, Choi EY, Hyeon JY, et al. Telmisartan, an angiotensin Ⅱ receptor blocker, attenuates prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-1β in murine macrophages. Int Immunopharmacol, 2019, 75: 105750. doi: 10.1016/j.intimp.2019.105750.
- 10.Molitor M, Rudi WS, Garlapati V, et al Nox2+ myeloid cells drive vascular inflammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensin Ⅱ receptor type 1. Cardiovasc Res. 2021;117(1):162–177. doi: 10.1093/cvr/cvaa042. [DOI] [PubMed] [Google Scholar]
- 11.Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol, 2020, 877: 173090. doi: 10.1016/j.ejphar.2020.173090.
- 12.Kim SY, Nair MG Macrophages in wound healing: activation and plasticity. Immunol Cell Biol. 2019;97(3):258–267. doi: 10.1111/imcb.12236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Zhao H, Tang J, Zhou D, et al Electrospun Icariin-loaded core-shell collagen, polycaprolactone, hydroxyapatite composite scaffolds for the repair of rabbit tibia bone defects. Int J Nanomedicine. 2020;15:3039–3056. doi: 10.2147/IJN.S238800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Pestana FM, Domingues RCC, Oliveira JT, et al Comparison of morphological and functional outcomes of mouse sciatic nerve repair with three biodegradable polymer conduits containing poly(lactic acid) Neural Regen Res. 2018;13(10):1811–1819. doi: 10.4103/1673-5374.238712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Chung L, Maestas DR, Housseau F, et al Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev. 2017;114:184–192. doi: 10.1016/j.addr.2017.07.006. [DOI] [PubMed] [Google Scholar]
- 16.Yang D, Xiao J, Wang B, et al. The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering. Mater Sci Eng C Mater Biol Appl, 2019, 104: 109927. doi: 10.1016/j.msec.2019.109927.
- 17.Nair A, Tang L Influence of scaffold design on host immune and stem cell responses. Semin Immunol. 2017;29:62–71. doi: 10.1016/j.smim.2017.03.001. [DOI] [PubMed] [Google Scholar]
- 18.Tan J, Zhang QY, Huang LP, et al Decellularized scaffold and its elicited immune response towards the host: the underlying mechanism and means of immunomodulatory modification. Biomater Sci. 2021;9(14):4803–4820. doi: 10.1039/D1BM00470K. [DOI] [PubMed] [Google Scholar]
- 19.Sadowska, JM, Ginebra MP Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mate Chem B. 2020;8(41):9404–9427. doi: 10.1039/D0TB01379J. [DOI] [PubMed] [Google Scholar]
- 20.Jin SS, He DQ, Luo D, et al A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano. 2019;13(6):6581–6595. doi: 10.1021/acsnano.9b00489. [DOI] [PubMed] [Google Scholar]
- 21.Mens MMJ, Ghanbari M Cell cycle regulation of stem cells by microRNAs. Stem Cell Rev Rep. 2018;14(3):309–322. doi: 10.1007/s12015-018-9808-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Venugopal E, Sahanand KS, Bhattacharyya A, et al. Electrospun PCL nanofibers blended with Wattakaka volubilis active phytochemicals for bone and cartilage tissue engineering. Nanomedicine, 2019, 21: 102044. doi: 10.1016/j.nano.2019.102044.
- 23.Liu YP, Luo ZR, Wang C, et al. Electroacupuncture promoted nerve repair after peripheral nerve injury by regulating miR-1b and its target brain-derived neurotrophic factor. Front Neurosci, 2020, 14: 525144. doi: 10.3389/fnins.2020.525144.
- 24.Flaig I, Radenković M, Najman S, et al. In vivo analysis of the biocompatibility and immune response of Jellyfish collagen scaffolds and its suitability for bone regeneration. Int J Mol Sci, 2020, 21(12): 4518. doi: 10.3390/ijms21124518.
- 25.Sok MCP, Tria MC, Olingy CE, et al Aspirin-triggered Rresolvin D1-modified materials promote the accumulation of pro-regenerative immune cell subsets and enhance vascular remodeling. Acta Biomater. 2017;53:109–122. doi: 10.1016/j.actbio.2017.02.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Oishi Y, Manabe I Macrophages in inflammation, repair and regeneration. Int Immunol. 2018;30(11):511–528. doi: 10.1093/intimm/dxy054. [DOI] [PubMed] [Google Scholar]
- 27.Spiller KL, Anfang RR, Spiller KJ, et al The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 2014;35(15):4477–4488. doi: 10.1016/j.biomaterials.2014.02.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials, 2020, 239: 119833. doi: 10.1016/j.biomaterials.2020.119833.
- 29.Zhao DW, Zuo KQ, Wang K, et al. Interleukin-4 assisted calcium-strontium-zinc-phosphate coating induces controllable macrophage polarization and promotes osseointegration on titanium implant. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111512. doi: 10.1016/j.msec.2020.111512.
- 30.Salzer JL, Zalc B Myelination. Curr Biol. 2016;26(20):R971–R975. doi: 10.1016/j.cub.2016.07.074. [DOI] [PubMed] [Google Scholar]
- 31.Träger J, Widder K, Kerth A, et al. Effect of cholesterol and myelin basic protein (MBP) content on lipid monolayers mimicking the cytoplasmic membrane of myelin. Cells, 2020, 9(3): 529. doi: 10.3390/cells9030529.
- 32.Ma B, Liu X, Huang X, et al. Translocator protein agonist Ro5-4864 alleviates neuropathic pain and promotes remyelination in the sciatic nerve. Mol Pain, 2018, 14: 1744806917748019. doi: 10.1177/1744806917748019.
- 33.Ong W, Pinese C, Chew SY Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev. 2019;149-150:19–48. doi: 10.1016/j.addr.2019.03.004. [DOI] [PubMed] [Google Scholar]
- 34.Kaneko A, Matsushita A, Sankai Y. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater, 2015, 10(1): 015008. doi: 10.1088/1748-6041/10/1/015008.
- 35.Yang LM, Liu XL, Zhu QT, et al Human peripheral nerve-derived scaffold for tissue-engineered nerve grafts: histology and biocompatibility analysis. J Biomed Mater Res B Appl Biomater. 2011;96(1):25–33. doi: 10.1002/jbm.b.31719. [DOI] [PubMed] [Google Scholar]


