Abstract
目的
对创伤性异位骨化(heterotopic ossification,HO)的研究进展进行综述。
方法
广泛查阅国内外关于创伤性HO的相关文献,对其病因、发病机制、病理进展、诊断、预防和治疗等方面进行总结。
结果
创伤性HO常由关节手术、爆炸伤、神经损伤和烧伤等严重创伤所致。目前广泛认为创伤性HO的发生与组织的炎症反应、低氧等密切相关,口服非甾体抗炎药和手术切除是防治创伤性HO的主要手段。
结论
当前创伤性HO的发病机制尚不明确,相关预防和治疗措施有效率低,缺乏特异性治疗手段。未来还需要进一步研究创伤性HO的发病机制,寻找特异性的防治靶点。
Keywords: 异位骨化, 爆炸伤, 肌肉损伤, 炎症
Abstract
Objective
To review and evaluate the research progress of traumatic heterotopic ossification (HO).
Methods
The domestic and foreign related research literature on traumatic HO was widely consulted, and its etiology, pathogenesis, pathological progress, diagnosis, prevention, and treatment were summarized.
Results
Traumatic HO is often caused by severe trauma such as joint operation, explosion injury, nerve injury, and burn. At present, it is widely believed that the occurrence of traumatic HO is closely related to inflammation and hypoxia. Oral non-steroidal anti-inflammatory drugs and surgery are the main methods to prevent and treat traumatic HO.
Conclusion
Nowadays, the pathogenesis of traumatic HO is still unclear, the efficiency of relevant prevention and treatment measures is low, and there is a lack of specific treatment method. In the future, it is necessary to further study the pathogenesis of traumatic HO and find specific prevention and treatment targets.
Keywords: Heterotopic ossification, explosion injury, muscle injury, inflammation
异位骨化(heterotopic ossification,HO),即在软组织和关节中出现成熟骨组织, 包括遗传性HO和创伤后HO两类,前者是一种进行性骨化症,后者常见于关节手术 [人工全髋关节置换术(total hip arthroplasty,THA)、骨盆和肘关节手术等] 术后、爆炸伤、神经损伤和烧伤等严重创伤[1-3]。有研究发现,股骨干骨折术后HO发生率达50%,严重烧伤后达60%,而战争相关爆炸伤后高达65%[4-5]。重度HO可导致严重疼痛、关节卡压、关节活动受限等[6],严重影响患者的功能康复和生活质量。口服非甾体抗炎药(non-steroidal anti-inflammatory drugs,NSAIDs)和放射治疗是创伤性HO常用预防措施,手术是常用治疗手段。但由于创伤性HO的发病机制尚不清楚,相关预防和治疗措施有效率低,缺乏特异性,且存在复发风险。本文拟对创伤性HO的病因、发病机制、病理进展、诊断、预防和治疗方法等进行综述,分析相关研究进展和存在的局限性,并对新型预防和治疗措施进行展望。
1. 病因
1.1. 爆炸伤
作为一种高能量创伤,爆炸伤多合并机械损伤和高温灼伤,常为多发伤。研究发现爆炸伤后HO发生率达60%以上,远高于普通的创伤截肢患者[5,7]。多发伤、截肢、伤口面积和损伤严重程度等都是HO的独立风险因素。Jaffin等[8]制作了可产生高能量爆炸冲击波的装置,利用爆炸冲击波,成功构建了爆炸伤诱导的创伤性HO动物模型;Spear等[9]发现爆炸伤可激活和损伤内皮细胞,引起周围组织病理学改变,促进炎症细胞因子的表达。Polfer等[10]以大鼠为实验对象,发现爆炸伤合并下肢截肢组的HO发生率远高于单纯截肢和单纯爆炸伤组。Jaffe等[11]进一步发现引起大鼠HO的原因是爆炸波本身,与爆炸的介质无关,该研究为分析爆炸伤后HO的细胞和分子机制、病理生理学等提供了良好的动物模型。
1.2. 手术
创伤性HO影响关节活动度,引起疼痛和功能障碍。HO多见于THA、骨盆骨折和肘关节骨折术后,Sagi等[12]发现髋臼骨折内固定术后患者HO发生率高达40%;Cheung等[13]发现单纯肘关节脱位后HO发生率为3%,合并关节周围骨折和脑外伤的患者HO发生率高达89%。不同手术入路手术后的HO发生率不同,肌肉损伤少的手术入路其HO发生率更低[14]。Newman等[15]发现微创THA后HO发生率低于常规切口手术。Anthonissen等[16]以大鼠为实验对象,对照组采用常规手术入路,实验组通过止血钳夹闭制造额外肌肉损伤,发现肌肉损伤可显著增加大鼠髋关节手术后HO发生率,表明肌肉损伤在创伤性HO中有重要作用。Li等[17]比较了小鼠腓肠肌内注射心脏毒素和BMP-2以及单纯注射BMP-2、心脏毒素的HO发生率,发现在BMP-2诱导的创伤性HO小鼠模型上,肌肉损伤可以激活BMP通路,上调BMP-7表达,增加HO发生率,抑制BMP-7的活性则可抑制HO的发生。
1.3. 神经损伤
神经源性HO常见于中枢神经损伤,包括脑损伤和脊髓损伤,发生率在10%~50%[18],常见于损伤后数月,持续多年。神经源性HO常见于机体大关节,如髋、膝、肘、肩关节,损伤严重程度、损伤时间等都是神经源性HO的独立风险因素;另外,合并神经损伤的外伤患者HO发生率远高于单纯外伤患者[19-20]。Debaud等[21]和Flierl等[22]以小鼠为研究对象,成功构建了脑损伤和脊髓损伤动物模型,为以后研究神经源性HO的发病机制、预防和治疗措施提供了可能。
1.4. 烧伤
HO是烧伤患者的常见并发症之一,当烧伤面积超过全身面积20%时,HO发生风险明显增加,尤其是男性和关节周围皮肤烧伤的患者。烧伤导致的HO和神经源性HO相似,常见于关节周围,比如肩关节和肘关节等,可能原因是关节周围皮肤烧伤后形成瘢痕,限制了关节活动,为HO发生提供了条件[23]。大量研究发现,烧伤可以明显增加小鼠肌腱损伤模型HO的发生率,小鼠后背部60℃灼伤加跟腱切开术已成为一种常用的构建创伤性HO模型的手段,可在其跟骨及软组织周围发现大量HO病灶[24-25]。
综上,肌肉损伤在创伤性HO的发生、发展中具有重要作用,爆炸伤和多发伤患者发生HO可能性很高,合并神经损伤和烧伤可显著增加HO发生率。
2. 发病机制
骨骼形成和发育是一个高度协调的生理过程。当前,创伤性HO的发病机制尚不清楚,传统研究认为创伤导致炎症和局部低氧,激活Notch、TGF-β和BMP通路,促进MSCs增殖分化、血管发育和骨形成,进而诱导创伤性HO的发生、发展。神经损伤、肌肉损伤、爆炸伤等动物模型的成功构建,为研究HO的发病机制、寻找新的预防和治疗手段奠定基础。以下从炎症反应、相关信号通路和组织低氧等方面阐述创伤性HO的发病机制。
2.1. 炎症反应
创伤,尤其是爆炸伤和烧伤,是引起机体炎症反应的重要原因,而创伤诱导的炎症是HO发生、发展的重要因素。Evans等[26]和Forsberg等[27]以爆炸伤士兵为研究对象,发现炎症失调和促炎分子的相互作用可能驱动HO的形成,在HO患者的血清中IL-6、IL-10和单核细胞趋化蛋白1(monocyte chemoattractant protein 1,MCP-1)含量明显升高。越来越多研究证实,炎症细胞因子升高与HO的发生成正相关。有研究发现促炎症细胞因子可同时促进MSCs向成骨细胞分化[28]。Sung等[29]在创伤性HO小鼠体内检测到TNF-α、IL-1b、IL-6和MCP-1含量升高。Peterson等[30]发现烧伤部位的三磷酸腺苷水解和抑制炎症反应可以降低烧伤后HO发生的风险。Qureshi等[31]发现雷帕霉素可以抑制爆炸伤后HO的发生,也可以抑制炎症反应,表明HO和炎症之间存在相关性。另外,NSAIDs是创伤性HO的预防和治疗手段,进一步说明了炎症和HO的相关性。
近年有研究认为,巨噬细胞作为炎症反应的重要介质,可能是连接炎症和HO发病机制的关键细胞[32-33]。众所周知,HO的形成需要MSCs的参与和适宜的成骨微环境,MSCs分化为成骨细胞,是促进HO形成和发展的重要步骤[34]。有研究在共培养过程中,发现M1型巨噬细胞向M2型巨噬细胞极化可促进BMSCs成骨分化[35],而清除巨噬细胞会影响MSCs成骨分化[36]。另一方面,最新研究表明巨噬细胞可以调节创伤后炎症反应,甚至驱动HO的发生。Tirone等[37]应用清除了巨噬细胞的转基因小鼠,研究发现受损骨骼肌中的巨噬细胞耗竭可促使内皮细胞向成骨细胞分化,增加HO的发生风险。但Kan等[38]却持相反观点,他们发现清除巨噬细胞会降低转基因小鼠患HO的风险。综上,巨噬细胞是研究炎症反应和HO发病机制之间的重要纽带,但巨噬细胞的活性和HO发生、发展之间的关系仍存在争议,需要进一步研究。
2.2. TGF-β和BMP通路
TGF-β在重塑机体组织和维持稳态方面具有重要作用。传统研究关于TGF-β对成骨的作用存在截然相反的两种观点,有研究认为TGF-β可促进成骨细胞分化[39],另一方面有学者发现,抑制TGF-β活性可促进组织钙化和HO发生[40]。可能的解释是TGF-β通路存在依赖Smad3和不依赖Smad3的2条通路,依赖Smad3通路促进成骨细胞分化,促进HO发生,而不依赖Smad3通路通过丝裂原激活的蛋白激酶抑制成骨细胞分化[40]。Guerrero等[41]发现,TGF-β通过减少下游蛋白Smad1/5/8的核易位并避免Wnt通路激活来抑制HO发生。Wang等[42]的研究以小鼠为实验对象,发现炎症反应可提升TGF-β水平,促进MSCs聚集分化和HO发生,应用TGF-β中和抗体可抑制HO发生,应用TGF-β基因敲除小鼠进一步证实了该观点,TGF-β可能是创伤性HO的一个治疗靶点,但本研究并未对TGF-β的下游蛋白(Smad3)进行研究。
作为TGF-β家族的一员,自Urist[43]发现BMP可以诱导软组织HO以来,该蛋白便获得了广泛研究。BMP作为骨生长的启动因子,可促进MSCs分化为成骨细胞和骨细胞,产生钙化机制。研究发现创伤性HO动物模型中BMP表达增加,而拮抗BMP可降低HO的发生率[44]。肌肉注射BMP-2和BMP-4常被用作构建动物模型体内成骨微环境的手段。Li等[17]发现,与单纯注射心脏毒素或BMP-2相比,联合注射BMP-2和心脏毒素后HO发生率显著增加。大量研究发现创伤后机体BMP及其下游蛋白表达增加。Grenier等[45]发现创伤性HO患者体内BMP-9蛋白表达增加。另一项研究发现,与爆炸伤后无HO患者相比,HO患者伤口渗出物中BMP-2和Samd1表达增加[46]。诸多证据表明,BMP在HO的成骨微环境中发挥着重要作用,可能是构成成骨微环境的基础因素。
2.3. 低氧
机体在低氧条件下可产生低氧诱导因子1α(hypoxia inducible factor lα,HIF-1α),HIF-1α可促进血管生成和MSCs向软骨细胞分化,血管生成又是HO形成和成熟的必备条件[47]。Wang等[42]认为损伤导致的炎症和低氧是遗传性HO的始动因子,低氧可促进BMP的表达,而抑制HIF-1α和提高氧浓度可抑制HO的发生。喻都等[48]在跟腱损伤HO大鼠模型上发现,损伤早期的跟腱及其周围组织HIF-1α表达升高,提示局部低氧微环境在创伤性HO发病机制中起重要作用。Winkler等[49]发现低氧环境可引起人MSCs中成软骨的基因和BMP-4表达升高,表明低氧可能增加MSCs的成软骨活性。Lin等[50]以大鼠跟腱创伤性HO为研究载体,发现抑制HIF-1α可在初始阶段抑制HO的发生。Agarwal等[51]发现创伤患者和创伤性HO小鼠模型体内的HIF-1α表达均上调,抑制HIF-1α表达可抑制HO产生,抑制MSCs凝结。综上,HIF-1α可以作为遗传性和创伤性HO的一个治疗靶点。
3. 病理进展
骨骼的发育过程包括膜内成骨和软骨内成骨2种途径,其中创伤性HO常被认为是软骨内成骨途径,主要包括炎症、软骨化、成骨和骨成熟4个阶段,需要多种MSCs的参与[52-53]。在炎症阶段,创伤导致炎症反应,炎症细胞(巨噬细胞、中性粒细胞等)聚集,同时通过血管招募机体中的成骨干细胞、血管内皮细胞等,进而成纤维细胞聚集增生,出现纤维化[26]。但是各个阶段之间进展的机制尚不清楚,一个合理的假说是纤维细胞增生伴随着低氧和棕色脂肪组织的生成,形成一个有利于软骨生成的低氧张力环境;另外MSCs大量分化成软骨细胞,同时低氧促进新生血管生成,进一步促进骨软骨分化;待氧含量逐步提高,会促进软骨细胞成熟肥大和钙化,分泌胶原基质,然后胶原基质逐步重塑和骨化,形成成熟的骨组织[54-55]。
另外,有研究[56]发现创伤性HO的发生可能是一种新的途径,即钙化成骨,细胞损伤释放大量钙离子形成钙化颗粒。正常情况下,机体的巨噬细胞可吞噬肌肉中的钙化颗粒,但巨噬细胞功能受损后,钙化颗粒逐步沉积,进而形成病理性HO。
4. 诊断方法
早期准确诊断是提高HO治疗效果的关键,需要识别创伤性HO的高危因素,如肌肉损伤合并神经损伤和烧伤、多发伤等,早诊断、早干预。HO的诊断以影像学方法为主,可明确HO的分期和严重程度,再参考患者临床症状,注意与烧伤、免疫系统疾病导致的关节强直、活动受限的鉴别诊断。HO的分期方法有Brooker分期、Della Valle分期和Schmidt and Hackenbroch分期,尤以Brooker分期常用,分为Ⅰ~Ⅳ期,Ⅲ期以上为重度HO,可出现疼痛、关节活动受限等症状[57]。
4.1. 影像学和超声
X线片是诊断HO最常用的手段,可在软组织或关节中发现骨形成,但该方法只能发现中晚期HO。研究发现放射性核素扫描可以发现早期HO,组织钙化在受伤1周后可监测到[58]。另外,MRI和CT均可用于HO的早期诊断,通过调整信号和增加对比度,可区分早期HO和成熟骨[59]。超声检查常用于诊断脊髓损伤和髋关节术后HO,可在影像学检查之前发现软组织中的异常信号[60]。
4.2. 拉曼光谱
拉曼光谱使用特定的振动曲线来区分化合物,该方法在小鼠模型上已成功应用[61]。Harris等[62]使用拉曼光谱可在战争伤患者中发现早期HO,由于敏感性、特异性高且无创,正逐步应用和推广。Crane等[63]使用拉曼光谱在体外比较受伤组织与正常组织、钙化HO组织和非钙化HO组织的特点,与正常组织相比,HO组织的酰胺Ⅰ和Ⅲ光谱区域显示出明显差异;另外通过HO组织中的矿物质含量和密度可确定骨骼成熟度,从而判断HO的阶段。该研究表明拉曼光谱可能成为一种早期诊断HO的方法,在出现临床症状之前早期干预,及时切除可能发展成HO的损伤组织。但是拉曼光谱需要配置相应的仪器和技师,限制了该方法使用,另外该方法只能监测单一损伤区域的HO病理变化,且分析区域较浅(一般是1~2 cm)[64]。Papour等[65]使用羟基磷灰石体外模拟骨组织,寻找与机体条件相符合的光照强度和速度,通过扩大照明面积,保证在采集方向上均匀可变的照明功率,可分析深层次的骨组织。
4.3. 免疫学检查
免疫学检查,尤其是炎症标记物,对预测HO的发生具有重要价值。研究发现HO患者血清中ALP升高,但该指标缺乏特异性[66]。Rodenberg等[67]的体外研究发现,基质金属蛋白酶9是早期细胞外基质重组的生物标志物,可以作为诊断早期HO的生物因子。Forsberg等[27]的大数据研究表明,截肢、损伤严重程度、损伤面积、血清和伤口渗出物中的IL-3含量是爆炸伤后HO的独立危险因素。Schurch等[68]以脊髓损伤患者为研究对象,发现在HO成熟之前,患者血液中的前列腺素E2会持续增加,该指标可能会用于HO的早期诊断。Alfieri等[69]选取87个战争创伤患者的肌肉组织,量化了190个与伤口愈合、成骨和血管基因相关的基因表达,尝试寻找有效预测HO发生风险的模型,为优化HO预防手段和选择HO手术时机提供了参考,但该方法需要进一步完善数据。
由于创伤性HO包括爆炸伤、神经损伤、外科手术后等许多病因,目前仍缺乏统一的HO诊断标准。对于早期HO的相关研究尚处于体外研究或者动物实验阶段,缺乏特异性和灵敏度高的诊断方法。临床医生应明确创伤性HO的危险因素,辅以其他检查手段,早期诊断和治疗HO。
5. 预防措施
5.1. NSAIDs
由于创伤性HO常合并炎症反应,作为抗炎药物的NSAIDs常被用作预防HO的一线药物。Kienapfel等[70]的随机对照研究发现,THA术后口服NSAIDs(50 mg,每天4次,持续7周)和应用单剂量局部放射治疗(600 cGy/d,术后第2~4天)预防HO效果相当。另一项研究表明,口服NSAIDs(20 mg,每天3次,持续6周)和应用单剂量局部放射治疗(800 cGy/d,术后第1~3天)均可有效安全地预防骨盆骨折内固定术后HO。与局部放射治疗相比,NSAIDs预防创伤性HO具有使用方便、无需特殊仪器、价格低廉的优势[71]。大量研究发现,与不用NSAIDs的对照组相比,应用NSAIDs可显著降低髋关节置换翻修术后HO发生率[72-73]。
当前,关于NSAIDs合适的使用剂量和时间仍缺乏统一标准。NSAIDs应用时机至关重要,建议创伤后立即应用,因NSAIDs主要用于HO的预防,当HO形成后,NSAIDs并不能阻断HO的病理进展[74]。另外,NSAIDs主要应用于THA和骨盆骨折术后患者,对于其他原因导致的HO,尤其是战争伤相关HO,报道很少。对于战争创伤患者,由于常合并多系统创伤、长骨骨折、应激性胃炎等NSAIDs的禁忌证,因此限制了NSAIDs的应用;另一方面,这些患者的纳入和随访十分困难。
NSAIDs的不良反应也是需要着重考虑的一个方面,由于并发症少,选择性环氧化酶2(cyclooxygenase 2,COX-2)抑制剂可能是一个有效药物。有研究发现骨折患者连续应用14 d COX-2抑制剂并不会影响骨折愈合,但随访时间较短,长时间应用该抑制剂的副作用尚不明确[43]。关于NSAIDs预防爆炸伤后HO的效果,仍处于动物实验或者临床前研究阶段。
5.2. 局部放射治疗
低剂量局部放射治疗是预防创伤后HO或防止HO复发的重要措施,尤其是针对THA或骨盆骨折内固定术后患者。自Coventry等[75]使用局部放射治疗预防HO以来,越来越多研究者反复试验寻找合适的放射治疗剂量。常用的预防HO剂量为400~700 cGy,使用时间为术前24 h或术后72 h。Healy等[76]报道THA术后应用单次剂量700 cGy的患者HO发生率低于低剂量组(550 cGy);Liu等[77]的研究支持这一观点,他们认为700 cGy剂量优于400 cGy,同时更高剂量并不会带来更高的有效性。当前预防HO推荐的常用剂量为700 cGy,单次局部放射治疗的有效性优于多次放射治疗,尤其是针对症状较轻的HO[78]。最新研究表明对于肘关节创伤患者,NSAIDs和局部放射治疗防治HO效果相似,可根据患者特点选择方案[79]。但Shapira等[80]认为对于THA患者,NSAIDs防治创伤性HO的效果优于局部放射治疗。
影响局部放射治疗有效性最主要的因素是应用时间,有研究建议术前24 h内或术后72 h内进行放射治疗效果最佳,也有研究认为术后5 d内使用疗效类似[78,81]。另外,大量研究表明术前或术后应用局部放射治疗效果相似[78,81-82]。关于局部放射治疗的安全性,Sheybani等[83]通过分析3 489例接受髋臼骨折切开复位内固定术或者THA患者临床资料,认为局部放射治疗并不会增加患者罹患恶性肿瘤、关节僵硬等并发症的风险。
近年来,局部放射治疗开始逐步应用于除THA外其他原因导致的HO患者。Müseler等[84]的随机对照研究发现,局部放射治疗(700 cGy)可以延缓脊髓损伤后患者髋关节周围HO的进展,但相同剂量应用于肘关节外伤患者,效果并不明显。然而局部放射治疗的研究对象仍以髋关节周围HO为主,对于其他部位的HO和爆炸伤、烧伤等导致的HO,其有效性和安全性有待商榷。
5.3. 其他手段
双磷酸盐可以诱导破骨细胞凋亡,抑制羟基磷灰石晶体生长,减少钙化,因而常被用作创伤性HO的预防药物,尤其是当HO形成以后[85]。有研究发现双磷酸盐可显著降低罹患神经损伤性HO的风险[74],但效果仍存在争议[86]。BMP通路抑制剂可能会有效预防早中期HO,但由于BMP受体存在于机体多个组织,无法做到靶向治疗[87]。至于其他通路抑制剂,仍处于体外研究和动物实验阶段,如何实现精确的靶向治疗,顺利应用于临床,还有待更多研究明确。
当前应用的预防措施主要是针对THA术后或髋关节周围HO,对于其他原因和部位的HO研究甚少,尤其对于爆炸伤后HO。有研究发现局部放射治疗对于爆炸伤后HO效果不佳,可能原因是爆炸伤患者经转运后,错过了术后72 h内放射治疗的最佳时间窗,另外放射治疗可能会增加伤口并发症风险[88]。一项研究发现,对于爆炸伤后截肢的大鼠,应用局部放射治疗和NSAIDs均不会显著降低创伤后HO发生风险,对于爆炸伤导致的HO,需要新型预防措施[89]。
6. 治疗
6.1. 保守治疗
当预防措施失效、HO形成以后,需要进行HO治疗。首先是保守治疗,早期功能锻炼和关节活动可能降低创伤后HO发生风险,但缺乏相关临床研究支持。对于烧伤和脊髓损伤患者,是否进行早期功能锻炼尚存在争议。有学者反对过度锻炼,认为会促进炎症和增加HO发生风险;但也有学者认为锻炼会增加关节活动度,促进患者康复[90]。对于股骨骨折或者膝关节术后患者,术后股四头肌功能锻炼有助于增强肌力,促进患者恢复和降低发生HO的风险[91]。
6.2. 手术切除
对于Brooker Ⅰ、Ⅱ期HO,一般不需要特殊治疗;Ⅲ期以上的HO常需要手术治疗。手术切除是治疗创伤性HO的首要手段,出现疼痛、活动受限等临床症状是手术切除的适应证。目前关于HO手术治疗的时机仍存在争议,一般认为需要待HO发育成熟不再生长以后,即HO形成后12~18个月行手术治疗,这样可以降低HO复发风险,保证创伤组织的恢复[92]。也有研究报道应待HO形成6个月后再行手术治疗,Pavey等[93]的大数据研究发现对于爆炸伤导致的HO,受伤后6~9个月行HO切除术可以明显降低其复发风险;手术应尽量将HO组织,包括附近的神经和血管彻底切除,完全切除的复发率显著低于部分切除。但目前关于神经损伤、烧伤等导致的HO手术时机,未见相关报道。HO复发最主要的风险因素是HO病史,因而对于有HO病史的患者,相关预防措施(局部放射治疗、应用NSAIDs等)至关重要[94]。尽管手术是治疗HO的首要手段,但手术本身也是一种创伤,会有出血和炎症,也可构成HO形成的条件,因而如何有效预防术后HO的复发依然是临床亟待解决的问题。
6.3. 治疗新进展
由于创伤性HO依旧缺乏简便、安全、有效的治疗手段,寻找HO治疗的新方法一直是医生和科研人员致力解决的问题。Peterson等[30]的细胞实验和动物实验研究发现,烧伤可以促进MSCs向成骨细胞分化,通过BMP-Smad通路促进HO形成,而促进烧伤部位三磷酸腺苷的水解从而降低机体内磷酸化Smad1/5/8蛋白表达,可以有效抑制烧伤后HO形成;另外,选择性抑制Smad1/5/8蛋白可以达到相似的治疗效果。Zimmermann等[95]发现使用棘霉素可以抑制HIF通路,与未使用棘霉素的对照组相比,可以显著降低大鼠跟腱切除术后HO发生率。由于缺乏有效的预防手段且发病机制不明,爆炸伤导致的HO一直是治疗难点。一项研究发现,爆炸伤后早期(受伤当天)局部应用万古霉素可以显著降低HO发生率,抑制骨髓和周围软组织感染,而术后3 d使用万古霉素的有效性则大大降低,进一步证明创伤性HO早期治疗的必要性[96]。Sinha等[97]研究发现,应用抗炎药(皮质类固醇)和维甲酸激动剂可以抑制炎症因子受体的活性,降低HO内部及其周围组织中肥大细胞、巨噬细胞和MSCs的数量,从而抑制创伤性HO的发生。Pavey等[98]使用大鼠模型,进一步验证维甲酸激动剂对于爆炸伤截肢合并感染导致HO的有效性,发现应用维甲酸激动剂可以抑制异位软骨生成、成骨和血管生成,抑制残端组织中成骨和成软骨基因的表达,并促进软骨细胞肥大,从而显著降低HO发生率。然而,该药物可能会抑制伤口愈合,其安全性仍待进一步验证。综上,当前创伤性HO的新型治疗方法仍处于动物实验阶段,并未考虑相关临床因素,其安全性和有效性仍需要大量临床试验加以验证。另外,药物联合应用和传统治疗方法联合应用是否效果更佳,也是一个亟待明确的问题。
7. 总结和展望
创伤性HO是一个复杂的病理生理过程,具有不同的病因甚至不同的发病机制,需要多种细胞动员和参与。首先是创伤导致炎症反应,进而血管生成、软骨化、骨基质重塑和骨形成、骨成熟。然而有哪些细胞参与以及具体诱发因素和反应过程尚不明确,但相关动物模型的成功建立为研究HO发病机制提供了基础。X线片是诊断创伤性HO最常用的手段,不过对早期HO并不敏感。局部放射治疗和口服NSAIDs是常用的预防手段,但主要应用于THA和骨盆骨折内固定术后患者,对其他类型HO效果不明确。当前,创伤性HO仍缺乏安全且有效的治疗方法,靶向治疗是未来研究热点,相关动物实验结果展示了积极的应用前景,如何解决从动物实验到临床应用的诸多问题,让靶向治疗成功应用于患者是今后研究重点。
利益冲突 所有作者声明,在文章撰写过程中不存在利益冲突
作者贡献声明 曹国瑞负责综述的构思与设计、查阅文献及撰写论文;裴福兴对文章的知识性内容作批评性审阅
References
- 1.Kassem MS, Elsayed MA Total hip replacements following acetabular fractures. 7 to 15 years clinical and radiological results. Acta Orthop Belg. 2021;87(3):419–426. [PubMed] [Google Scholar]
- 2.Kazezian Z, Yu X, Ramette M, et al Development of a rodent high-energy blast injury model for investigating conditions associated with traumatic amputations. Bone Joint Res. 2021;10(3):166–172. doi: 10.1302/2046-3758.103.BJR-2020-0367.R1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Shaath MK, Lim PK, Andrews R, et al Clinical results of acetabular fracture fixation using a focal Kocher-Langenbeck approach without a specialty traction table. J Orthop Trauma. 2020;34(6):316–320. doi: 10.1097/BOT.0000000000001723. [DOI] [PubMed] [Google Scholar]
- 4.Forsberg JA, Pepek JM, Wagner S, et al Heterotopic ossification in high-energy wartime extremity injuries: prevalence and risk factors. J Bone Joint Surg (Am) 2009;91(5):1084–1091. doi: 10.2106/JBJS.H.00792. [DOI] [PubMed] [Google Scholar]
- 5.Forsberg JA, Potter BK. Heterotopic ossification in wartime wounds. J Surg Orthop Adv, Spring 2010, 19(1): 54-61.
- 6.Beckmann JT, Wylie JD, Kapron AL, et al The effect of NSAID prophylaxis and operative variables on heterotopic ossification after hip arthroscopy. Am J Sports Med. 2014;42(6):1359–1364. doi: 10.1177/0363546514526361. [DOI] [PubMed] [Google Scholar]
- 7.Matsumoto ME, Khan M, Jayabalan P, et al Heterotopic ossification in civilians with lower limb amputations. Arch Phys Med Rehabil. 2014;95(9):1710–1713. doi: 10.1016/j.apmr.2014.03.010. [DOI] [PubMed] [Google Scholar]
- 8.Jaffin JH, McKinney L, Kinney RC, et al A laboratory model for studying blast overpressure injury. J Trauma. 1987;27(4):349–356. doi: 10.1097/00005373-198704000-00002. [DOI] [PubMed] [Google Scholar]
- 9.Spear AM, Davies EM, Taylor C, et al Blast wave exposure to the extremities causes endothelial activation and damage. Shock. 2015;44(5):470–478. doi: 10.1097/SHK.0000000000000455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Polfer EM, Hope DN, Elster EA, et al The development of a rat model to investigate the formation of blast-related post-traumatic heterotopic ossification. Bone Joint J. 2015;97-B(4):572–576. doi: 10.1302/0301-620X.97B4.34866. [DOI] [PubMed] [Google Scholar]
- 11.Jaffe DE, Yoo D, Blevins J, et al. Does blast medium affect heterotopic ossification in a blast-amputation model? Clin Orthop Relat Res, 2015, 473(8): 2680-2687.
- 12.Sagi HC, Jordan CJ, Barei DP, et al Indomethacin prophylaxis for heterotopic ossification after acetabular fracture surgery increases the risk for nonunion of the posterior wall. J Orthop Trauma. 2014;28(7):377–383. doi: 10.1097/BOT.0000000000000049. [DOI] [PubMed] [Google Scholar]
- 13.Cheung EV, Sarkissian EJ Complications of elbow trauma. Hand Clin. 2015;31(4):683–691. doi: 10.1016/j.hcl.2015.06.012. [DOI] [PubMed] [Google Scholar]
- 14.Guo JJ, Tang N, Yang HL, et al Impact of surgical approach on postoperative heterotopic ossification and avascular necrosis in femoral head fractures: a systematic review. Int Orthop. 2010;34(3):319–322. doi: 10.1007/s00264-009-0849-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Newman EA, Holst DC, Bracey DN, et al Incidence of heterotopic ossification in direct anterior vs posterior approach to total hip arthroplasty: a retrospective radiographic review . Int Orthop. 2016;40(9):1967–1973. doi: 10.1007/s00264-015-3048-4. [DOI] [PubMed] [Google Scholar]
- 16.Anthonissen J, Ossendorf C, Hock JL, et al The role of muscular trauma in the development of heterotopic ossification after hip surgery: An animal-model study in rats. Injury. 2016;47(3):613–616. doi: 10.1016/j.injury.2015.11.019. [DOI] [PubMed] [Google Scholar]
- 17.Li L, Jiang Y, Lin H, et al Muscle injury promotes heterotopic ossification by stimulating local bone morphogenetic protein-7 production. J Orthop Translat. 2019;18:142–153. doi: 10.1016/j.jot.2019.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Estraneo A, Pascarella A, Masotta O, et al Multi-center observational study on occurrence and related clinical factors of neurogenic heterotopic ossification in patients with disorders of consciousness. Brain Inj. 2021;35(5):530–535. doi: 10.1080/02699052.2021.1893384. [DOI] [PubMed] [Google Scholar]
- 19.Dizdar D, Tiftik T, Kara M, et al Risk factors for developing heterotopic ossification in patients with traumatic brain injury. Brain Inj. 2013;27(7-8):807–811. doi: 10.3109/02699052.2013.775490. [DOI] [PubMed] [Google Scholar]
- 20.Hurvitz EA, Mandac BR, Davidoff G, et al Risk factors for heterotopic ossification in children and adolescents with severe traumatic brain injury. Arch Phys Med Rehabil. 1992;73(5):459–462. [PubMed] [Google Scholar]
- 21.Debaud C, Salga M, Begot L, et al Peripheral denervation participates in heterotopic ossification in a spinal cord injury model. PLoS One. 2017;12(8):e0182454. doi: 10.1371/journal.pone.0182454. doi: 10.1371/journal.pone.0182454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Flierl MA, Stahel PF, Beauchamp KM, et al Mouse closed head injury model induced by a weight-drop device. Nat Protoc. 2009;4(9):1328–1337. doi: 10.1038/nprot.2009.148. [DOI] [PubMed] [Google Scholar]
- 23.Medina A, Shankowsky H, Savaryn B, et al Characterization of heterotopic ossification in burn patients. J Burn Care Res. 2014;35(3):251–256. doi: 10.1097/BCR.0b013e3182957768. [DOI] [PubMed] [Google Scholar]
- 24.Peterson JR, De La Rosa S, Sun H, et al Burn injury enhances bone formation in heterotopic ossification model. Ann Surg. 2014;259(5):993–998. doi: 10.1097/SLA.0b013e318291da85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Hu X, Sun Z, Li F, et al Burn-induced heterotopic ossification from incidence to therapy: key signaling pathways underlying ectopic bone formation. Cell Mol Biol Lett. 2021;26(1):34. doi: 10.1186/s11658-021-00277-6. doi: 10.1186/s11658-021-00277-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Evans KN, Forsberg JA, Potter BK, et al Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high-energy penetrating war injuries. J Orthop Trauma. 2012;26(11):e204–e213. doi: 10.1097/BOT.0b013e31825d60a5. [DOI] [PubMed] [Google Scholar]
- 27.Forsberg JA, Potter BK, Polfer EM, et al. Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res, 2014, 472(9): 2845-2854.
- 28.Kaplan FS, Glaser DL, Hebela N, et al Heterotopic ossification. J Am Acad Orthop Surg. 2004;12(2):116–125. doi: 10.5435/00124635-200403000-00007. [DOI] [PubMed] [Google Scholar]
- 29.Sung Hsieh HH, Chung MT, Allen RM, et al Evaluation of salivary cytokines for diagnosis of both trauma-induced and genetic heterotopic ossification. Front Endocrinol (Lausanne) 2017;8:74. doi: 10.3389/fendo.2017.00074. doi: 10.3389/fendo.2017.00074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Peterson JR, De La Rosa S, Eboda O, et al Treatment of heterotopic ossification through remote ATP hydrolysis. Sci Transl Med. 2014;6(255):255ra132. doi: 10.1126/scitranslmed.3008810. doi: 10.1126/scitranslmed.3008810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Qureshi AT, Dey D, Sanders EM, et al Inhibition of mammalian target of rapamycin signaling with rapamycin prevents trauma-induced heterotopic ossification. Am J Pathol. 2017;187(11):2536–2545. doi: 10.1016/j.ajpath.2017.07.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Franken L, Schiwon M, Kurts C Macrophages: sentinels and regulators of the immune system. Cell Microbiol. 2016;18(4):475–487. doi: 10.1111/cmi.12580. [DOI] [PubMed] [Google Scholar]
- 33.Sorkin M, Huber AK, Hwang C, et al Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing. Nat Commun. 2020;11(1):722. doi: 10.1038/s41467-019-14172-4. doi: 10.1038/s41467-019-14172-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Mund SJK, MacPhee DJ, Campbell J, et al Macroscopic, histologic, and immunomodulatory response of limb wounds following intravenous allogeneic cord blood-derived multipotent mesenchymal stromal cell therapy in horses. Cells. 2021;10(11):2972. doi: 10.3390/cells10112972. doi: 10.3390/cells10112972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Gong L, Zhao Y, Zhang Y, et al The macrophage polarization regulates MSC osteoblast differentiation in vitro . Ann Clin Lab Sci. 2016;46(1):65–71. [PubMed] [Google Scholar]
- 36.Vi L, Baht GS, Whetstone H, et al Macrophages promote osteoblastic differentiationin-vivo: implications in fracture repair and bone homeostasis . J Bone Miner Res. 2015;30(6):1090–1102. doi: 10.1002/jbmr.2422. [DOI] [PubMed] [Google Scholar]
- 37.Tirone M, Giovenzana A, Vallone A, et al Severe heterotopic ossification in the skeletal muscle and endothelial cells recruitment to chondrogenesis are enhanced by monocyte/macrophage depletion. Front Immunol. 2019;10:1640. doi: 10.3389/fimmu.2019.01640. doi: 10.3389/fimmu.2019.01640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Kan L, Liu Y, McGuire TL, et al Dysregulation of local stem/progenitor cells as a common cellular mechanism for heterotopic ossification. Stem Cells. 2009;27(1):150–156. doi: 10.1634/stemcells.2008-0576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Heberden C, Denis I, Pointillart A, et al TGF-beta and calcitriol. Gen Pharmacol. 1998;30(2):145–151. doi: 10.1016/S0306-3623(97)00271-1. [DOI] [PubMed] [Google Scholar]
- 40.Kwok S, Partridge NC, Srinivasan N, et al Mitogen activated protein kinase-dependent inhibition of osteocalcin gene expression by transforming growth factor-beta1. J Cell Biochem. 2009;106(1):161–169. doi: 10.1002/jcb.21991. [DOI] [PubMed] [Google Scholar]
- 41.Guerrero F, Herencia C, Almadén Y, et al TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways. PLoS One. 2014;9(2):e89179. doi: 10.1371/journal.pone.0089179. doi: 10.1371/journal.pone.0089179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Wang X, Li F, Xie L, et al Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice. Nat Commun. 2018;9(1):551. doi: 10.1038/s41467-018-02988-5. doi: 10.1038/s41467-018-02988-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Urist MR Bone: formation by autoinduction. Science. 1965;150(3698):893–899. doi: 10.1126/science.150.3698.893. [DOI] [PubMed] [Google Scholar]
- 44.Hannallah D, Peng H, Young B, et al Retroviral delivery of Noggin inhibits the formation of heterotopic ossification induced by BMP-4, demineralized bone matrix, and trauma in an animal model. J Bone Joint Surg (Am) 2004;86(1):80–91. doi: 10.2106/00004623-200401000-00013. [DOI] [PubMed] [Google Scholar]
- 45.Grenier G, Leblanc E, Faucheux N, et al BMP-9 expression in human traumatic heterotopic ossification: a case report. Skelet Muscle. 2013;3(1):29. doi: 10.1186/2044-5040-3-29. doi: 10.1186/2044-5040-3-29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Evans KN, Potter BK, Brown TS, et al Osteogenic gene expression correlates with development of heterotopic ossification in war wounds. Clin Orthop Relat Res. 2014;472(2):396–404. doi: 10.1007/s11999-013-3325-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.张丹, 任利玲 缺氧诱导因子1α在组织工程成骨和成血管中的作用. 中国修复重建外科杂志. 2016;30(4):504–508. doi: 10.7507/1002-1892.20160100. [DOI] [PubMed] [Google Scholar]
- 48.喻都, 肖海军, 薛锋, 等 低氧诱导因子1α在大鼠跟腱创伤后异位骨化模型中的表达及意义. 中国修复重建外科杂志. 2016;30(9):1098–1103. doi: 10.7507/1002-1892.20160224. [DOI] [PubMed] [Google Scholar]
- 49.Winkler S, Niedermair T, Füchtmeier B, et al The impact of hypoxia on mesenchymal progenitor cells of human skeletal tissue in the pathogenesis of heterotopic ossification. Int Orthop. 2015;39(12):2495–2501. doi: 10.1007/s00264-015-2995-0. [DOI] [PubMed] [Google Scholar]
- 50.Lin L, Shen Q, Leng H, et al Synergistic inhibition of endochondral bone formation by silencing Hif1α and Runx2 in trauma-induced heterotopic ossification. Mol Ther. 2011;19(8):1426–1432. doi: 10.1038/mt.2011.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Agarwal S, Loder S, Brownley C, et al Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci U S A. 2016;113(3):E338–E347. doi: 10.1073/pnas.1515397113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Vanden Bossche L, Vanderstraeten G Heterotopic ossification: a review. J Rehabil Med. 2005;37(3):129–136. doi: 10.1080/16501970510027628. [DOI] [PubMed] [Google Scholar]
- 53.Huang Y, Wang X, Zhou D, et al Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med. 2021;6(1):70. doi: 10.1038/s41536-021-00178-4. doi: 10.1038/s41536-021-00178-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Davies OG, Grover LM, Eisenstein N, et al Identifying the cellular mechanisms leading to heterotopic ossification. Calcif Tissue Int. 2015;97(5):432–444. doi: 10.1007/s00223-015-0034-1. [DOI] [PubMed] [Google Scholar]
- 55.O'Brien EJ, Frank CB, Shrive NG, et al Heterotopic mineralization (ossification or calcification) in tendinopathy or following surgical tendon trauma. Int J Exp Pathol. 2012;93(5):319–331. doi: 10.1111/j.1365-2613.2012.00829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Moore-Lotridge SN, Li Q, Gibson BHY, et al Trauma-induced nanohydroxyapatite deposition in skeletal muscle is sufficient to drive heterotopic ossification. Calcif Tissue Int. 2019;104(4):411–425. doi: 10.1007/s00223-018-0502-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Mujtaba B, Taher A, Fiala MJ, et al Heterotopic ossification: radiological and pathological review. Radiol Oncol. 2019;53(3):275–284. doi: 10.2478/raon-2019-0039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Freed JH, Hahn H, Menter R, et al The use of the three-phase bone scan in the early diagnosis of heterotopic ossification (HO) and in the evaluation of Didronel therapy. Paraplegia. 1982;20(4):208–216. doi: 10.1038/sc.1982.39. [DOI] [PubMed] [Google Scholar]
- 59.Zagarella A, Impellizzeri E, Maiolino R, et al Pelvic heterotopic ossification: when CT comes to the aid of MR imaging. Insights Imaging. 2013;4(5):595–603. doi: 10.1007/s13244-013-0265-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Cassar-Pullicino VN, McClelland M, Badwan DA, et al Sonographic diagnosis of heterotopic bone formation in spinal injury patients. Paraplegia. 1993;31(1):40–50. doi: 10.1038/sc.1993.7. [DOI] [PubMed] [Google Scholar]
- 61.Schulmerich MV, Cole JH, Kreider JM, et al Transcutaneous Raman spectroscopy of murine bone in vivo . Appl Spectrosc. 2009;63(3):286–295. doi: 10.1366/000370209787599013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Harris M, Cilwa K, Elster EA, et al Pilot study for detection of early changes in tissue associated with heterotopic ossification: moving toward clinical use of Raman spectroscopy. Connect Tissue Res. 2015;56(2):144–152. doi: 10.3109/03008207.2015.1013190. [DOI] [PubMed] [Google Scholar]
- 63.Crane NJ, Polfer E, Elster EA, et al Raman spectroscopic analysis of combat-related heterotopic ossification development. Bone. 2013;57(2):335–342. doi: 10.1016/j.bone.2013.08.026. [DOI] [PubMed] [Google Scholar]
- 64.Freudiger CW, Min W, Saar BG, et al Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 2008;322(5909):1857–1861. doi: 10.1126/science.1165758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Papour A, Kwak JH, Taylor Z, et al Wide-field Raman imaging for bone detection in tissue. Biomed Opt Express. 2015;6(10):3892–3897. doi: 10.1364/BOE.6.003892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Garland DE A clinical perspective on common forms of acquired heterotopic ossification. Clin Orthop Relat Res. 1991;(263):13–29. [PubMed] [Google Scholar]
- 67.Rodenberg E, Azhdarinia A, Lazard ZW, et al Matrix metalloproteinase-9 is a diagnostic marker of heterotopic ossification in a murine model. Tissue Eng Part A. 2011;17(19-20):2487–2496. doi: 10.1089/ten.tea.2011.0007. [DOI] [PubMed] [Google Scholar]
- 68.Schurch B, Capaul M, Vallotton MB, et al Prostaglandin E2 measurements: their value in the early diagnosis of heterotopic ossification in spinal cord injury patients. Arch Phys Med Rehabil. 1997;78(7):687–691. doi: 10.1016/S0003-9993(97)90074-5. [DOI] [PubMed] [Google Scholar]
- 69.Alfieri KA, Potter BK, Davis TA, et al. Preventing heterotopic ossification in combat casualties-which models are best suited for clinical use? Clin Orthop Relat Res, 2015, 473(9): 2807-2813.
- 70.Kienapfel H, Koller M, Wüst A, et al Prevention of heterotopic bone formation after total hip arthroplasty: a prospective randomised study comparing postoperative radiation therapy with indomethacin medication. Arch Orthop Trauma Surg. 1999;119(5-6):296–302. doi: 10.1007/s004020050414. [DOI] [PubMed] [Google Scholar]
- 71.Moore KD, Goss K, Anglen JO Indomethacin versus radiation therapy for prophylaxis against heterotopic ossification in acetabular fractures: a randomised, prospective study. J Bone Joint Surg (Br) 1998;80(2):259–263. doi: 10.1302/0301-620X.80B2.0800259. [DOI] [PubMed] [Google Scholar]
- 72.Schaver AL, Willey MC, Westermann RW Incidence of heterotopic ossification with NSAID prophylaxis is low after open and arthroscopic hip preservation surgery. Arthrosc Sports Med Rehabil. 2021;3(5):e1309–e1314. doi: 10.1016/j.asmr.2021.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Migliorini F, Trivellas A, Eschweiler J, et al NSAIDs for prophylaxis for heterotopic ossification after total hip arthroplasty: A bayesian network meta-analysis. Calcif Tissue Int. 2021;108(2):196–206. doi: 10.1007/s00223-020-00763-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Teasell RW, Mehta S, Aubut JL, et al A systematic review of the therapeutic interventions for heterotopic ossification after spinal cord injury. Spinal Cord. 2010;48(7):512–521. doi: 10.1038/sc.2009.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Coventry MB, Scanlon PW The use of radiation to discourage ectopic bone. A nine-year study in surgery about the hip. J Bone Joint Surg (Am) 1981;63(2):201–208. [PubMed] [Google Scholar]
- 76.Healy WL, Lo TC, DeSimone AA, et al Single-dose irradiation for the prevention of heterotopic ossification after total hip arthroplasty. A comparison of doses of five hundred and fifty and seven hundred centigray. J Bone Joint Surg (Am) 1995;77(4):590–595. doi: 10.2106/00004623-199504000-00013. [DOI] [PubMed] [Google Scholar]
- 77.Liu JZ, Frisch NB, Barden RM, et al Heterotopic ossification prophylaxis after total hip arthroplasty: Randomized trial of 400 vs 700 cGy . J Arthroplasty. 2017;32(4):1328–1334. doi: 10.1016/j.arth.2016.10.030. [DOI] [PubMed] [Google Scholar]
- 78.Konski A, Pellegrini V, Poulter C, et al Randomized trial comparing single dose versus fractionated irradiation for prevention of heterotopic bone: a preliminary report. Int J Radiat Oncol Biol Phys. 1990;18(5):1139–1142. doi: 10.1016/0360-3016(90)90450-X. [DOI] [PubMed] [Google Scholar]
- 79.Henstenburg JM, Sherman M, Ilyas AM Comparing options for heterotopic ossification prophylaxis following elbow trauma: A systematic review and meta-analysis. J Hand Microsurg. 2021;13(3):189–195. doi: 10.1055/s-0040-1721880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Shapira J, Yelton MJ, Chen JW, et al. Efficacy of NSAIDs versus radiotherapy for heterotopic ossification prophylaxis following total hip arthroplasty in high-risk patients: a systematic review and meta-analysis. Hip Int, 2021. doi: 10.1177/1120700021991115.
- 81.Fingeroth RJ, Ahmed AQ Single dose 6 Gy prophylaxis for heterotopic ossification after total hip arthroplasty. Clin Orthop Relat Res. 1995;(317):131–140. [PubMed] [Google Scholar]
- 82.Seegenschmiedt MH, Makoski HB, Micke O, et al Radiation prophylaxis for heterotopic ossification about the hip joint-a multicenter study. Int J Radiat Oncol Biol Phys. 2001;51(3):756–765. doi: 10.1016/S0360-3016(01)01640-6. [DOI] [PubMed] [Google Scholar]
- 83.Sheybani A, TenNapel MJ, Lack WD, et al Risk of radiation-induced malignancy with heterotopic ossification prophylaxis: a case-control analysis. Int J Radiat Oncol Biol Phys. 2014;89(3):584–589. doi: 10.1016/j.ijrobp.2014.03.008. [DOI] [PubMed] [Google Scholar]
- 84.Müseler AC, Grasmücke D, Jansen O, et al In-hospital outcomes following single-dose radiation therapy in the treatment of heterotopic ossification of the hip following spinal cord injury-an analysis of 444 cases. Spinal Cord. 2017;55(3):244–246. doi: 10.1038/sc.2016.112. [DOI] [PubMed] [Google Scholar]
- 85.Gil JA, Waryasz GR, Klyce W, et al Heterotopic Ossification in Neurorehabilitation. R I Med J (2013) 2015;98(12):32–34. [PubMed] [Google Scholar]
- 86.Bijvoet OL, Nollen AJ, Slooff TJ, et al Effect of a diphosphonate on para-articular ossification after total hip replacement. Acta Orthop Scand. 1974;45(6):926–934. doi: 10.3109/17453677408989703. [DOI] [PubMed] [Google Scholar]
- 87.Cappato S, Tonachini L, Giacopelli F, et al High-throughput screening for modulators of ACVR1 transcription: discovery of potential therapeutics for fibrodysplasia ossificans progressiva. Dis Model Mech. 2016;9(6):685–696. doi: 10.1242/dmm.023929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Pakos EE, Ioannidis JP Radiotherapy vs . nonsteroidal anti-inflammatory drugs for the prevention of heterotopic ossification after major hip procedures:a meta-analysis of randomized trials. Int J Radiat Oncol Biol Phys. 2004;60(3):888–895. doi: 10.1016/j.ijrobp.2003.11.015. [DOI] [PubMed] [Google Scholar]
- 89.Robertson AD, Chiaramonti AM, Nguyen TP, et al Failure of indomethacin and radiation to prevent blast-induced heterotopic ossification in a Sprague-Dawley rat model. Clin Orthop Relat Res. 2019;477(3):644–654. doi: 10.1097/CORR.0000000000000594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Ranganathan K, Loder S, Agarwal S, et al Heterotopic ossification: Basic-science principles and clinical correlates. J Bone Joint Surg (Am) 2015;97(13):1101–1111. doi: 10.2106/JBJS.N.01056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Aronen JG, Garrick JG, Chronister RD, et al Quadriceps contusions: clinical results of immediate immobilization in 120 degrees of knee flexion. Clin J Sport Med. 2006;16(5):383–387. doi: 10.1097/01.jsm.0000244605.34283.94. [DOI] [PubMed] [Google Scholar]
- 92.Mavrogenis AF, Soucacos PN, Papagelopoulos PJ Heterotopic ossification revisited. Orthopedics. 2011;34(3):177. doi: 10.3928/01477447-20110124-08. doi: 10.3928/01477447-20110124-08. [DOI] [PubMed] [Google Scholar]
- 93.Pavey GJ, Polfer EM, Nappo KE, et al. What risk factors predict recurrence of heterotopic ossification after excision in combat-related amputations? Clin Orthop Relat Res, 2015, 473(9): 2814-2824.
- 94.Zhu Y, Zhang F, Chen W, et al Incidence and risk factors for heterotopic ossification after total hip arthroplasty: a meta-analysis. Arch Orthop Trauma Surg. 2015;135(9):1307–1314. doi: 10.1007/s00402-015-2277-8. [DOI] [PubMed] [Google Scholar]
- 95.Zimmermann SM, Würgler-Hauri CC, Wanner GA, et al Echinomycin in the prevention of heterotopic ossification—an experimental antibiotic agent shows promising results in a murine model. Injury. 2013;44(4):570–575. doi: 10.1016/j.injury.2012.12.030. [DOI] [PubMed] [Google Scholar]
- 96.Seavey JG, Wheatley BM, Pavey GJ, et al Early local delivery of vancomycin suppresses ectopic bone formation in a rat model of trauma-induced heterotopic ossification. J Orthop Res. 2017;35(11):2397–2406. doi: 10.1002/jor.23544. [DOI] [PubMed] [Google Scholar]
- 97.Sinha S, Uchibe K, Usami Y, et al Effectiveness and mode of action of a combination therapy for heterotopic ossification with a retinoid agonist and an anti-inflammatory agent. Bone. 2016;90:59–68. doi: 10.1016/j.bone.2016.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Pavey GJ, Qureshi AT, Tomasino AM, et al Targeted stimulation of retinoic acid receptor-γ mitigates the formation of heterotopic ossification in an established blast-related traumatic injury model. Bone. 2016;90:159–167. doi: 10.1016/j.bone.2016.06.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
