Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2022 Mar;36(3):335–342. [Article in Chinese] doi: 10.7507/1002-1892.202108095

酚胺交联涂层接枝氯己定改善钛表面抗菌性能研究

Chlorhexidine-grafted phenolamine coating to improve antibacterial property of the titanium surface

Sixie DING 1, Huilei HONG 1, Linghan XU 1, Xiaowei WANG 1, Weibo ZHANG 1, Xiangyang LI 1, Yinlong WANG 1,*, Jialong CHEN 1,*
PMCID: PMC8923923  PMID: 35293176

Abstract

Objective

To investigate the physicochemical properties of pure titanium surface grafted with chlorhexidine (CHX) by phenolamine coating, and to evaluate its antibacterial activity and osteoblast-compatibilityin vitro.

Methods

Control group was obtained by alkali and thermal treatment, and then immersed in the mixture of epigallocatechin-3-gallate/hexamethylene diamine (coating group). Phenolamine coating was deposited on the surface, and then it was immersed in CHX solution to obtain the grafted surface of CHX (grafting group). The surface morphology was observed by scanning electron microscope, the surface element composition was analyzed by X-ray photoelectron spectroscopy, and the surface hydrophilicity was measured by water contact angle test. Live/dead bacterial staining, nephelometery, and inhibition zone method were executed to evaluate the antibacterial property. Cytotoxicity was evaluated by MTT assay and cell fluorescence staining. Bacteria-MC3T3-E1 cells co‐culture was conducted to evaluate the cell viability on the samples under the circumstance with bacteria.

Results

Scanning electron microscope observation results showed that deposits of coating group and grafting group increased successively and gradually covered the porous structure. X-ray photoelectron spectroscopy results showed the peak of N1s enhanced and the peak of Cl2p appeared in grafting group. Water contact angle test results showed that the hydrophilic angle of three groups increased in turn, and there was significant difference between groups (P<0.05). Live/dead bacteria staining results showed that the grafting group had the least amount of bacteria adhered to the surface and the proportion of dead bacteria was high. The grafting group had a transparent inhibition zone around it and the absorbance (A) value did not increase, showing significant difference when compared with control group and coating group (P<0.05). MTT assay and cell fluorescence staining results showed that the number of adherent cells on the surface of the grafting group was the least, but the adherent cells had good proliferation activity. Bacteria-cell co-culture results showed that there was no bacteria on the surface of grafting group but live cells adhered well.

Conclusion

CHX-grafted phenolamine coating has the ability to inhibit bacterial adhesion and proliferation, and effectively protect cell adhesion and proliferation in a bacterial environment.

Keywords: Chlorhexidine, titanium, phenolamine-crosslinking, coating, antibacterial property


钛及其合金由于具有优异的力学性能和生物相容性,已广泛应用于制备骨科植入物(如膝关节、髋关节置换假体等)[1],但约有10%的骨科植入物因感染导致植入失败[2-3]。感染主要由微生物定植于植入物表面并形成保护性生物膜所致[4],生物膜一旦形成,可以保护内部细菌免受宿主免疫系统和抗菌药物攻击。传统口服或静脉注射抗生素方法由于抗生素的抗菌谱匹配问题、病灶富集药物量不足、药物无法有效渗透生物膜等原因,疗效不理想[5];另外,抗生素诱发的细菌耐药性和全身脏器毒性不可忽视[6]。因此,优选广谱抗菌且高效的药物局部递送策略亟待研发。

骨科植入物表面构建抗菌涂层,被认为是降低骨科植入物感染风险的有效方法,既保留了材料基本特性,又使抗菌药物直接作用于病灶部位,提高药效的同时避免了全身给药导致的不良反应[7-8]。氯己定(chlorhexidine,CHX)作为双胍类化合物,具有非常强的广谱抑菌和杀菌能力,被广泛用于防治感染[9];其所带正电荷与细菌膜发生静电作用而破坏膜结构,导致细菌裂解,而无需进入细菌内部[10],故将其固定于植入物表面可以赋予表面广谱和高效抗菌能力,且不易引发细菌耐药性。

儿茶酚的酚羟基具有高反应活性,不仅可以螯合金属,也可以与胺基、巯基共价交联,形成酚胺多功能表面[11]。受此启发,本研究首先利用水相沉积,在钛表面制备表没食子儿茶素没食子酸酯(epigallocatechin-3-gallate,EGCG)与己二胺(hexamethylene diamine,HD)的酚胺交联涂层,再利用涂层表面的酚羟基接枝CHX以赋予材料表面良好的抗菌性能,为防治钛基骨植入物感染并发症提供更好的解决策略。

1. 材料与方法

1.1. 主要材料及试剂、仪器

纯钛(山西宝鸡有色金属有限公司);小鼠成骨样细胞系(MC3T3‐E1)(中国科学院上海细胞库);金黄色葡萄球菌(上海保藏生物技术中心)。 EGCG、HD(Sigma公司,美国);丙酮、Tris(上海阿拉丁试剂有限公司);脑心浸液肉汤(brain heart infusion,BHI)固体粉末(青岛高科园海博生物技术有限公司);PBS(GIBCO公司,美国);活/死细菌染色试剂盒(Invitrogen公司,美国)。GeminiSEM 300扫描电镜(ZEISS公司,德国);ESCALAB 250Xi X 射线光电子能谱仪(Thermo Scientific,美国);JGW-360B接触角测量仪(北京海富达科技有限公司);DMI3000B荧光显微镜(Leica公司,德国);MQX200酶标仪(Bio-Tek公司,美国)。

1.2. 实验分组及方法

将直径1 cm的纯钛片依次经 80、150、400、600、800、1 000、1 500、2 000目砂纸打磨,再依次经丙酮、无水乙醇、去离子水超声清洗;烘干后将样品浸入2.5 mol/L NaOH 溶液中60℃处理24 h,再置于沸水中浸泡2 h。然后将样品分为3份,其中1份烘干后设为对照组;另取1份样品在对照组处理基础上,浸入含1 mg/mL EGCG与5 mg/mL HD的Tris溶液(1.5 mg/mL)中,37℃恒温下静置24 h,去离子水超声清洗3次,每次5 min,烘干后设为涂层组;最后1份样品在涂层组处理基础上,浸入1 mg/mL CHX去离子水溶液中,37℃恒温下静置24 h,去离子水超声清洗3次,每次5 min,烘干后设为接枝组。

1.3. 观测指标

1.3.1. 表面理化性能表征

每组取1个样品,干燥后喷金30 s,利用扫描电镜观察表面形貌变化;每组取1个样品,利用X射线光电子能谱仪分析表面元素组成,测量3次取均值;每组取6个样品,室温下利用接触角测量仪测量表面水接触角。

1.3.2. 体外抗菌性能评价

将冷冻保存的菌种复苏后,用接种环挑取1个合适大小的金黄色葡萄球菌菌落加入BHI培养基中培养24 h,稀释菌液至细菌密度为1×107 CFU/mL。取60 μL菌液滴加到各组样品正面,37℃培养4 h后,每组加入BHI培养基2 mL,37℃继续共培养至设定时间后进行以下评价。① 活/死细菌染色评价:共培养24 h后每组取1个样品,PBS漂洗,采用活/死细菌试剂盒染色20 min后,荧光显微镜下观察活/死细菌(绿色为活菌,红色为死菌,黄色为凋亡中细菌),评价样品表面活/死细菌黏附情况。② 抑菌环实验:从共培养24 h的菌液中取100 μL稀释1 000倍,加入琼脂培养板并涂匀涂布,每组取1个样品正面向下放置于琼脂培养基上,37℃培养24 h,通过样品周围出现的抑菌环大小评价样品释放物质对周围环境细菌的抑制能力。③ 浊度法评价:共培养24 h和48 h时每组取6个样品,吸取150 μL培养液,采用酶标仪测量660 nm处的吸光度(A)值,利用A值与细菌密度的正比例关系[12],评价培养体系中的细菌量。

1.3.3. 体外细胞相容性评价

每组取6个样品置于24孔板中,每组6个复孔,每孔加入1×105个/mL MC3T3-E1细胞悬液1 mL,置于37℃、5%CO2培养箱中培养1、3、7 d后,用MTT法检测细胞增殖情况。另外,培养1、3、7 d时每组各取1个样品,1%戊二醛固定2 h,PBS清洗,加入罗丹明染色15 min,荧光显微镜下观察细胞黏附量及形态。

1.3.4. 细菌-细胞共培养评价

将60 μL密度为1×107 CFU/mL的金黄色葡萄球菌菌液滴加于样品表面(每组各3个样品),37℃孵育4 h后,加入1 mL密度为1× 105个/mL的MC3T3‐E1细胞,37℃、5%CO2培养3 d取出样品,PBS漂洗后活/死细菌试剂盒染色20 min,荧光显微镜下观察样品表面细菌和黏附细胞情况。

1.4. 统计学方法

采用SPSS16.0统计软件进行分析。计量资料均符合正态分布,数据以均数±标准差表示,表面水接触角各组间比较采用单因素方差分析,两两比较采用SNK检验;浊度法评价A值及MTT法检测A值各组间比较采用析因设计方差分析;检验水准α=0.05。

2. 结果

2.1. 表面理化性能表征

扫描电镜示对照组表面呈多孔结构;涂层组表面孔隙被填充、孔径减小;接枝组表面孔隙被进一步填充,部分区域多孔结构被完全覆盖。见图1

图 1.

Scanning electron microscope observation of each group (×50 k)

各组扫描电镜观察(×50 k)

a. 对照组;b. 涂层组;c. 接枝组

a. Control group; b. Coating group; c. Grafting group

图 1

X射线光电子能谱检测示,相比对照组,涂层组和接枝组Ti和O元素比例逐渐下降,Ti2p和O1s峰随之减弱,C元素比例增加,C1s峰增强;相比涂层组与对照组,接枝组N1s峰增强并出现Cl2p特征峰。见表1图2

表 1.

The composition ratio of surface elements in each group detected by X-ray photoelectron spectroscopy (%)

X射线光电子能谱检测各组样品表面元素组成比例(%)

组别
Group
C O N Cl Ti
对照组
Control group
20.26 52.80 2.11 0 24.83
涂层组
Coating group
35.71 44.79 2.44 0 16.71
接枝组
Grafting group
46.20 26.91 13.92 2.91 10.06

图 2.

图 2

X-ray photoelectron spectroscopy full spectrum of each group

各组X射线光电子能谱全谱图

接触角测量仪检测示,对照组、涂层组和接枝组的表面水接触角分别为(7.15±1.53)°、(13.31±1.74)°、(43.41±1.29)°,组间比较差异均有统计学意义(P<0.05)。

2.2. 体外抗菌性能评价

2.2.1. 活/死细菌染色评价

样品与细菌共培养24 h后,活/死细菌染色示对照组与涂层组表面几乎被细菌覆盖,且大部分为活细菌(绿色);接枝组表面细菌零星附着且死细菌(红色)所占比例更高。见图3

图 3.

Live/dead bacterial staining observation (Fluorescence microscope×100)

活/死细菌染色观察(荧光显微镜×100)

绿色为活细菌,红色为死细菌,黄色为凋亡细菌 a. 对照组;b. 涂层组;c. 接枝组

Green for living bacteria, red for dead bacteria, and yellow for apoptotic bacteria a. Control group; b. Coating group; c. Grafting group

图 3

2.2.2. 抑菌环实验

样品与细菌共培养24 h后,对照组、涂层组样品周围无抑菌环,接枝组样品周围有明显的抑菌透明环。见图4

图 4.

Results of inhibition zone of each group

各组抑菌环评价结果

a. 对照组;b. 涂层组;c. 接枝组

a. Control group; b. Coating group; c. Grafting group

图 4

2.2.3. 浊度法评价

样品与细菌共培养24 h和48 h时,仅接枝组样品A值无显著变化,且数值极低,对照组和涂层组的A值均显著高于接枝组,差异有统计学意义(P<0.05),且随着共培养时间延长而增加。见图5

图 5.

图 5

Bacterial proliferation of each group detected by nephelo metery

浊度法评价各组细菌增殖情况

2.3. 体外细胞相容性评价

MTT法检测示,各组A值均随培养时间延长而逐渐增加,各时间点间比较差异均有统计学意义(P<0.05)。培养1、3、7 d,接枝组A值低于对照组和涂层组,但3组间两两比较差异无统计学意义(P>0.05)。见图6

图 6.

图 6

Cell proliferation of each group detected by MTT

MTT法评价各组细胞增殖情况

荧光显微镜观察示,各组细胞黏附量均随培养时间延长而增加,且均呈正常梭形;各时间点接枝组黏附细胞均少于对照组和涂层组。见图7

图 7.

Observation of adhesion cells on the surface of samples of each group at different time points of culture (Fluorescence microscope×50)

培养各时间点各组黏附细胞情况观察(荧光显微镜×50)

从左至右分别为对照组、涂层组、接枝组 a. 1 d;b. 3 d;c. 7 d

From left to right for control group, coating group, and grafting group, respectively a. One day; b. Three days; c. Seven days

图 7

2.4. 细菌-细胞共培养评价

培养3 d后对照组与涂层组样品表面均被细菌完全覆盖,而接枝组表面黏附细胞形态良好,呈正常的长梭形或多角形,弥散伪足,伸展性良好并且相互连接,且未观察到细菌。见图8

图 8.

Observation of bacteria-cell after co-culture for 3 days (Fluorescence microscope×100)

细菌-细胞共培养3 d观察(荧光显微镜×100)

绿色为活细菌/活细胞,红色为死细菌/死细胞,黄色为凋亡中细菌 a. 对照组;b. 涂层组;c. 接枝组

Green for living bacteria/living cells, red for dead bacteria/dead cells, and yellow for apoptotic bacteria a. Control group; b. Coating group; c. Grafting group

图 8

3. 讨论

理想的骨科植入物抗菌涂层需具备防止细菌黏附于植入物表面、抑制植入物周围组织细菌增殖、无细胞毒性的特点。大量研究将抗菌剂装载于植入物表面,利用表面的抗菌剂抑制或杀死植入物表面黏附细菌,或者通过释放抗菌剂抑制或杀死植入物周围的细菌[13]。目前抗菌剂主要包括抗生素、抗菌肽、金属离子等[14-16]。其中金属离子[17-18]由于具有强效、广谱的抗菌性能而被广泛研究,但受其细胞毒性所累,临床应用被严格限制。低细胞毒性的抗菌肽被认为极具应用价值,但其抗菌效能低、体内易分解、合成成本高等问题亟待解决[19]。抗生素修饰赋予植入物表面抗菌性能[20-23],但抗生素与细菌的匹配问题、细菌耐药性等影响其治疗效果。CHX作为一种抗菌物质被广泛用于手术器械灭菌、皮肤或创面消毒和伤口冲洗等,其杀菌作用机制是基于其阳离子,通过静电作用结合到微生物胞质膜中带负电荷的区域,干扰代谢过程,使胞质膜失去渗透控制,进而导致胞内成分的裂解[24]。该机制诱发细菌耐药突变风险低,且具有广谱抗菌的优势[25]。我们前期研究证明1 mg/mL CHX溶液所制备的钛基表面不但具有良好的抗菌性能,而且对成骨细胞毒性小[26],因此本研究采用1 mg/mL CHX溶液制备抗菌涂层。

CHX与材料表面通过物理吸附和化学共价两种方式结合[27],其中物理吸附以离子键、氢键和范德华力为主要结合力,吸附力较弱,植入初期常会突释抗菌剂,使局部药物浓度过高引起细胞毒性,后期药物释放量不足,甚至低于最低抑菌浓度而无法抑制细菌增殖。而化学共价结合主要以共价键结合,有效降低抗菌物质的释放、提高涂层表面抗菌稳定性[28]

钛及其合金是生物惰性材料,碱热处理使钛表面形成富含羟基的TiO2-凝胶层,凝胶晶体收缩形成多孔结构[29],模拟天然骨组织的特征,使得材料表面具有良好的生物相容性[30];另外,其高比表面积也有效增加材料表面与骨组织的结合位点,有利于骨整合[31]。为了将CHX稳定结合于多孔表面,本研究利用富含儿茶酚基团的多酚化合物EGCG与HD交联沉积在钛多孔表面,构建酚胺涂层作为中间层,利用酚胺涂层表面的酚羟基/醌基等活性基团共价结合CHX的亚胺基团,实现CHX的共价固定,以长期维持抗菌性能。结果显示,涂层组表面多孔结构被EGCG/HD交联产物填充,孔径减小,亲水性降低;接枝组表面随着CHX修饰,孔径进一步减小,亲水性进一步显著下降,元素分析显示N1s峰增强和出现Cl2p特征峰,提示酚胺交联涂层和CHX成功接枝于钛多孔表面。

骨科植入物感染并发症始动因素主要是手术过程带入细菌和周围组织中细菌的侵入,细菌在植入物表面定植并形成生物膜导致感染发生,因此限制细菌在植入物表面黏附对预防感染至关重要[32]。体外抗菌实验中,对照组与涂层组样品表面黏附大量细菌且活细菌比例高、样品周围无抑菌环,而接枝组表面仅黏附少量死细菌、样品周围有透亮的抑菌环,说明酚胺涂层载CHX可防止细菌黏附于植入物表面、抑制植入物周围组织细菌增殖,有效改善钛基表面抗菌性能。然而,抗菌涂层的细胞毒性同样不容忽视,体外细胞相容性实验显示,涂层组与接枝组相对对照组,初期黏附细胞减少且接枝组最少,分析与涂层组和接枝组表面多孔结构被填充,细胞黏附位点减少有关。另外,当细胞培养7 d时,涂层组与接枝组细胞增殖均略高于对照组,分析与含胺基表面有利于细胞增殖和成骨分化有关[33],因此制备的涂层及接枝表面仍具有良好的细胞相容性。细菌-细胞共培养模拟植入物在细菌攻击下的表现,结果显示对照组与涂层组表面大量细菌黏附且无细胞,接枝组表面无细菌黏附并可见成骨细胞黏附,细胞呈长梭形或多角形,伸展性良好并相互连接,证明接枝组在细菌攻击下保证了细胞黏附,提示能预防植入物失败的发生。

综上述,本研究利用碱性条件下酚羟基与胺基反应,成功在碱热处理后钛表面构建了EGCG/HD交联涂层,并通过浸泡CHX水溶液实现CHX接枝,最终构建了抗菌表面。该表面不但抑制细菌在接枝CHX的酚胺涂层钛基表面的黏附,而且抑制了材料周围细菌的增殖,具有良好的成骨细胞相容性,提示其用于临床可以避免植入过程带入细菌或周围细菌迁入所导致的感染,同时保证有菌环境中成骨细胞的黏附以促进钛基植入物骨结合。另外,酚胺交联涂层表面富含酚羟基、醌基、胺基,是有效的接枝反应平台,其可以用于抗菌物质和生物活性分子共接枝,如BMP-2[34]、BMP-7[35]等活性因子。后期我们将尝试多种功能分子共固定,以提升植入物的临床应用价值。

利益冲突 所有作者声明,在课题研究和文章撰写过程中不存在利益冲突;课题经费支持没有影响文章观点和对研究数据客观结果的统计分析及其报道

伦理声明 研究方案经安徽医科大学生物医学伦理委员会批准(20160126)

作者贡献声明 王银龙、陈佳龙负责实验设计;丁思勰、洪慧蕾、王晓玮负责实验实施;徐凌寒、张维波、李向阳负责结果收集整理;丁思勰负责实验结果统计分析及文章撰写

Funding Statement

国家自然科学基金资助项目(31670967、32000932);安徽省重点研究与开发计划(202104j0702003);安徽省高等学校自然科学研究项目(KJ2019A0251);安徽省高等学校省级质量工程项目(2019jyxm0138)

National Natural Science Foundation of China (31670967, 32000932); Anhui Province Key Research and Development Plan (202104j0702003); Natural Science Research Project of Colleges and Universities in Anhui Province (KJ2019A0251); Provincial Quality Project of Colleges and Universities in Anhui Province (2019jyxm0138)

Contributor Information

银龙 王 (Yinlong WANG), Email: wangylah@sina.com.

佳龙 陈 (Jialong CHEN), Email: jialong_dt@126.com.

References

  • 1.Jang TS, Kim D, Han G, et al Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Biomed Eng Lett. 2020;10(4):505–516. doi: 10.1007/s13534-020-00177-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Arciola CR, Campoccia D, Ehrlich GD, et al Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol. 2015;830:29–46. doi: 10.1007/978-3-319-11038-7_2. [DOI] [PubMed] [Google Scholar]
  • 3.Arciola CR, Campoccia D, Montanaro L Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16(7):397–409. doi: 10.1038/s41579-018-0019-y. [DOI] [PubMed] [Google Scholar]
  • 4.Vuong C, Kocianova S, Voyich JM, et al A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem. 2004;279(52):54881–54886. doi: 10.1074/jbc.M411374200. [DOI] [PubMed] [Google Scholar]
  • 5.Drago L, Clerici P, Morelli I, et al The world association against infection in orthopaedics and trauma (WAIOT) procedures for microbiological sampling and processing for periprosthetic joint infections (PJIs) and other implant-related infections. J Clin Med. 2019;8(7):933. doi: 10.3390/jcm8070933. doi: 10.3390/jcm8070933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Alves DF, Magalhães AP, Neubauer D, et al Unveiling the fate of adhering bacteria to antimicrobial surfaces: expression of resistance-associated genes and macrophage-mediated phagocytosis. Acta Biomater. 2018;78:189–197. doi: 10.1016/j.actbio.2018.07.052. [DOI] [PubMed] [Google Scholar]
  • 7.Borse V, Pawar V, Shetty G, et al Nanobiotechnology perspectives on prevention and treatment of ortho-paedic implant associated infection. Curr Drug Deliv. 2016;13(2):175–185. doi: 10.2174/1567201812666150812141849. [DOI] [PubMed] [Google Scholar]
  • 8.Stanton IC, Murray AK, Zhang L, et al Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun Biol. 2020;3(1):467. doi: 10.1038/s42003-020-01176-w. doi: 10.1038/s42003-020-01176-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Riool M, Dirks AJ, Jaspers V, et al A chlorhexidine-releasing epoxy-based coating on titanium implants prevents Staphylococcus aureus experimental biomaterial-associated infection. Eur Cell Mater. 2017;33:143–157. doi: 10.22203/eCM.v033a11. [DOI] [PubMed] [Google Scholar]
  • 10.Hickok NJ, Shapiro IM, Chen AF The impact of incorporating antimicrobials into implant surfaces. J Dent Res. 2018;97(1):14–22. doi: 10.1177/0022034517731768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Xiang L, Zhang J, Gong L, et al Probing the interaction forces of phenol/amine deposition in wet adhesion: Impact of phenol/amine mass ratio and surface properties. Langmuir. 2019;35(48):15639–15650. doi: 10.1021/acs.langmuir.9b02022. [DOI] [PubMed] [Google Scholar]
  • 12.Wiegand C, Abel M, Ruth P, et al Analysis of the adaptation capacity of Staphylococcus aureus to commonly used antiseptics by microplate laser nephelometry. Skin Pharmacol Physiol. 2012;25(6):288–297. doi: 10.1159/000341222. [DOI] [PubMed] [Google Scholar]
  • 13.张一, 张宪高, 胡中岭, 等 多孔医用植入材料抗菌性能研究进展. 中国修复重建外科杂志. 2020;34(11):1478–1485. doi: 10.7507/1002-1892.202001030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Villegas M, Alonso-Cantu C, Rahmani S, et al Antibiotic-impregnated liquid-infused coatings suppress the formation of methicillin-resistant Staphylococcus aureus biofilms . ACS Appl Mater Interfaces. 2021;13(24):27774–27783. doi: 10.1021/acsami.0c19355. [DOI] [PubMed] [Google Scholar]
  • 15.Jennings JA, Carpenter DP, Troxel KS, et al Novel antibiotic-loaded point-of-care implant coating inhibits biofilm. Clin Orthop Relat Res. 2015;473(7):2270–2282. doi: 10.1007/s11999-014-4130-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.陆肖璇, 张露露, 阳曦, 等 钛植入物促骨整合及抗感染涂层的研究进展. 中国生物医学工程学报. 2021;40(5):620–627. doi: 10.3969/j.issn.0258-8021.2021.05.13. [DOI] [Google Scholar]
  • 17.Cui J, Shao Y, Zhang H, et al Development of a novel silver ions-nanosilver complementary composite as antimicrobial additive for powder coating. Chem Eng J. 2021;420:127633. doi: 10.1016/j.cej.2020.127633. doi: 10.1016/j.cej.2020.127633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Wang S, Yang Y, Li W, et al Study of the relationship between chlorhexidine-grafted amount and biological performances of micro/nanoporous titanium surfaces. ACS Omega. 2019;4(19):18370–18380. doi: 10.1021/acsomega.9b02614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Zhou L, Li QL, Wong HM A novel strategy for caries management: Constructing an antibiofouling and mineralizing dual-bioactive tooth surface. ACS Appl Mater Interfaces. 2021;13(26):31140–31152. doi: 10.1021/acsami.1c06989. [DOI] [PubMed] [Google Scholar]
  • 20.袁宁, 刘运德, 李雪, 等 庆大霉素和O-羧甲基壳聚糖对硫酸钙骨水泥改性研究. 中国修复重建外科杂志. 2017;31(3):306–312. [Google Scholar]
  • 21.刘重, 郭永明, 马宁, 等 扩髓灌洗联合抗生素骨水泥涂层髓内钉内固定治疗胫骨骨折髓内钉内固定术后感染. 中国骨与关节损伤杂志. 2021;36(2):139–142. doi: 10.7531/j.issn.1672-9935.2021.02.007. [DOI] [Google Scholar]
  • 22.张利兴, 田昂, 李锡, 等 TiO2纳米管/羟基磷灰石载万古霉素涂层的释药性及生物毒性 . 中国组织工程研究. 2021;25(10):1500–1506. doi: 10.3969/j.issn.2095-4344.3022. [DOI] [Google Scholar]
  • 23.Sun J, Liu X, Lyu C, et al. Synergistic antibacterial effect of graphene-coated titanium loaded with levofloxacin. Colloids Surf B Biointerfaces, 2021, 208: 112090. doi: 10.1016/j.colsurfb.2021.112090.
  • 24.Barbour ME, Gandhi N, el-Turki A, et al Differential adhesion of Streptococcus gordonii to anatase and rutile titanium dioxide surfaces with and without functionalization with chlorhexidine . J Biomed Mater Res A. 2009;90(4):993–998. doi: 10.1002/jbm.a.32170. [DOI] [PubMed] [Google Scholar]
  • 25.Franco CF, Pataro AL, E Souza LC, et al In vitro effects of a chlorhexidine controlled delivery system . Artif Organs. 2003;27(5):486–491. doi: 10.1046/j.1525-1594.2003.07245.x. [DOI] [PubMed] [Google Scholar]
  • 26.杨园梦, 王爽, 李娇娇, 等 氯己定接枝改善多孔钛抗菌性能初探. 中华口腔医学杂志. 2020;55(2):104–110. doi: 10.3760/cma.j.issn.1002-0098.2020.02.006. [DOI] [Google Scholar]
  • 27.Tallury P, Alimohammadi N, Kalachandra S Poly (ethylene-co-vinyl acetate) copolymer matrix for delivery of chlorhexidine and acyclovir drugs for use in the oral environment: effect of drug combination, copolymer composition and coating on the drug release rate. Dent Mater. 2007;23(4):404–409. doi: 10.1016/j.dental.2006.02.011. [DOI] [PubMed] [Google Scholar]
  • 28.Tambunlertchai S, Srisang S, Nasongkla N Development of antimicrobial coating by layer-by-layer [corrected] dip coating of chlorhexidine-loaded micelles. J Mater Sci Mater Med. 2017;28(6):90. doi: 10.1007/s10856-017-5899-2. doi: 10.1007/s10856-017-5899-2. [DOI] [PubMed] [Google Scholar]
  • 29.王小红, 曹阳, 张利, 等 碱热处理对钛表面生物活性的影响. 功能材料. 2013;44(2):275–280. doi: 10.3969/j.issn.1001-9731.2013.02.028. [DOI] [Google Scholar]
  • 30.Zhao C, Zhu X, Liang K, et al Osteoinduction of porous titanium: a comparative study between acid-alkali and chemical-thermal treatments. J Biomed Mater Res B Appl Biomater. 2010;95(2):387–396. doi: 10.1002/jbm.b.31728. [DOI] [PubMed] [Google Scholar]
  • 31.杨帮成, 周学东, 于海洋, 等 钛种植体表面改性方法. 华西口腔医学杂志. 2019;37(2):124–129. doi: 10.7518/hxkq.2019.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Pettygrove BA, Kratofil RM, Alhede M, et al Delayed neutrophil recruitment allows nascent Staphylococcus aureus biofilm formation and immune evasion . Biomaterials. 2021;275:120775. doi: 10.1016/j.biomaterials.2021.120775. doi: 10.1016/j.biomaterials.2021.120775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Lehnfeld J, Gruening M, Kronseder M, et al Comparison of protein-repellent behavior of linear versus dendrimer-structured surface-immobilized polymers. Langmuir. 2020;36(21):5880–5890. doi: 10.1021/acs.langmuir.0c00625. [DOI] [PubMed] [Google Scholar]
  • 34.Tao C, Jin M, Yao H, et al Dopamine based adhesive nano-coatings on extracellular matrix (ECM) based grafts for enhanced host-graft interfacing affinity. Nanoscale. 2021;13(43):18148–18159. doi: 10.1039/D1NR06284K. [DOI] [PubMed] [Google Scholar]
  • 35.Fan Q, Bai J, Shan H, et al Implantable blood clot loaded with BMP-2 for regulation of osteoimmunology and enhancement of bone repair. Bioact Mater. 2021;6(11):4014–4026. doi: 10.1016/j.bioactmat.2021.04.008. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES