Skip to main content
Biodiversity Data Journal logoLink to Biodiversity Data Journal
. 2022 Mar 9;10:e77661. doi: 10.3897/BDJ.10.e77661

Inventory and DNA-barcode library of ground-dwelling predatory arthropods from Krokar virgin forest, Slovenia

Žan Kuralt 1,, Urška Ratajc 2, Neža Pajek Arambašić 1, Maja Ferle 2, Matic Gabor 1, Ivan Kos 1
PMCID: PMC8927092  PMID: 35437403

Abstract

Background

At a time of immense human pressure on nature and the resulting global environmental changes, the inventory of biota - especially of undisturbed natural areas - is of unprecedented value as it provides a baseline for future research. Krokar, an example of such an undisturbed area, is the largest virgin forest remnant in Slovenia. It is located in the Dinaric Alps, which are believed to harbour the most diverse fauna of soil invertebrates in Europe. Nevertheless, the soil fauna of the Krokar virgin forest has not been thoroughly studied. Moreover, modern taxonomic approaches often rely on genetic information (e.g. DNA-barcodes), while extensive reference libraries from the Dinaric area are lacking. Our work, therefore, focused on addressing this lack of faunistic and genetic data from the Dinaric area.

New information

A total of 2336 specimens belonging to 100 taxa (45 spiders, 30 centipedes, 25 ground-dwelling beetles) were collected and deposited to GBIF. DNA-barcodes of 124 specimens belonging to 73 species were successfully obtained and deposited in GenBank and BOLD databases.

Keywords: Araneae, chilopoda, geophilomorpha, scolopendromorpha, lithobiomorpha, coleoptera, Carabidae, faunistics, primary forest

Introduction

The European landscape is probably one of the most fragmented on the planet. Forests that once covered vast areas have undergone significant changes in the past and now exist only in relatively small fragments (Estreguil et al. 2013). Amongst them, the proportion of primary forests is vanishingly small, accounting for 0.7% of Europe’s forest area (Sabatini et al. 2018). However, these forests are essential forest ecosystems that encompass all stages of forest development. They also provide habitat for a large number of fungi, plants and animals and serve as an extensive scientific resource (Navarro and Pereira 2012). Primary forests preserve natural ecological processes and are, therefore, resilient to natural disturbances (Thompson et al. 2009, Král et al. 2014).

European primary forests are mainly located in boreal and alpine regions (Sabatini et al. 2018). The virgin forest remnant Krokar (hereafter Krokar) is an example of the latter. It is located on the Borovec Mountain in southern Slovenia, in the Dinaric Mountains, which extend for 650 km from NW to SE and form an orographic barrier between the Adriatic Sea and the Pannonian Basin (Mihevc et al. 2010). The area served as a glacial refugium during the Pleistocene (Hewitt 2000, Brus 2010, Simaiakis and Strona 2015), its diverse landscape and relatively mild climate with high precipitation allowing for a diverse flora and fauna with high endemism (Griffiths et al. 2004).

In the face of climate change, however, the Dinaric Mountains are likely to be as vulnerable as other mountain regions of the world (Beniston 2003). The effects of global change on alpine ecosystems have been observed many times, affecting environmental morphology, vegetation and soils. Several studies have reported upward shifts in vegetation (up to 4 m per decade) and increased erosion (Pauli et al. 1996, Theurillat and Guisan 2001, Nearing et al. 2004, Gehrig‐Fasel et al. 2007, Rounsevell and Loveland 2013, Chersich et al. 2015, Robinson et al. 2018). In addition, Pizzolotto et al. (2014) reported similar findings for Carabid beetles in the Dolomites. Knowledge of the current status of plant and animal communities is, therefore, of great importance and allows the assessment of changing climate and human impact (Tuf and Tufova 2008, Bauhus et al. 2009, Cluzeau et al. 2012, Burrascano et al. 2013, Bončina et al. 2017).

Whilst the structure and forest development of Krokar have been thoroughly studied (Diaci 2002, Kraigher et al. 2002, Kutnar et al. 2002, Piltaver et al. 2002, Diaci et al. 2008, Grce 2010, Bončina 2011, Nagel et al. 2012, Kamenik 2013), the diversity of ground-dwelling invertebrates is largely unknown. Nevertheless, some studies have already found a high diversity of predatory invertebrates, such as centipedes (Kos 1996, Griffiths et al. 2004, Grgič and Kos 2005, Ravnjak and Kos 2015, Simaiakis and Strona 2015, Bonato et al. 2017a, Peretti and Bonato 2018) in the Dinarics. Ground-dwelling invertebrates play an important role in forest soil processes (e.g. nutrient cycling, pedogenesis). Predators (e.g. spiders, centipedes and certain groups of beetles) play an important role in regulation and, thus, indirectly influence these processes (Lavelle et al. 2006). They respond rapidly to habitat changes and, because of their position as mesopredators in the trophic cascade, are also highly sensitive to changes at lower trophic levels (Maelfait 1996, Paoletti et al. 1996, Rainio and Niemelä 2003, Pearce and Venier 2006, Koivula 2011, Schreiner et al. 2012, Gerlach et al. 2013).

The main objectives of the study were: (1) to generate a checklist of soil and ground-dwelling predatory arthropods in the study area and (2) to build a DNA-barcode library of these taxa.

Sampling methods

Study extent

Krokar is located on Mount Borovec in the Dinaric Mountains in southern Slovenia (45.540333°N, 14.764737°E) and covers an area of 74.5 hectares at an altitude of 880 to 1190 m a.s.l. The dolomite bedrock of the northern part is gradually replaced by limestone towards the south, resulting in a diverse and rugged terrain. The average annual temperature is 5°C with 2000 mm of precipitation (Grce 2010). The predominant forest communities are Omphalodo-Fagetum, Isopryo-Fagetum and Orvalo-Fagetum (Bončina and Robič 1993). Krokar was excluded from management plans in 1885 (Hočevar et al. 1985) and declared a special purpose forest in 2005 under the Regulation of protective forests and forests with special purpose (Uradni list RS, št. 88/05, 56/07, 29/09, 91/10, 1/13 in 39/15 2005). Finally, it was declared a UNESCO natural heritage area in 2017 (UNESCO 2017).

Parallel sampling was conducted in an adjacent secondary forest (45.53891°N, 14.76478°E), located approximately 300 m west of the sampling sites in Krokar (see Figure 1), with similar geographic, geologic and climatic characteristics. The sampling sites there were located in sloping terrain with varying stages of forest development.

Sampling description

Collecting methods

We used a variety of non-selective sampling methods to minimise collector bias. The selected methods also allowed for efficient collection of both endogeic and ground-dwelling species (Bonato et al. 2017). Two sets of five pitfall traps were set in patches with different forest developmental stages (sapling, pole and sawlog). Similarly, six soil samples per developmental stage were collected.

Soil samples were collected approximately 15 cm deep in the soil using a soil corer with a diameter of 21 cm. Litter and fermentative layers were also collected. Macroinvertebrates were later extracted for one month using modified Tullgren funnels with a cooled funnel base and ethylene glycol as a preservative. The extracted animals were then sorted, identified and preserved in 96% ethanol at -20°C for molecular methods.

Leaf litter was sampled using a sieve with a diameter of 38 cm and a mesh size of 13×13 mm over a white cloth. They were then collected with an aspirator and forceps and preserved in 96% ethanol and later stored at -20°C.

Pitfall traps were set using white plastic cups with a diameter of 10 cm and transparent plastic rain cover, filled with ethylene glycol and set in a line of five traps 1 m apart. After 7–10 days, the contents of the traps were collected, sorted, preserved in 96% ethanol and stored at -20°C.

Specimen identification

Spider and centipede specimens were observed using an Olympus SZX7 stereomicroscope, while beetles were observed using an Olympus SZ61 stereomicroscope. Smaller centipedes were mounted on permanent microscopic slides and observed with an Olympus CX41 microscope.

Adult spiders were identified using standard identification keys (Roberts 1995, Nentwig et al. 2020, Oger 2020). If the morphology of the female epigyne was not discernible, the epigyne was dissected and macerated overnight in 15% potassium hydroxide (KOH) to remove soft tissue. For taxonomy and nomenclature, we followed the World Spider Catalog (World Spider Catalog 2021).

Centipedes were identified according toMatic (1966), Matic (1972), Koren (1986), Koren (1992), Stoev et al. (2010) for Lithobiomorpha; Brölemann (1930) and Lewis (2011) for Scolopendromorpha; ChiloKey (Bonato et al. 2014) for Geophilomorpha. For taxonomy and nomenclature, we followed ChiloBase 2.0 (Bonato et al. 2016).

Beetles were identified using the determination keys from “Die Käfer Mitteleuropas" by Freude et al. (1974) and the subsequent editions.

DNA extraction and sequencing

Genomic DNA was isolated from one of the legs or the whole animal (depending on the size of the specimen). DNA extraction was performed with the MagMAX DNA Multi-sample Kit (Thermo Fisher Scientific Inc., United States) used on a Microlab STAR (Hamilton, United States) pipetting robot. We used the KAPA2G Robust PCR Kit (Sigma-Aldrich, United States) to amplify the mitochondrial cytochrome oxidase I (COI) gene. A 650 bp long fragment of COI was amplified using primers LCO1490 and HCO2198 (Folmer et al. 1994). PCR began with initial denaturation for 3 min at 95°C, followed by 35 cycles of denaturation (30 sec at 95°C), annealing (30 sec at 48°C), elongation (60 sec at 72°C) and then final elongation for 3 min at 72°C. PCR products were purified with Exonuclease I and FastAP (Thermo Fisher Scientific Inc., United States) according to the manufacturer’s instructions. Each fragment was sequenced in both directions using PCR amplification primers from Macrogen Europe (Amsterdam, The Netherlands).

Using Geneious Prime software (Biomatters, New Zealand), we assembled forward and reverse reads, trimmed and manually inspected for possible base-calling errors. Finally, we translated the sequences using all six reading frame positions to ensure that no stop codons were present and generated consensus sequences. For verification, we performed BLAST searches to confirm the identity of all new sequences as either centipede, spider or ground-dwelling beetle barcodes, based on previously-published sequences (high identity values, very low E-values).

In order to investigate the relations amongst the DNA-barcoded taxa, we built a COI tree using Geneious Prime Tree Builder (Geneious version 2022.0 created by Biomatters). Distance matrix was calculated using Global alignment with free end gaps and 70% similarity (IUB)(5.0/-4.5) cost matrix, while the tree was built with Tamura-Nei genetic distance and the Neighbour-Joining tree build method.

Geographic coverage

Description

The study area includes Krokar virgin forest (74.49 ha) and an adjacent secondary forest. Both sites are situated on Borovec Mountain in the northern Dinaric Alps (Fig. 1).

Figure 1.

Figure 1.

Map on the left shows Borovec Forest Reserve and Krokar virgin forest where sampling was performed (Map data ©2015 Google). Map on the right displays a wider area of the study site location (Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL).

Coordinates

45.53630 and 45.55152 Latitude; 14.76796 and 14.78080 Longitude.

Taxonomic coverage

Description

The database contains data on 2336 specimens we collected and identified (1079 spiders, 323 ground-dwelling beetles, 299 geophilomorphs, 386 lithobiomorphs, 249 scolopendromorphs). See Suppl. material 1 for list of specimens. The dataset was deposited to GBIF (https://doi.org/10.15468/72ytmh).

Taxa included

Rank Scientific Name Common Name
order Araneae spider
class Chilopoda centipedes
order Coleoptera beetles

Temporal coverage

Notes

Collecting was conducted between October 2018 and August 2019 (see Table 1).

Table 1.

List of field excursions to Borovec Mountain. See Suppl. material 2 for full list of sampling events.

Date Locality Sampling method No. of soil cores / pitfall traps
17.10.2018 Krokar, secondary forest leaf litter sifting
17.10.2018 Krokar, secondary forest soil sampling 36
17.10.–25.10.2018 Krokar pitfall traps 30
4.1.2019 Krokar, secondary forest soil sampling 36
4.1.2019–16.1.2019 Krokar, secondary forest pitfall traps 36
19.4.2019–7.5.2019 Krokar, secondary forest pitfall traps 60
17.5.2019–28.5.2019 Krokar, secondary forest pitfall traps 60
1.8.2019–9.8.2019 Krokar, secondary forest pitfall traps 60

Collection data

Collection name

Ground-dwelling invertebrates of Krokar virgin forest.

Collection identifier

KROK-1819

Parent collection identifier

KROK

Specimen preservation method

96% ethanol, some smaller centipedes are mounted on microscopic slides.

Usage licence

Usage licence

Creative Commons Public Domain Waiver (CC-Zero)

Data resources

Data package title

Soil and ground-dwelling predatory arthropods (Araneae; Chilopoda: Geophilomorpha, Lithobiomorpha, Scolopendromorpha; Coleoptera: Carabidae, Staphylinidae) of Borovec Mountain and Krokar virgin forest.

Number of data sets

2

Data set 1.

Data set name

Soil and ground-dwelling predatory arthropods (Araneae, Chilopoda, Carabidae) of Borovec Mountain and Krokar virgin forest.

Number of columns

13

Description

List of all collected and identified specimens. GenBank accession codes and BOLD process IDs of DNA-barcoded specimens are listed in the GenBankAccession and boldSequenceID columns.

Data set 1.
Column label Column description
eventID An identifier of the sampling event, corresponding to the eventID in the "Sampling events" dataset.
order The name of the order.
scientificName The full scientific name, with authorship and date information, if known.
sex The sex of the specimen, if applicable.
taxonRank The taxonomic rank of the most specific name in the scientificName.
identifiedBy A list (concatenated and separated) of names of people, groups or organisations who assigned the Taxon to the subject.
dateIdentified The date on which the subject was identified as representing the Taxon.
basisOfRecord The specific nature of the data record.
preparations Type of preservative. Either AP (alcohol preparation) or MP (microscopic slide preparation)
GenBankAccession GenBank accession code.
occurrenceID Unique occurrence identifier.
lifeStage Life stage of specimen. Either adult, subadult or juvenile.
boldSequenceID Sequence identifier at boldsystems.com

Data set 2.

Data set name

Sampling events

Number of columns

11

Data set 2.
Column label Column description
eventID An identifier for the sampling event.
eventDate Date of sampling event.
geodeticDatum Coordinate reference system of coordinates.
habitat Forest type, either virgin forest or secondary forest and forest development stage, either sapling, pole or sawlog.
decimalLatitude The geographic latitude (in decimal degrees, using the WGS84 spatial reference system).
decimalLongitude The geographic longitude (in decimal degrees, using the WGS84 spatial reference system).
minimumElevationInMetres Elevation of the sampling site.
samplingMethod The name of the sampling method used in sample collection.
coordinateUncertaintyInMetres Uncertainty of coordinates in metres.
recordedBy A list of names of people responsible for collecting of samples.
country The name of the country in which the location occurs.

Additional information

Summarized results

The taxonomical structure of the dataset is represented by 100 different species - 72 species from Krokar, 80 from the secondary forest and 52 species from both sites. A total of 30 centipede species, 45 spider species and 25 ground-dwelling beetle species are included in the dataset. The most abundant centipede species were Lithobiuspygmaeus (225 specimens), Cryptopshortensis (129), Strigamiaacuminata (116) and Cryptopsparisi (103) and, for spiders, Inermocoelotesinermis (202), Harpactealepida (172), Histoponaluxurians (154), Micronetaviaria (133) and Comaromasimoni (105) and, amongst ground-dwelling beetles, Aptinusbombarda (125), followed by Pterostichusburmeisteri (71). DNA-barcoded specimens are listed in Table 2.

Table 2.

DNA-barcoded specimens with GenBank accession codes and BOLD process IDs.

order scientificName GenBankAccession boldSequenceID
Araneae Amaurobiusobustus L. Koch, 1868 OL874923 KROK134-20
Araneae Amaurobiusobustus L. Koch, 1868 MT994070 KROK058-19
Araneae Araneusdiadematus Clerck, 1757 OL874924 KROK136-20
Araneae Centromeruscavernarum (L. Koch, 1872) MT994077 KROK069-19
Araneae Centromeruscavernarum (L. Koch, 1872) OL874925 KROK143-20
Araneae Centrophantesroeweri (Wiehle, 1961) MT994146 KROK080-19
Araneae Ceratinellabrevis (Wider, 1834) OL874926 KROK144-20
Araneae Ceratinellabrevis (Wider, 1834) MT994078 KROK070-19
Araneae Clubionaterrestris Westring, 1851 MT994081 KROK060-19
Araneae Clubionaterrestris Westring, 1851 OL874930 KROK137-20
Araneae Coelotesatropos (Walckenaer, 1830) MT994082 KROK052-19
Araneae Coelotesatropos (Walckenaer, 1830) OL874931 KROK127-20
Araneae Comaromasimoni Bertkau, 1889 MT994083 KROK059-19
Araneae Comaromasimoni Bertkau, 1889 OL874932 KROK135-20
Araneae Dasumiacanestrinii (L. Koch, 1876) MT994088 KROK061-19
Araneae Dasumiacanestrinii (L. Koch, 1876) OL874946 KROK141-20
Araneae Diplocephaluspicinus (Blackwall, 1841) MT994092 KROK072-19
Araneae Dysderaadriatica Kulczynski, 1897 OL874949 KROK138-20
Araneae Dysderaadriatica Kulczynski, 1897 OL874947 KROK139-20
Araneae Dysderaadriatica Kulczynski, 1897 MT994096 KROK064-19
Araneae Dysderaadriatica Kulczynski, 1897 OL874948 KROK140-20
Araneae Dysderaadriatica Kulczynski, 1897 OL874950 KROK152-20
Araneae Dysderaninnii Canestrini, 1868 MT994097 KROK065-19
Araneae Dysderaninnii Canestrini, 1868 MT994095 KROK066-19
Araneae Erigoneautumnalis Emerton, 1882 MT994098 KROK073-19
Araneae Hahniapusilla C. L. Koch, 1841 MT994103 KROK068-19
Araneae Haplodrassussilvestris (Blackwall, 1833) MT994104 KROK067-19
Araneae Histoponaluxurians (Kulczynski, 1897) MT994106 KROK053-19
Araneae Histoponaluxurians (Kulczynski, 1897) OL874953 KROK128-20
Araneae Histoponaluxurians (Kulczynski, 1897) OL874952 KROK129-20
Araneae Histoponatorpida (C.L.Koch, 1837) MT994107 KROK054-19
Araneae Histoponatorpida (C.L.Koch, 1837) OL874954 KROK130-20
Araneae Inermocoelotesanoplus (Kulczynski, 1897) OL874955 KROK131-20
Araneae Inermocoelotesanoplus (Kulczynski, 1897) MT994108 KROK055-19
Araneae Inermocoelotesinermis (L. Koch, 1855) MT994109 KROK056-19
Araneae Inermocoelotesinermis (L. Koch, 1855) OL874956 KROK132-20
Araneae Masosundevalli (Westring, 1851) MT994122 KROK074-19
Araneae Mermessustrilobatus (Emerton, 1882) MT994123 KROK075-19
Araneae Micronetaviaria (Blackwall, 1841) MT994124 KROK077-19
Araneae Micronetaviaria (Blackwall, 1841) OL874967 KROK145-20
Araneae Pardosaalacris C.L. Koch, 1833 OL874968 KROK149-20
Araneae Pardosaalacris C.L. Koch, 1833 MT994132 KROK085-19
Araneae Robertuslividus (Blackwall, 1836) MT994136 KROK089-19
Araneae Robertuslividus (Blackwall, 1836) OL874970 KROK153-20
Araneae Robertuslividus (Blackwall, 1836) OL874969 KROK154-20
Araneae Scotarguspilosus Simon, 1913 MT994139 KROK078-19
Araneae Scotarguspilosus Simon, 1913 OL874977 KROK146-20
Araneae Segestriasenoculata (Linnaeus, 1758) MT994140 KROK088-19
Araneae Tegenariasilvestris L. Koch, 1872 MT994145 KROK057-19
Araneae Tegenariasilvestris L. Koch, 1872 OL874981 KROK133-20
Araneae Tenuiphantesflavipes (Blackwall, 1854) MT994147 KROK079-19
Araneae Tenuiphantesflavipes (Blackwall, 1854) OL874982 KROK147-20
Araneae Tenuiphantestenebricola (Wider, 1834) MT994148 KROK082-19
Araneae Tenuiphantestenebricola (Wider, 1834) OL874983 KROK148-20
Araneae Trochosaterricola Thorell, 1856 MT994150 KROK086-19
Araneae Trochosaterricola Thorell, 1856 OL874984 KROK150-20
Araneae Walckenaeriaantica (Wider, 1834) MT994151 KROK083-19
Araneae Walckenaeriamitrata (Menge, 1868) MT994152 KROK084-19
Araneae Zoranemoralis (Blackwall, 1861) MT994153 KROK087-19
Araneae Zoranemoralis (Blackwall, 1861) OL874986 KROK151-20
Coleoptera Abaxovalis (Duftschmid, 1812) MT994068 KROK008-19
Coleoptera Abaxparallelepipedus (Piller and Mitterpacher, 1783) MT994069 KROK002-19
Coleoptera Carabuscatenulatus Scopoli, 1763 MT994072 KROK019-19
Coleoptera Carabuscoriaceus Linnaeus, 1758 MT994073 KROK006-19
Coleoptera Carabuscreutzeri Fabricius, 1801 MT994074 KROK011-19
Coleoptera Carabuscroaticus Dejean 1826 MT994075 KROK007-19
Coleoptera Carabusirregularis Fabricius, 1792 MT994076 KROK020-19
Coleoptera Cychrusattenuatus (Fabricius, 1792) MT994087 KROK003-19
Coleoptera Dimaelateroides Charpentier, 1825 MT994091 KROK023-19
Coleoptera Licinushoffmannseggii (Panzer, 1803) MT994111 KROK004-19
Coleoptera Molopspiceus (Panzer, 1793) MT994126 KROK017-19
Coleoptera Molopspiceus (Panzer, 1793) MT994125 KROK018-19
Coleoptera Molopspiceus (Panzer, 1793) MT994127 KROK012-19
Coleoptera Molopsstriolatus (Fabricius, 1801) MT994128 KROK015-19
Coleoptera Nebriadahlii Sturm, 1815 MT994129 KROK021-19
Coleoptera Notiophilusbiguttatus (Fabricius, 1779) MT994131 KROK010-19
Coleoptera Platynusscrobiculatus (Fabricius, 1801) MT994133 KROK022-19
Coleoptera Pterostichusburmeisteri Heer, 1837 MT994134 KROK005-19
Coleoptera Pterostichusoblongopunctatus Fabricius, 1787 MT994135 KROK016-19
Coleoptera Stenichnuscollaris (Müller, P.W.J. & Kunze, 1822) MT994142 KROK014-19
Coleoptera Trechuscroaticus Dejean, 1831 MT994149 KROK013-19
Geophilomorpha Clinopodescarinthiacus (Latzel,1880) MT994079 KROK025-19
Geophilomorpha Clinopodescarinthiacus (Latzel,1880) OL874927 KROK090-20
Geophilomorpha Clinopodescarinthiacus (Latzel,1880) OL874929 KROK098-20
Geophilomorpha Clinopodescarinthiacus (Latzel,1880) OL874928 KROK100-20
Geophilomorpha Dicellophiluscarniolensis (C.L. Koch, 1847) MT994089 KROK026-19
Geophilomorpha Dicellophiluscarniolensis (C.L. Koch, 1847) OL874945 KROK091-20
Geophilomorpha Dicellophiluscarniolensis (C.L. Koch, 1847) MT994090 KROK032-19
Geophilomorpha Eurygeophiluspinguis (Brölemann, 1898) MT994101 KROK027-19
Geophilomorpha Schendylaarmata Brölemann, 1901 OL874972 KROK092-20
Geophilomorpha Schendylaarmata Brölemann, 1901 OL874971 KROK102-20
Geophilomorpha Schendylatyrolensis Meinert, 1870 MT994138 KROK029-19
Geophilomorpha Schendylatyrolensis Meinert, 1870 OL874976 KROK095-20
Geophilomorpha Strigamiaacuminata (Leach, 1814) MT994143 KROK030-19
Geophilomorpha Strigamiaacuminata (Leach, 1814) OL874979 KROK096-20
Geophilomorpha Strigamiatranssilvanica Verhoeff, 1928 MT994144 KROK031-19
Lithobiomorpha Eupolybothrusgrossipes (C. L. Koch, 1847) MT994099 KROK048-19
Lithobiomorpha Eupolybothrustridentinus (Fanzago, 1874) MT994100 KROK035-19
Lithobiomorpha Harpolithobiusgottscheensis Verhoeff, 1937 MT994105 KROK036-19
Lithobiomorpha Harpolithobiusgottscheensis Verhoeff, 1937 OL874951 KROK103-20
Lithobiomorpha Lithobiusanici sp.n. MT994141 KROK043-19
Lithobiomorpha Lithobiuscarinthiacus Koren, 1992 MT994112 KROK044-19
Lithobiomorpha Lithobiuscastaneus Newport, 1844 MT994113 KROK037-19
Lithobiomorpha Lithobiusdentatus C.L.Koch, 1844 MT994116 KROK038-19
Lithobiomorpha Lithobiusdentatus C.L.Koch, 1844 OL874961 KROK104-20
Lithobiomorpha Lithobiusdentatus C.L.Koch, 1844 MT994115 KROK046-19
Lithobiomorpha Lithobiusforficatus (Linnaeus, 1758) MT994117 KROK047-19
Lithobiomorpha Lithobiuslatro Meinert, 1872 OL874962 KROK105-20
Lithobiomorpha Lithobiuslatro Meinert, 1872 MT994118 KROK039-19
Lithobiomorpha Lithobiuslatro Meinert, 1872 OL874963 KROK109-20
Lithobiomorpha Lithobiuspelidnus Haase, 1880 OL874964 KROK111-20
Lithobiomorpha Lithobiustenebrosus Meinert, 1872 MT994120 KROK041-19
Lithobiomorpha Lithobiustenebrosus Meinert, 1872 OL874965 KROK108-20
Lithobiomorpha Lithobiusvalidus Meinert, 1872 MT994121 KROK042-19
Lithobiomorpha Lithobiusvalidus Meinert, 1872 OL874966 KROK106-20
Scolopendromorpha Cryptopshortensis Donovan, 1810 OL874934 KROK125-20
Scolopendromorpha Cryptopshortensis Donovan, 1810 OL874933 KROK126-20
Scolopendromorpha Cryptopsparisi Brölemann, 1920 OL874941 KROK119-20
Scolopendromorpha Cryptopsparisi Brölemann, 1920 OL874940 KROK120-20
Scolopendromorpha Cryptopsparisi Brölemann, 1920 MT994086 KROK050-19
Scolopendromorpha Cryptopsparisi Brölemann, 1920 OL874939 KROK121-20
Scolopendromorpha Cryptopsparisi Brölemann, 1920 OL874942 KROK122-20
Scolopendromorpha Cryptopsparisi Brölemann, 1920 OL874943 KROK123-20

We collected an old-growth forest specialist Carabusirregularis and some Balkan/Dinaric endemics, namely Carabuscaelatus, Carabuscroaticus, Dysderaadriatica, Amaurobiusobustus, Histoponaluxurians and Centrophantesroeweri, Harpolithobiusgotcheensis, Lithobiusanici sp.n., Lithobiuscarniolensis and Cryptopsrucneri.

A few of the spider species are considered rare according to the Spiders of Europe (Nentwig et al. 2020). These include Amaurobiusobustus (rare), Coelotesatropos (rarely found), Scotarguspilosus (very rarely found) and Walckenaeriasimplex (very rarely found). The finding of Erigoneautumnalis and Mermessustrilobatus, both spiders of North American origin, in this remote area, indicates their alarming invasive potential and suggests a wider distribution than known or expected. Their impact on native (spider) fauna is also unknown and should be studied in the future.

The specimens identified as Lithobius (Sigibus) anici sp.n. belong to an undescribed species that has already been recorded at various localities in the Dinaric parts of Slovenia and Bosnia and Herzegovina. Its currently known area of distribution suggests that the species is endemic to the Dinarics, although further studies are needed to confirm this claim.

Comprehensive voucher information, taxonomic classifications, DNA barcode sequences and trace files (including their quality) are publicly accessible through the public dataset “DS-KROK4BDJ” (Dataset ID: dx.doi.org/10.5883/DS-KROK4BDJ) on the Barcode of Life Data Systems (BOLD; www.boldsystems.org) (Ratnasingham and Hebert 2007). In addition, all new barcode data were deposited in GenBank.

The COI tree (Fig. 2) of DNA-barcoded taxa is showing a topology consistent with the current knowledge of relationships between the taxa included. There are, however, a few species with deep genetic differences, that could be explained by the fact that the area served as a glacial refugium during the Pleistocene, which resulted in high intraspecific genetic diversity or even cryptic species. For instance, two DNA-barcoded specimens of Zoranemoralis show deep genetic difference, although they were identified as such, based on genital and palpal morphology. Similarly, there is a deep genetic difference between two specimens of Strigamiaacuminata. The specimens were placed into separate unique BINs - BOLD:AEB5728 and BOLD:AEG5654 with distances (p-dist) to nearest neighbour being 7.85% and 10.42%, respectively. Since the divergence of Western and Eastern Alps populations of S.acuminata was estimated to around 14 Ma (Bonato et al. 2017b), we could presume that the turbulent events of Neogene and Quaternary - especially Pleistocene - could lead to the observed cryptic diversity.

Figure 2.

Figure 2.

COI tree of DNA-barcoded taxa. Tree branches and labels are coloured according to the predator group (green for spiders, blue for ground-dwelling beetles, orange for centipedes). The tree was constructed in Geneious Prime (Geneious version 2022.0 created by Biomatters).

Supplementary Material

Supplementary material 1

Specimen list

Žan Kuralt, Urška Ratajc, Neža Pajek Arambašić, Maja Ferle, Matic Gabor, Ivan Kos

Data type

dataset

Brief description

List of specimens collected during field excursions to Mount Borovec and Krokar virgin forest.

File: oo_640399.csv

bdj-10-e77661-s001.csv (272.9KB, csv)
Supplementary material 2

Sampling events

Žan Kuralt, Urška Ratajc, Neža Pajek Arambašić, Maja Ferle, Matic Gabor, Ivan Kos

Data type

dataset

Brief description

Field excursions to Mount Borovec and Krokar virgin forest.

File: oo_637986.tsv

bdj-10-e77661-s002.tsv (10.6KB, tsv)

Acknowledgements

We would like to thank to Manca Velkavrh, Mark Plut and Franc Kljun for their assistance during fieldwork. Lab work would be impossible without Barbara Boljte, Maja Jelenčič, Marjeta Konec and Špela Borko, we are truly grateful for your help. This study was supported by a PhD fellowship and P1-0184 research programme by the Slovenian Research Agency. A permision (340-29/2018/7) for sampling in Krokar virgin forest was granted by the Ministry of Agriculture, Forestry and Food.

Author contributions

ŽK collected the material, identified the spiders and contributed to the writing of the paper; UR identified the beetles and contributed to the writing of the paper; NPA & MF collected the material and identified the spiders; MG identified the beetles; IK identified the centipedes and contributed to the writing of the paper.

References

  1. Bauhus Jürgen, Puettmann Klaus, Messier Christian. Silviculture for old-growth attributes. Forest Ecology and Management. 2009;258(4):525–537. doi: 10.1016/j.foreco.2009.01.053. [DOI] [Google Scholar]
  2. Beniston Martin. Climatic change in mountain regions: A review of possible impacts. Climatic Change. 2003;59:5–31. doi: 10.1023/A:1024458411589. [DOI] [Google Scholar]
  3. Bonato Lucio, Minelli Alessandro, Lopresti Massimo, Cerretti Pierfilippo. ChiloKey, an interactive identification tool for the geophilomorph centipedes of Europe (Chilopoda, Geophilomorpha) ZooKeys. 2014;443:1–9. doi: 10.3897/zookeys.443.7530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonato L, Chagas Jr A, Edgecombe GD, Lewis JGE, Minelli A, Pereira LA, Shelley RM, Stoev P, Zapparoli M. ChiloBase 2.0 - A World Catalogue of Centipedes (Chilopoda) http://chilobase.biologia.unipd.it 2016
  5. Bonato Lucio, Minelli Alessandro, Zapparoli Marzio. Centipede communities (Chilopoda) of forest soils across Europe: abundance, species richness and species composition. Accademia Nazionale Italiana di Entomologia. 2017:113–120.
  6. Bonato Lucio, Bortolin Francesca, Drago Leandro, Orlando Marco, Dányi László. Evolution of Strigamia centipedes (Chilopoda): a first molecular assessment of phylogeny and divergence times. Zoologica Scripta. 2017;46(4):486–495. doi: 10.1111/zsc.12234. [DOI] [Google Scholar]
  7. Bončina A., Robič D. Report from international camp "Virgin Forest Slovenia '93": international camp in Borovec near Kočevska reka, from 17.7. to 28.7.1993. Ljubljana; 1993. 49 [Google Scholar]
  8. Bončina Andrej, Klopčič Matija, Simončič Tina, Dakskobler Igor, Ficko Andrej, Rozman Andrej. A general framework to describe the alteration of natural tree species composition as an indicator of forest naturalness. Ecological Indicators. 2017;77:194–204. doi: 10.1016/j.ecolind.2017.01.039. [DOI] [Google Scholar]
  9. Bončina Živa. Vpliv svetlobnih razmer na pomlajevanje v pragozdnem rezervatu Krokar. Univerza v Ljubljani, Biotehniška fakulteta; 2011. [Google Scholar]
  10. Brölemann Henry Wilfrid. Éléments d'une faune des Myriapodes de France: Chilopodes. Imprimerie toulousaine 1930
  11. Brus Robert. Growing evidence for the existence of glacial refugia of European beech (Fagussylvatica L.) in the south-eastern Alps and north-western Dinaric Alps. Periodicum Biologorum. 2010;112(3):239–246. [Google Scholar]
  12. Burrascano Sabina, Keeton William S, Sabatini Francesco M, Blasi Carlo. Commonality and variability in the structural attributes of moist temperate old-growth forests: A global review. Forest Acology and Management. 2013;291:458–479. doi: 10.1016/j.foreco.2012.11.020. [DOI] [Google Scholar]
  13. Chersich S, Rejšek K, Vranová V, Bordoni M, Meisina C. Climate change impacts on the Alpine ecosystem: an overview with focus on the soil. Journal of Forest Science. 2015;61(11):496–514. doi: 10.17221/47/2015-JFS. [DOI] [Google Scholar]
  14. Cluzeau D, Guernion M, Chaussod R, Martin-Laurent F, Villenave C, Cortet J, Ruiz-Camacho N, Pernin C, Mateille T, Philippot L, Bellido A, Rougé L, Arrouays D, Bispo A, Pérès G. Integration of biodiversity in soil quality monitoring: Baselines for microbial and soil fauna parameters for different land-use types. European Journal of Soil Biology. 2012;49:63–72. doi: 10.1016/j.ejsobi.2011.11.003. [DOI] [Google Scholar]
  15. Diaci Jurij. Gap disturbance patterns in a beech virgin forest remnant krokar in the mountain vegetation belt of Slovenia. Univerza v Ljubljani, Biotehniška Fakulteta; 2002. [Google Scholar]
  16. Diaci Jurij, Roženbergar Dušan, Mikac Stjepan, Anić Igor, Hartman Tomaž, Bončina Andrej. Long-term changes in tree species composition in old-growth Dinaric beech-fir forest. Glasnik za Sumske Pokuse. 2008;42:13–27. [Google Scholar]
  17. Estreguil Christine, Caudullo Giovanni, de Rigo Daniele, San Miguel Jesús. Forest landscape in Europe: pattern, fragmentation and connectivity. EUR Scientific and Technical Research. 2013;25717 [Google Scholar]
  18. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology. 1994;3(5):294–299. [PubMed] [Google Scholar]
  19. Freude Heinz, Harde Karl Wilhelm, Lohse Gustav Adolf, Lucht Wilhelm. Die käfer mitteleuropas. Goecke & Evers; 1974. [Google Scholar]
  20. Gehrig‐Fasel Jacqueline, Guisan Antoine, Zimmermann Niklaus E. Tree line shifts in the Swiss Alps: Climate change or land abandonment? Journal of vegetation science: official organ of the International Association for Vegetation Science. 2007;18(4):571–582. doi: 10.1111/j.1654-1103.2007.tb02571.x. [DOI] [Google Scholar]
  21. Gerlach J, Samways M, Pryke J. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. Journal of Insect Conservation. 2013;17(4):831–850. doi: 10.1007/s10841-013-9565-9. [DOI] [Google Scholar]
  22. Grce Dragomir. Razvoj mladja na rastišču Isopyro-Fagetum v pragozdu Krokar: diplomsko delo (visokošolski strokovni študij) Univerza v Ljubljani, Biotehniška fakulteta; 2010. [Google Scholar]
  23. Grgič Tanja, Kos Ivan. Influence of forest development phase on centipede diversity in managed beech forests in Slovenia. Biodiversity and Conservation. 2005;14(8):1841–1862. doi: 10.1007/s10531-004-1040-1. [DOI] [Google Scholar]
  24. Griffiths Huw I., Kryštufek Boris, Reed Jane M. Balkan biodiversity: Pattern and process in the European hotspot. Springer Netherlands; 2004. [DOI] [Google Scholar]
  25. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405(6789):907–913. doi: 10.1038/35016000. [DOI] [PubMed] [Google Scholar]
  26. Hočevar Stana, Batič Franc, Martinčič Andrej, Piskernik Milan. Preddinarski gorski pragozdovi: Trdinov vrh in Ravna gora na Gorjancih, Kopa v Kočevskem Rogu in Krokar na hrbtu pogorja Borovška gora-Planina nad Kolpo: (mikoflora, vegetacija in ekologija) Inštitut za Gozdno in Lesno Gospodarstvo pri Biotehniški Fakulteti; 1985. [Google Scholar]
  27. Kamenik Klemen. Razvojna dinamika v pragozdovih Šumik in Krokar: diplomsko delo-univerzitetni študij. Univerza v Ljubljani, Biotehniška fakulteta; 2013. [Google Scholar]
  28. Koivula Matti J. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys. 2011:287–317. doi: 10.3897/zookeys.100.1533. [DOI] [PMC free article] [PubMed]
  29. Koren Armin. Die Chilopoden-Fauna von Kärnten und Osttirol. Verlag des Naturwissenschaftlichen Vereins für Kärnten; 1986. [Google Scholar]
  30. Koren Armin. Die Chilopoden-Fauna von Kärnten und Osttirol. Teil 2, Lithobiomorpha. Verlag des Naturwissenschaftlichen Vereins für Kärnten; Klagenfurt: 1992. 138 [Google Scholar]
  31. Kos Ivan, Centipedes (Chilopoda) of some forest communities in Slovenia. Mémoires du Muséum National d'Histoire Naturelle 1996:, 635–646.
  32. Kraigher H, Jurc D, Kalan P, Kutnar L, Levanic T, Rupel M, Smolej I. Beech coarse woody debris characteristics in two virgin forest reserves in southern Slovenia. Zbornik Gozdarstva in Lesarstva (Slovenia) 2002
  33. Král Kamil, McMahon Sean M, Janík David, Adam Dušan, Vrška Tomáš. Patch mosaic of developmental stages in central European natural forests along vegetation gradient. Forest Ecology and Management. 2014;330:17–28. doi: 10.1016/j.foreco.2014.06.034. [DOI] [Google Scholar]
  34. Kutnar Lado, Péter Ódor, Dort Klaas van. Vascular plants on beech dead wood in two Slovenian forest reserves. Zbornik Gozdarstva in Lesarstva. 2002;69:135–153. [Google Scholar]
  35. Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F., Margerie P, Mora P, Rossi J - P. Soil invertebrates and ecosystem services. European Journal of Soil Biology. 2006;42(Suppl. 1) [Google Scholar]
  36. Lewis John G E. A review of the species in the genus Cryptops Leach, 1815 from the Old World related to Cryptops (Cryptops) hortensis (Donovan, 1810) (Chilopoda, Scolopendromorpha) International Journal of Myriapodology. 2011;4:11–50. doi: 10.3897/ijm.4.1116. [DOI] [Google Scholar]
  37. Maelfait Jean-Pierre. In: Bioindicator Systems for Soil Pollution. van Straalen N. M., Krivolutsky D. A., editors. Kluwer Academic Publishing; 1996. Soil spiders and bioindication. [DOI] [Google Scholar]
  38. Matic Zachiu. Clasa Chilopoda: subclasa Anamorpha. Editura Academiei Republicii Socialiste România; 1966. [Google Scholar]
  39. Matic Zachiu. Fauna Republicii Socialiste Romania: Classa Chilopoda, Subclassa Epimorpha. Academiei Republicii Socialiste Romania; 1972. [Google Scholar]
  40. Mihevc Andrej, Prelovšek Mitja, Zupan Hajna Nadja. Introduction to the Dinaric Karst. Karst Research Institute at ZRC SAZU; Postojna: 2010. [DOI] [Google Scholar]
  41. Nagel Thomas A, Diaci Jurij, Rozenbergar Dusan, Rugani Tihomir, Firm Dejan. Old-growth forest reserves in Slovenia: the past, present, and future. Schweizerische Zeitschrift fur Forstwesen. 2012;163(6):240–246. doi: 10.3188/szf.2012.0240. [DOI] [Google Scholar]
  42. Navarro Laetitia M, Pereira Henrique M. Rewilding abandoned landscapes in Europe. Ecosystems. 2012;15(6):900–912. doi: 10.1007/s10021-012-9558-7. [DOI] [Google Scholar]
  43. Nearing M A, Pruski F F, O'Neal M R. Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation. 2004;59(1):43–50. [Google Scholar]
  44. Nentwig W., Blick T., Bosmans R., Gloor D., Hänggi A., Kropf C. Araneae: Spiders of Europe (Version 06.2020) https://araneae.nmbe.ch/ [2020-06-17T00:00:00+03:00];
  45. Oger P. Les araignées de Belgique et de France. https://arachno.piwigo.com. [2020-06-17T00:00:00+03:00];
  46. Paoletti M G, Bressan M, Edwards C A. Soil Invertebrates as Bioindicators of Human Disturbance. Critical Reviews in Plant Sciences. 1996;15(1):21–62. doi: 10.1080/07352689609701935. [DOI] [Google Scholar]
  47. Pauli Harald, Gottfried Michael, Grabherr G. Effects of climate change on mountain ecosystems–upward shifting of alpine plants. World Resource Review. 1996;8(3) [Google Scholar]
  48. Pearce Jennie L, Venier Lisa A. The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: A review. Ecological Indicators. 2006;6(4):780–793. doi: 10.1016/j.ecolind.2005.03.005. [DOI] [Google Scholar]
  49. Peretti Emiliano, Bonato Lucio. How many species of centipedes coexist in temperate forests? Estimating local species richness of Chilopoda in soil coenoses of the South-Eastern Prealps. European Journal of Soil Biology. 2018;89:25–32. doi: 10.1016/j.ejsobi.2018.10.001. [DOI] [Google Scholar]
  50. Piltaver A., Kosec J., Matočec N., Jurc D. Macrofungi on beech dead wood in the Slovenian forest reserves Rajhenavski Rog and Krokar. Zbornik Gozdarstva in Lesarstva (Slovenia) 2002
  51. Pizzolotto Roberto, Gobbi Mauro, Brandmayr Pietro. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009) Ecology and Evolution. 2014;4(8):1284–1294. doi: 10.1002/ece3.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rainio J, Niemelä J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation. 2003;12(3):487–506. doi: 10.1023/A:1022412617568. [DOI] [Google Scholar]
  53. Ratnasingham Sujeevan, Hebert Paul D. N. bold: The Barcode of Life Data System (http://www.barcodinglife.org) Molecular Ecology Notes. 2007;7(3):355–364. doi: 10.1111/j.1471-8286.2007.01678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ravnjak Blanka, Kos Ivan. The current knowledge on centipedes (Chilopoda) in Slovenia: faunistic and ecological records from a national database. ZooKeys. 2015;(510):223–231. doi: 10.3897/zookeys.510.8672. [DOI] [PMC free article] [PubMed]
  55. Roberts Michael John. Spiders of Britain & Northern Europe. HarperCollins; 1995. [Google Scholar]
  56. Robinson Sinikka I, McLaughlin Órla B, Marteinsdóttir Bryndís, O'Gorman Eoin J. Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. The Journal of Animal Ecology. 2018;87(3):634–646. doi: 10.1111/1365-2656.12798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Rounsevell Mark D A, Loveland Peter J. Soil Responses to Climate Change. Springer Science & Business Media; 2013. [Google Scholar]
  58. Sabatini Francesco Maria, Burrascano Sabina, Keeton William S, Levers Christian, Lindner Marcus, Pötzschner Florian, Verkerk Pieter Johannes, Bauhus Jürgen, Buchwald Erik, Chaskovsky Oleh, Debaive Nicolas, Horváth Ferenc, Garbarino Matteo, Grigoriadis Nikolaos, Lombardi Fabio, Marques Duarte Inês, Meyer Peter, Midteng Rein, Mikac Stjepan, Mikoláš Martin, Motta Renzo, Mozgeris Gintautas, Nunes Leónia, Panayotov Momchil, Ódor Peter, Ruete Alejandro, Simovski Bojan, Stillhard Jonas, Svoboda Miroslav, Szwagrzyk Jerzy, Tikkanen Olli-Pekka, Volosyanchuk Roman, Vrska Tomas, Zlatanov Tzvetan, Kuemmerle Tobias. Where are Europe's last primary forests? Diversity & Distributions. 2018;24(10):1426–1439. doi: 10.1111/ddi.12778. [DOI] [Google Scholar]
  59. Schreiner A, Decker P, Hannig K, Schwerk A. Millipede and centipede (Myriapoda: Diplopoda, Chilopoda) assemblages in secondary succession: variance and abundance in Western German beech and coniferous forests as compared to fallow ground. Web Ecology. 2012;12(1):9–17. doi: 10.5194/we-12-9-2012. [DOI] [Google Scholar]
  60. Simaiakis Stylianos Michail, Strona Giovanni. Patterns and processes in the distribution of European centipedes (Chilopoda) Journal of Biogeography. 2015;42(6):1018–1028. doi: 10.1111/jbi.12463. [DOI] [Google Scholar]
  61. Stoev Pavel, Akkari Nesrine, Zapparoli Marzio, Porco David, Enghoff Henrik, Edgecombe Gregory D, Georgiev Teodor, Penev Lyubomir. The centipede genus Eupolybothrus Verhoeff, 1907 (Chilopoda: Lithobiomorpha: Lithobiidae) in North Africa, a cybertaxonomic revision, with a key to all species in the genus and the first use of DNA barcoding for the group. ZooKeys. 2010;50:29–77. doi: 10.3897/zookeys.50.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Theurillat J P, Guisan A. Potential impact of climate change on vegetation in the European Alps: A review. Climatic Change. 2001;50(1-2):77–109. doi: 10.1023/A:1010632015572. [DOI] [Google Scholar]
  63. Thompson Ian, Mackey Brendan, McNulty Steven, Mosseler Alex. Forest resilience, biodiversity, and climate change; Secretariat of the Convention on Biological Diversity, Montreal. Technical Series no. 43. 1-67.2009. [Google Scholar]
  64. Tuf Ivan H, Tufova Jana. Proposal of ecological classification of centipede, millipede and terrestrial isopod faunas for evaluation of habitat quality in Czech Republic. Časopis Slezského Zemského Muzea, Opava, Série A. 2008;57:37–44. [Google Scholar]
  65. UNESCO Ancient and primeval beech forests of the Carpathians and other regions of Europe (Albania, Austria, Belgium, Bulgaria, Croatia, Italy, Germany, Romania, Slovenia, Slovakia, Spain, Ukraine) https://whc.unesco.org/en/decisions/6879
  66. Uradni list RS št. 88/05, 56/07, 29/09, 91/10, 1/13 in 39/15. Uredba o varovalnih gozdovih in gozdovih s posebnim namenom. http://www.pisrs.si/Pis.web/pregledPredpisa?id=URED3176#
  67. Catalog World Spider. Natural History Museum Bern; 2021. World Spider Catalog Version 22.5. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material 1

Specimen list

Žan Kuralt, Urška Ratajc, Neža Pajek Arambašić, Maja Ferle, Matic Gabor, Ivan Kos

Data type

dataset

Brief description

List of specimens collected during field excursions to Mount Borovec and Krokar virgin forest.

File: oo_640399.csv

bdj-10-e77661-s001.csv (272.9KB, csv)
Supplementary material 2

Sampling events

Žan Kuralt, Urška Ratajc, Neža Pajek Arambašić, Maja Ferle, Matic Gabor, Ivan Kos

Data type

dataset

Brief description

Field excursions to Mount Borovec and Krokar virgin forest.

File: oo_637986.tsv

bdj-10-e77661-s002.tsv (10.6KB, tsv)

Articles from Biodiversity Data Journal are provided here courtesy of Pensoft Publishers

RESOURCES