Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2022 Mar 23;307:108–114. doi: 10.1016/j.jad.2022.03.059

Antidepressants for COVID-19: A systematic review

Wei Zheng a,1, He-Li Sun b,c,d,1, Hong Cai b,c,d,1, Qinge Zhang e,1, Chee H Ng f, Yu-Tao Xiang b,c,d,
PMCID: PMC8941844  PMID: 35339571

Abstract

Objective

To systematically examine the efficacy and safety of antidepressants for the treatment of coronavirus disease 2019 (COVID-19).

Methods

A systematic search was performed independently by two researchers based on Chinese Journal Net, WanFang, PsycINFO, Cochrane Library, PubMed, and EMBASE.

Results

Seven studies (n = 92,947) including three retrospective studies (n = 91,083), two randomized clinical trials (RCTs, n = 1649), two prospective cohort study (n = 215) involving (n = 92,947) patients with COVID-19 were examined. For RCTs, fluvoxamine outperformed placebo in reducing clinical deterioration and hospitalisation for COVID-19 patients. For retrospective studies, antidepressants (2 studies) and fluoxetine (1 study) possibly reduced the risk of mortality in patients with COVID-19. Results from two remaining studies supported the superiority of fluvoxamine in reducing risk of mortality in COVID-19 patients. The two RCTs that examined the safety of fluvoxamine for COVID-19 patients found inconsistent results but no significant group differences in the dropout rate.

Conclusion

This systematic review found emerging evidence for fluvoxamine in reducing the risk of mortality and hospitalisation in COVID-19 patients, but inconsistent evidence for the safety of fluvoxamine in COVID-19 patients. More studies are needed to determine the efficacy and safety of antidepressants for the treatment of COVID-19.

Keywords: Antidepressants, Fluvoxamine, COVID-19, Systematic review

1. Introduction

Coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a rapid and substantial increase in the rates of hospitalisation, intensive care unit admission, and death globally (Wiersinga et al., 2020). Although a number of safe and effective COVID-19 vaccines have been developed, major challenges remained with regard to their production, distribution, and affordability particularly in many developing countries (Torres et al., 2020). Accumulating evidence has indicated that lung damage caused by COVID-19 is associated with an uncontrolled immune-mediated inflammatory response, which has led to a growing interest in anti-COVID-19 immunomodulatory drugs (Asif et al., 2020; Mehta et al., 2020; Rizk et al., 2020).

Current evidence suggests that the nonopioid receptor sigma 1 recepter (encoded by SIGMAR1) could be a promising inhibitor of SARS-CoV-2 replication (Gordon DE et al., 2020a, Gordon DE, et al., 2020b). As a single polypeptide composed of 223 amino acids, the sigma-1 receptor contains an endoplasmic reticulum-retention signal (Hanner et al., 1996; Hashimoto, 2021). The sigma-1 receptor (S1R) might play a role in interfering with the early steps of virus-induced host cell reprogramming (Vela, 2020). A preclinical study found that S1R could restrict the endonuclease activity of endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme 1 (IRE1) and cytokine expression, but does not inhibit the classical inflammatory signalling pathways (Rosen et al., 2019b). Thus, drugs with sigma affinity could be useful in the early intervention for those suffering from COVID-19 via interactions with the sigma-1 receptor (Brimson et al., 2021; Hashimoto et al., 2022; Rosen et al., 2019b; Vela, 2020).

Antidepressants, especially selective serotonin reuptake inhibitors (SSRIs), are widely used in the clinical treatment of psychiatric disorders such as major depressive disorder and anxiety disorders (Cipriani et al., 2018; Zhou et al., 2020). The anti-inflammatory properties of antidepressants may be associated with decreased levels of proinflammatory cytokines (Hannestad et al., 2011), including interleukin (IL)-10 and tumor necrosis factor alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1), which are related to the severity of COVID-19 (Hoertel et al., 2021; Hojyo et al., 2020). Two recent randomized controlled studies (RCTs) found that fluvoxamine, an SSRI with high affinity for the sigma-1 receptor, could potentially prevent clinical deterioration and reduce the need for hospitalisation (Lenze et al., 2020; Reis et al., 2021) in COVID-19 patients. However, they reported inconsistent findings regarding the safety of adjunctive fluvoxamine for COVID-19.

A recent review (Facente et al., 2021) of two RCTs (Lenze et al., 2020; Reis et al., 2021) and one prospective cohort study (Seftel and Boulware, 2021) found that fluvoxamine could effectively reduce morbidity and mortality caused by COVID-19. To date, however, there is no published systematic review that examined the efficacy and safety of antidepressants for treating COVID-19. Thus, this systematic review evaluated the efficacy and safety of adjunctive antidepressants for COVID-19 patients.

2. Methods

This systematic review was conducted following the PRISMA guidelines (Moher et al., 2009). The registration number of this systematic review was INPLASY202210030 (https://inplasy.com/).

2.1. Study selection

All types of studies that examined the efficacy and safety of antidepressants added to treatment as usual (TAU) for COVID-19 patients were eligible for inclusion such as case report/series, RCTs, prospective cohort studies, prospective observational studies (single-group or with matched controls) and open-label retrospective studies. Review articles were excluded. The primary outcome was clinical deterioration as defined by respective studies. Additional outcomes reported in this systematic review were all-cause mortality, adverse drug reactions (ADRs), and dropout rate.

2.2. Search strategy

Both Chinese (Chinese Journal Net, WanFang) and international (PsycINFO, Cochrane Library, PubMed, and EMBASE) databases were independently searched by two researchers (HLS and HC) for published studies on antidepressants for COVID-19, from their inceptions until December 9, 2021 using the following search terms: (Coronavirus OR COVID-19 OR SARS-CoV-2 OR 2019-nCoV OR coronavirus disease 2019) AND (agomelatine OR amitriptyline OR bupropion OR citalopram OR clomipramine OR desvenlafaxine OR duloxetine OR escitalopram OR fluoxetine OR fluvoxamine OR levomilnacipran OR milnacipran OR mirtazapine OR nefazodone OR paroxetine OR reboxetine OR sertraline OR trazodone OR venlafaxine OR vilazodone OR vortioxetin OR antidepressive agents). The reference lists of included studies (Calusic et al., 2021a; Hoertel et al., 2021; Lenze et al., 2020; Németh et al., 2021; Oskotsky et al., 2021; Reis et al., 2021; Seftel and Boulware, 2021) and relevant reviews (Facente et al., 2021; Sukhatme et al., 2021) were manually searched for additional studies.

2.3. Data extraction

The same two researchers independently screened studies and extracted data. If there was any ambiguity, it was resolved by a discussion with a senior researcher. We contacted with the first/corresponding authors to obtain any missing data if necessary.

2.4. Quality assessment

Literature quality was also evaluated by two researchers (HLS and HC). For RCTs, the Cochrane risk of bias (Higgins et al., 2011) and the Jadad scale (Jadad et al., 1996) were used to assess the study quality. For other types of studies (i.e., open-label retrospective studies), Newcastle-Ottawa Scale (NOS) (Stang, 2010) was used to assess the study quality.

3. Results

3.1. Literature search

As shown in Fig. 1 , the literature search yielded 390 trials. Finally, seven studies (Calusic et al., 2021a; Hoertel et al., 2021; Lenze et al., 2020; Németh et al., 2021; Oskotsky et al., 2021; Reis et al., 2021; Seftel and Boulware, 2021) that investigated the efficacy and safety of antidepressants for COVID-19 patients met the study entry criteria and were included in this systematic review. Meta-analysis was not performed due to the substantial heterogeneity between the included studies, particularly in terms of study design (RCTs versus prospective cohort studies versus retrospective studies).

Fig. 1.

Fig. 1

Flow chart of study selection.

3.2. Included studies and participant details

The seven studies (n = 92,947) included three retrospective studies (n = 91,083) (Hoertel et al., 2021; Németh et al., 2021; Oskotsky et al., 2021), two RCTs (n = 1649) (Lenze et al., 2020; Reis et al., 2021) and two prospective cohort study (n = 215) (Calusic et al., 2021b; Seftel and Boulware, 2021), all of which are summarized in Table 1 . Among the seven included studies, antidepressants included fluvoxamine (4 studies, n = 1864) (Calusic et al., 2021a; Lenze et al., 2020; Reis et al., 2021; Seftel and Boulware, 2021), fluoxetine (1 study, n = 269) (Németh et al., 2021) and multiple antidepressants (2 studies, n = 90,814) (Hoertel et al., 2021; Oskotsky et al., 2021).

Table 1.

Summary of the study and patient characteristics.

Study (country) N Design:
-Blinding
-Setting
Trial duration (d) Patients:
-Diagnosis
-Criteria
Age: mean years (IQR/range/SD) Sex: Male (%) Treatment dosages: mg/d (range);
Number of patients (n);
Quality
assessment
RCT
Lenze et al., 2020 (USA) 152
  • -

    Double-blind

  • -

    Outpatients

15
  • -

    Living in the community with SARS-CoV-2 infection

  • -

    PCR

46.0 (range = 20–75) 28.3 1.Fluvoxamine (100 mg 2 times/d to 100 mg 3 times/d); n = 80
2.Placebo (100 mg 2 times/d to 100 mg 3 times/d); n = 72
Jadad scores = 5
Reis et al., 2021 (Brazil) 1,497a
  • -

    Double blind

  • -

    Outpatients

10
  • -

    Positive SARS-CoV-2 diagnostic test within 7 days of symptom onset

  • -

    SARS-CoV-2 antigen

50.0* (range = 18–102)a 42.4a 1.Fluvoxamine (100 mg 2 times/d for 10 days); n = 741
2.Placebo (100 mg 2 times/d for 10 d); n = 756
Jadad scores = 5



Prospective cohort study
Seftel and Boulware, 2021 (USA) 113
  • -

    Nonrandom control study

  • -

    Outpatients

14
  • -

    SARS-CoV-2 infection

  • -

    PCR

42.0*
(IQR = 33–56)
75.0 1.Fluvoxamine (50–100 mg loading dose, then 50 mg 2 times/d); n = 65
2.No Therapy; n = 48
NOS scores n = 7
Calusic et al., 2021a, Calusic et al., 2021b (Croatia) 102
  • -

    Prospective cohort trial

  • -

    Inpatients

15 days +7 days
  • -

    COVID-19 patients who met criteria for severe disease were admitted into ICUs

  • -

    SARS-CoV-2 PCR test

65.8
(SD = 11.65)
66.7 1.Fluvoxamine (100 mg 3 times/d for 15 days+50 mg 2 times/d for the followed 7 days); n = 51
2.Standard therapy; n = 51
NOS scores = 8



Retrospective study
Németh et al., 2021 (Budapest) 269
  • -

    Retrospective case-control study

  • -

    Inpatients

28
  • -

    SARS-CoV-2 infection

  • -

    PCR or SARS-CoV-2 antigen

64.1 (range = 19–96) 54.6 1.Fluoxetine (20 mg capsules 1 times/d); n = 110
2.Not receive fluoxetine; n = 159
NOS scores = 6
Hoertel et al., 2021 (France) 7230
  • -

    Retrospective study

  • -

    Inpatients

18.4
  • -

    Inpatient visits for COVID-19

  • -

    COVID-19 RT-PCR test

73.7
(SD = 15.80)
50.8 1.Any antidepressant (mean (SD) = 21.6 (14.1) mg/d); range (1.64–81.22); n = 345
2.No antidepressant (mean (SD) = NR); range = NR; n = 6885
NOS scores = 8
Oskotsky et al., 2021 (USA) 83,584
  • -

    Retrospective cohort study

  • -

    Both inpatients and outpatients

NR
  • -

    Patients with a diagnosis of COVID-19 or COVID-19 exposure

  • -

    Laboratory test for SARS-CoV-2 and/or ICD-10 code

52.1
(SD = 19.31)
49.8 1.SSRIs (mean (SD) = NR; range = NR fluoxetine-equivalent dose was 30.2 (22.6) mg/d); n = 3401
2.Not treated with SSRIs mean (SD) = NR; range = NR; n = 80,183
NOS scores = 8

Abbreviations: Age* = median age; Both = inpatients and outpatients; COVID-19 = coronavirus disease 2019; d = days; ICUs = the intensive care units; ICD-10 = International Classification of Diseases,10th edition; IQR = interquartile range; M = mean; NOS = the Newcastle-Ottawa Scale; NR = not reported; PCR = transcriptase-polymerase-chain-reaction; RCT = randomized controlled trial; RT-PCR test = positive reverse-transcriptase-polymerase-chain-reaction test; SARS-CoV-2 = severe acute respiratory syndrome and causative agent of coronavirus disease 2019; SSRIs = selective serotonin reuptake inhibitors; SD=Standard Deviation; R = range.

a

Data collected from fluvoxamine (n = 741) and placebo (n = 756) treatment groups.

3.3. Assessment of study quality

Fig. 2 depicts the Cochrane risk of bias of two double-blinded RCTs. As shown in Table 1, Jadad total scores were 5 for two RCTs and NOS total scores ranged from 6 to 8 for other types of studies.

Fig. 2.

Fig. 2

The Cochrane risk of bias for RCTs.

Abbreviations: RCT = randomized controlled trial; +: Low risk of bias; −: High risk of bias; ?: Unclear risk of bias.

3.4. Clinical deterioration and all-cause mortality

Table 2 shows the rates of clinical deterioration and all-cause mortality for the included studies. In the two RCTs, fluvoxamine was associated with a lower likelihood of clinical deterioration (Lenze et al., 2020) and hospitalisation (Reis et al., 2021) in patients with COVID-19 when compared with placebo groups. In the three retrospective studies, antidepressants (2 studies) (Hoertel et al., 2021; Oskotsky et al., 2021) and fluoxetine (1 study) (Németh et al., 2021) possibly reduced the risk of all-cause mortality. The remaining two studies (Calusic et al., 2021a; Seftel and Boulware, 2021) found that fluvoxamine had a positive effect in reducing mortality in patients with COVID-19.

Table 2.

Clinical deterioration and all-cause mortality.

Study Clinical outcomes Treatment, n (%) Control, n (%) P-value
RCT
Lenze et al., 2021 Clinical deterioration Fluvoxamine, 0 Placebo, 6 (8.3) 0.009
Mortality NR NR NR
Reis et al., 2021 Hospitalisation Fluvoxamine, 75 (10.1) Placebo, 97 (12.8) 0.10
Mortality Fluvoxamine, 17 (2.3) Placebo, 25 (3.3) 0.24



Prospective cohort study
Seftel et al., 2021 Hospitalisation Fluvoxamine, 0 No therapy, 6 (12.5) 0.005
Mortality Fluvoxamine, 0 No therapy, 1 (2.1) NR
Residual symptoms Fluvoxamine, 0 No therapy, 29 (60.0) <0.001
Calusic et al., 2021a, Calusic et al., 2021b Clinical deterioration NR NR NR
Mortality Fluvoxamine + standard therapy, 30 (58.8) Standard therapy, 39 (76.5) 0.027



Retrospective study
Németh et al., 2021 Clinical deterioration NR NR NR
Mortality Fluoxetine, 15 (13.6) Not treated with fluoxetine, 49 (30.8) 0.001
Hoertel et al., 2021 Intubation or death Any antidepressants, 84 (24.3) Not treated with any antidepressants, 1,188 (17.3) NR
Oskotsky et al., 2021 Clinical deterioration NR NR NR
Mortality Any SSRI antidepressants, 497 (14.6) Not treated with SSRIs, 6,698 (8.4) NR

Bolded values are P < 0.05.

Abbreviations: COVID-19 = coronavirus disease 2019; NR = not reported; RCT = randomized controlled trial; SSRIs = selective serotonin reuptake inhibitors.

3.5. ADRs and dropout rate

Compared to placebo, fluvoxamine was associated with less frequent pneumonia and gastrointestinal symptoms such as nausea and vomiting in one RCT (Lenze et al., 2020). Another RCT reported similar rates of ADRs in both fluvoxamine and placebo groups (Reis et al., 2021) (Table 3 ). In two prospective studies, no serious ADRs occurred with fluvoxamine. ADRs were not reported in the three retrospective studies (Calusic et al., 2021b; Hoertel et al., 2021; Németh et al., 2021; Oskotsky et al., 2021).

Table 3.

Adverse drug reactions and dropout rate.

Study ADRs
Dropout rate (%)
Events Treatment (%) Control (%) Total (%) Treatment (%) Control (%)
RCTs
Lenze et al., 2021 Pneumonia 3 (3.8) 6 (8.3) Fluvoxamine-treated participants, 18 of 80 stopped responding to the surveys prior to day 15 compared with 19 of 72 who were randomized to placebo 18 (22.5) 19 (26.4)
Shortness of breath 2 (2.5) 4 (5.6)
Headache or head pain 2 (2.5) 1 (1.4)
Gastroenteritis, nausea, or vomiting 1 (1.3) 5 (6.9)
Muscle aches 1 (1.3) 0
Bacterial infection 1 (1.3) 0
Vasovagal syncope 1 (1.3) 0
Teeth chattering 1 (1.3) 0
Dehydration 1 (1.3) 0
Low oxygen saturation or hypoxia 0 6 (8.3)
Chest pain or tightness 0 2 (2.8)
Fever 0 2 (2.8)
Acute respiratory failure 0 1 (1.4)
Hypercapnia 0 1 (1.4)
Flank pain 0 1 (1.4)
Serious adverse eventsa 1 (1.3) 5 (6.9)
Other adverse eventsb 11 (13.8) 6 (8.3)
Reis et al., 2021 No significant differences in the fluvoxamine and placebo groups 330 (22.0) 193 (26.0) 137 (18.0)



Prospective cohort study
Seftel et al., 2021 No serious ADRs occurred with fluvoxamine NR
Calusic et al., 2021a, Calusic et al., 2021b NR NR NR NR



Retrospective study
Németh et al., 2021 NR NR NR NA
Hoertel et al., 2021 NR NR NR NA
Oskotsky et al., 2021 NR NR NR NA

Abbreviations: ADRs = adverse drug reactions; NR = not reported; NA = not applicable; RCT = randomized controlled trial.

a

Serious adverse events = One patient in the placebo group had more than 1 serious adverse event. The total No. of serious adverse events was 1 in the fluvoxamine group and 6 in the placebo group.

b

Other adverse events = There were patients in the placebo group who had more than 1 other adverse event.

In the two RCTs, no significant difference was found between the fluvoxamine than placebo groups regarding the dropout rate (all Ps > 0.05) (Lenze et al., 2020; Reis et al., 2021). The two prospective cohort studies (Calusic et al., 2021b; Seftel and Boulware, 2021) did not describe discontinuation rates.

4. Discussion

This systematic review (7 studies with 92,947 COVID-19 patients) examined the efficacy and safety of antidepressants for the treatment of COVID-19. Clinical deterioration of patients with COVID-19 typically occurs during the second week of illness (Cummings et al., 2020; Lenze et al., 2020). This systematic review found that antidepressants, especially fluvoxamine, could reduce the risk of clinical deterioration and hospitalisation, which is consistent with the findings of a recent review (Facente et al., 2021). All included studies were published within one year, suggesting that antidepressants as an adjunct treatment for COVID-19 is a novel and clinically important focus. Four incomplete RCTs (NCT04668950, NCT04718480, NCT04510194 and NCT04885530) are currently underway, including three in the USA and one in the Hungary (Facente et al., 2021).

Although many drugs were trialled in treating COVID-19, most had disappointing findings (WHO Solidarity Trial Consortium, 2021). For example, the Interim WHO Solidarity Trial results found that interferon beta-1a, remdesivir, lopinavir, and hydroxychloroquine had small or no effect on the mortality, duration of hospital stay or initiation of ventilation in hospitalized patients with COVID-19 (Iqbal et al., 2021; Ivbijaro et al., 2021; WHO Solidarity Trial Consortium, 2021). Other drugs such as azithromycin (Hinks et al., 2021), favipiravir (Hassanipour et al., 2021), and metformin (Reis et al., 2022) did not provide any clinical benefit in treating COVID-19 patients. However, being a widely available and inexpensive SSRI, fluvoxamine has shown promise as an adjunct treatment for COVID-19 (Calusic et al., 2021a; Lenze et al., 2020; Reis et al., 2021).

The potential mechanisms of therapeutic role for the antidepressants for COVID-19 symptoms are still not clear (Hashimoto et al., 2022). COVID-19 induced by SARS-CoV-2 is primarily triggered by an intense proinflammatory host response (Costela-Ruiz et al., 2020; Iqbal et al., 2021). Further evidence found that severe outcomes of COVID-19 resulted an increased plasma concentrations of pro-inflammatory cytokines and chemokines such as interleukin IL-2, IL-6, IL-7, IL-10, TNF-α, MCP1, C-reactive protein, ferritin, D-dimers and macrophage inflammatory protein 1 alpha (MIP1α) (Costela-Ruiz et al., 2020; Hojyo et al., 2020; Singh and Tikka, 2021). Numerous studies suggested that antidepressants could decrease the concentrations of IL-6, IL-10, and TNF-α (Köhler et al., 2018). Additionally, modulation of the sigma-1 receptor-Inositol-Requiring Enzyme 1α (IRE1) pathway by antidepressants and specifically fluvoxamine and fluoxetine were associated" to "antidepressants, specifically fluvoxamine and fluoxetine, were associated with decreased damaging aspects of the inflammatory response (Rosen et al., 2019a). Other mechanisms of actions could be involved. SSRIs, such as fluoxetine, could decrease mRNA levels of protease-1 in mast cells (MCs), and hence reduce cytokine storms in COVID-19 patients (Chen et al., 2008). Treatment of mice with S1R agonists, such as fluoxetine (Hashimoto, 2015), may reduce acid sphingomyelinase activity and protein levels in neurons (Gulbins et al., 2013). Fluoxetine may also inhibit entry and spread of SARS-CoV-2-2 in the Vero-E6 cell line (Schloer et al., 2020). S1R agonists, such as escitalopram and fluoxetine (Hashimoto, 2015), could prevent the SARS-CoV-2 from infecting Vero cells (Carpinteiro et al., 2020). Certain antidepressants (e.g., amitriptyline) may prevent infection of human Caco-2 cells with SARS-CoV-2, and low-dose amitriptyline could prevent freshly isolated nasal epithelial cells from being infected by pp-VSV-SARS-CoV-2 (Carpinteiro et al., 2020; Sukhatme et al., 2021).

Several limitations should be noted. First, the small number of RCTs limited our capacity to conduct a meta-analysis. Second, the dose of fluvoxamine ranged from a 50–100 mg loading dose to 100 mg taken three times daily in the included studies (Calusic et al., 2021a; Lenze et al., 2020; Reis et al., 2021; Seftel and Boulware, 2021). The optimal doses of fluvoxamine for COVID-19 should be further examined. Only two (28.6%; 2/7) high quality RCTs were conducted in the USA and Brazil but have not been replicated elsewhere.

In conclusion, there was emerging evidence for fluvoxamine in reducing the risk of mortality and the need for hospitalisation in COVID-19 patients but inconsistent evidence for the safety of adjunctive fluvoxamine for COVID-19 patients. More high-quality studies with larger sample sizes and longer follow-up periods, are needed to provide definitive evidence for the efficacy and safety of antidepressants for the treatment of COVID-19.

CRediT authorship contribution statement

Study design: Wei Zheng, Yu-Tao Xiang.

Data collection, analysis and interpretation: Wei Zheng, He-Li Sun, Hong Cai, Qinge Zhang.

Drafting of the manuscript: Wei Zheng, Yu-Tao Xiang.

Critical revision of the manuscript: Chee H. Ng.

Approval of the final version for publication: all authors.

Financial support

None.

Declaration of competing interest

The authors declare no conflicts of interest in conducting this study or preparing the manuscript.

Acknowledgements

None.

References

  1. Asif M., Saleem M., Saadullah M., Yaseen H.S., Al Zarzour R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology. 2020;28(5):1153–1161. doi: 10.1007/s10787-020-00744-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brimson J.M., P.M, Malar D.S., Brimson S., Thitilertdecha P., Tencomnao T. Drugs that offer the potential to reduce hospitalization and mortality from SARS-CoV-2 infection: the possible role of the sigma-1 receptor and autophagy. Expert Opin. Ther. Targets. 2021;25(6):435–449. doi: 10.1080/14728222.2021.1952987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Calusic M., Marcec R., Luksa L., Jurkovic I., Kovac N., Mihaljevic S., Likic R. Safety and efficacy of fluvoxamine in COVID-19 ICU patients: an open label, prospective cohort trial with matched controls. Br. J. Clin. Pharmacol. 2021 doi: 10.1111/bcp.15126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Calusic M., Marcec R., Luksa L., Jurkovic I., Kovac N., Mihaljevic S., Likic R. Safety and efficacy of fluvoxamine in COVID-19 ICU patients: an open label, prospective cohort trial with matched controls. Br. J. Clin. Pharmacol. 2021 doi: 10.1111/bcp.15126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carpinteiro A., Edwards M.J., Hoffmann M., Kochs G., Gripp B., Weigang S., Adams C., Carpinteiro E., Gulbins A., Keitsch S. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Rep. Med. 2020;1(8) doi: 10.1016/j.xcrm.2020.100142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen Z.-H., Xiao L., Chen J.-H., Luo H.-S., Wang G.-H., Huang Y.-L., Wang X.-P. Effects of fluoxetine on mast cell morphology and protease-1 expression in gastric antrum in a rat model of depression. World J Gastroenterol: WJG. 2008;14(45):6993. doi: 10.3748/wjg.14.6993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cipriani A., Furukawa T.A., Salanti G., Chaimani A., Atkinson L.Z., Ogawa Y., Leucht S., Ruhe H.G., Turner E.H., Higgins J.P.T., Egger M., Takeshima N., Hayasaka Y., Imai H., Shinohara K., Tajika A., Ioannidis J.P.A., Geddes J.R. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):1357–1366. doi: 10.1016/S0140-6736(17)32802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Costela-Ruiz V.J., Illescas-Montes R., Puerta-Puerta J.M., Ruiz C., Melguizo-Rodríguez L. SARS-CoV-2 infection: the role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62–75. doi: 10.1016/j.cytogfr.2020.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cummings M.J., Baldwin M.R., Abrams D., Jacobson S.D., Meyer B.J., Balough E.M., Aaron J.G., Claassen J., Rabbani L.E., Hastie J., Hochman B.R., Salazar-Schicchi J., Yip N.H., Brodie D., O'Donnell M.R. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–1770. doi: 10.1016/S0140-6736(20)31189-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Facente S.N., Reiersen A.M., Lenze E.J., Boulware D.R., Klausner J.D. Fluvoxamine for the early treatment of SARS-CoV-2 infection: a review of current evidence. Drugs. 2021:1–9. doi: 10.1007/s40265-021-01636-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gordon DE H.J., Bouhaddou M., Rezelj V.V., Ulferts S., Braberg H., Jureka A.S., Obernier K., Guo J.Z., Batra J., Kaake R.M., Weckstein A.R., Owens T.W., Gupta M., Pourmal S., Titus E.W., Cakir M., Soucheray M., Cakir Z., Jang G., O’Meara M.J., Tummino T.A., Zhang Z., Foussard H., Rojc A., Zhou Y., Kuchenov D., Hüttenhain R., Xu J., Eckhardt M., Swaney D.L., Fabius J.M., Ummadi M., Tutuncuoglu B., Rathore U., Modak M., Haas P., Haas K.M., ZZC Naing, Pulido E.H., Shi Y., Barrio-Hernandez I., Memon D., Petsalaki E., Dunham A., Marrero M.C., Burke D., Koh C., Vallet T., Silvas J.A., Azumaya C.M., McGregor M., Billesbølle C., Brilot A.F., Campbell M.G., Diallo A., Dickinson M.S., Diwanji D., Herrera N., Hoppe N., Kratochvil H.T., Liu Y., Merz G.E., Moritz M., Nguyen H.C., Nowotny C., Puchades C., Rizo A.N., Schulze-Gahmen U., Smith A.M., Sun M., Young I.D., Zhao J., Asarnow D., Biel J., Bowen A., Braxton J.R., Chen J., Chio C.M., Chio U.S., Deshpande I., Doan L., Faust B., Flores S., Jin M., Kim K., Lam V.L., Li F., Li J., Li Y.L., Li Y., Liu X., Lo M., Lopez K.E., Melo A.A., Moss F.R., III, Nguyen P., Paulino J., Pawar K.I., Peters J.K., Pospiech T.H., Jr., Safari M., Jr., Sangwan S., Jr., Schaefer K., Jr., Thomas P.V., Jr., Thwin A.C., Jr., Trenker R., Jr., Tse E., Jr., TKM Tsui, Jr., Wang F., Jr., Whitis N., Jr., Yu Z., Jr., Zhang K., Jr., Zhang Y., Jr., Zhou F., Jr., Saltzberg D., Jr., QCRG Structural Biology Consortium, Hodder A.J., Shun-Shion A.S., Williams D.M., White K.M., Rosales R., Kehrer T., Miorin L., Moreno E., Patel A.H., Rihn S., Khalid M.M., Vallejo-Gracia A., Fozouni P., Simoneau C.R., Roth T.L., Wu D., Karim M.A., Ghoussaini M., Dunham I., Berardi F., Weigang S., Chazal M., Park J., Logue J., Weston S., Haupt R., Hastie C.J., Elliott M., Brown F., Burness K.A., Reid E., Dorward M., Johnson C., Wilkinson S.G., Geyer A., Giesel D.M., Baillie C., Raggett S., Leech H., Toth R., Goodman N., Keough K.C., Lind A.L., McGrath M., Zoonomia Consortium, Klesh R.J., Hemphill K.R., Carlson-Stevermer J., Oki J., Holden K., Maures T., Pollard K.S., Sali A., Agard D.A., Cheng Y., Fraser J.S., Frost A., Jura N., Kortemme T., Manglik A., Southworth D.R., Stroud R.M., Alessi D.R., Davies P., Frieman M.B., Ideker T., Abate C., Jouvenet N., Kochs G., Shoichet B., Ott M., Palmarini M., Shokat K.M., García-Sastre A., Rassen J.A., Grosse R., Rosenberg O.S., Verba K.A., Basler C.F., Vignuzzi M., Peden A.A., Beltrao P., Krogan N.J. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 2020;370(6521) doi: 10.1126/science.abe9403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gordon DE J.G., Bouhaddou M., Xu J., Obernier K., White K.M., O'Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Hüttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., Foussard H., Batra J., Haas K., Modak M., Kim M., Haas P., Polacco B.J., Braberg H., Fabius J.M., Eckhardt M., Soucheray M., Bennett M.J., Cakir M., McGregor M.J., Li Q., Meyer B., Roesch F., Vallet T., Mac Kain A., Miorin L., Moreno E., Naing Z.Z.C., Zhou Y., Peng S., Shi Y., Zhang Z., Shen W., Kirby I.T., Melnyk J.E., Chorba J.S., Lou K., Dai S.A., Barrio-Hernandez I., Memon D., Hernandez-Armenta C., Lyu J., Mathy C.J.P., Perica T., Pilla K.B., Ganesan S.J., Saltzberg D.J., Rakesh R., Liu X., Rosenthal S.B., Calviello L., Venkataramanan S., Liboy-Lugo J., Lin Y., Huang X.P., Liu Y., Wankowicz S.A., Bohn M., Safari M., Ugur F.S., Koh C., Savar N.S., Tran Q.D., Shengjuler D., Fletcher S.J., O'Neal M.C., Cai Y., Chang J.C.J., Broadhurst D.J., Klippsten S., Sharp P.P., Wenzell N.A., Kuzuoglu-Ozturk D., Wang H.Y., Trenker R., Young J.M., Cavero D.A., Hiatt J., Roth T.L., Rathore U., Subramanian A., Noack J., Hubert M., Stroud R.M., Frankel A.D., Rosenberg O.S., Verba K.A., Agard D.A., Ott M., Emerman M., Jura N., von Zastrow M., Verdin E., Ashworth A., Schwartz O., d'Enfert C., Mukherjee S., Jacobson M., Malik H.S., Fujimori D.G., Ideker T., Craik C.S., Floor S.N., Fraser J.S., Gross J.D., Sali A., Roth B.L., Ruggero D., Taunton J., Kortemme T., Beltrao P., Vignuzzi M., García-Sastre A. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):1–13. doi: 10.1038/s41586-020-2286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gulbins E., Palmada M., Reichel M., Lüth A., Böhmer C., Amato D., Müller C.P., Tischbirek C.H., Groemer T.W., Tabatabai G. Acid sphingomyelinase–ceramide system mediates effects of antidepressant drugs. Nat. Med. 2013;19(7):934–938. doi: 10.1038/nm.3214. [DOI] [PubMed] [Google Scholar]
  14. Hanner M., Moebius F.F., Flandorfer A., Knaus H.G., Striessnig J., Kempner E., Glossmann H. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc. Natl. Acad. Sci. U. S. A. 1996;93(15):8072–8077. doi: 10.1073/pnas.93.15.8072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hannestad J., DellaGioia N., Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011;36(12):2452–2459. doi: 10.1038/npp.2011.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hashimoto K. Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication. J. Pharmacol. Sci. 2015;127(1):6–9. doi: 10.1016/j.jphs.2014.11.010. [DOI] [PubMed] [Google Scholar]
  17. Hashimoto K. Repurposing of CNS drugs to treat COVID-19 infection: targeting the sigma-1 receptor. Eur. Arch. Psychiatry Clin. Neurosci. 2021;271(2):249–258. doi: 10.1007/s00406-020-01231-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hashimoto Y., Suzuki T., Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: a historical review. Mol. Psychiatry. 2022:1–10. doi: 10.1038/s41380-021-01432-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hassanipour S., Arab-Zozani M., Amani B., Heidarzad F., Fathalipour M., Martinez-de-Hoyo R. The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials. Sci. Rep. 2021;11(1):11022. doi: 10.1038/s41598-021-90551-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Higgins J.P., Altman D.G., Gotzsche P.C., Juni P., Moher D., Oxman A.D., Savovic J., Schulz K.F., Weeks L., Sterne J.A., Cochrane Bias Methods G., Cochrane Statistical Methods G. The cochrane collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343 doi: 10.1136/bmj.d5928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hinks T.S.C., Cureton L., Knight R., Wang A., Cane J.L., Barber V.S., Black J., Dutton S.J., Melhorn J., Jabeen M., Moss P., Garlapati R., Baron T., Johnson G., Cantle F., Clarke D., Elkhodair S., Underwood J., Lasserson D., Pavord I.D., Morgan S., Richards D. Azithromycin versus standard care in patients with mild-to-moderate COVID-19 (ATOMIC2): an open-label, randomised trial. Lancet Respir. Med. 2021;9(10):1130–1140. doi: 10.1016/S2213-2600(21)00263-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hoertel N., Sánchez-Rico M., Vernet R., Beeker N., Jannot A.S., Neuraz A., Salamanca E., Paris N., Daniel C., Gramfort A., Lemaitre G., Bernaux M., Bellamine A., Lemogne C., Airagnes G., Burgun A., Limosin F. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Mol. Psychiatry. 2021;26(9):5199–5212. doi: 10.1038/s41380-021-01021-4. [DOI] [PubMed] [Google Scholar]
  23. Hojyo S., Uchida M., Tanaka K., Hasebe R., Tanaka Y., Murakami M., Hirano T. How COVID-19 induces cytokine storm with high mortality. Inflamm. Regen. 2020;40:37. doi: 10.1186/s41232-020-00146-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Iqbal Y., Jahan R., Yesmin S., Selim A., Siddique S.N. COVID-19-related issues on tele-counseling helpline in Bangladesh. Asia Pac. Psychiatry. 2021;13(2) doi: 10.1111/appy.12407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ivbijaro G., Kolkiewicz L., Goldberg D., N'Jie I.N.S., Edwards T., Riba M.B., Švab I., Geller J., Enum Y. Suicide prevention and COVID-19. Asia Pac. Psychiatry. 2021;13(3) doi: 10.1111/appy.12482. [DOI] [PubMed] [Google Scholar]
  26. Jadad A.R., Moore R.A., Carroll D., Jenkinson C., Reynolds D.J., Gavaghan D.J., McQuay H.J. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control. Clin. Trials. 1996;17(1):1–12. doi: 10.1016/0197-2456(95)00134-4. [DOI] [PubMed] [Google Scholar]
  27. Köhler C.A., Freitas T.H., Stubbs B., Maes M., Solmi M., Veronese N., de Andrade N.Q., Morris G., Fernandes B.S., Brunoni A.R., Herrmann N., Raison C.L., Miller B.J., Lanctôt K.L., Carvalho A.F. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol. Neurobiol. 2018;55(5):4195–4206. doi: 10.1007/s12035-017-0632-1. [DOI] [PubMed] [Google Scholar]
  28. Lenze E.J., Mattar C., Zorumski C.F., Stevens A., Schweiger J., Nicol G.E., Miller J.P., Yang L., Yingling M., Avidan M.S., Reiersen A.M. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial. JAMA. 2020;324(22):2292–2300. doi: 10.1001/jama.2020.22760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339 [PMC free article] [PubMed] [Google Scholar]
  31. Németh Z.K., Szûcs A., Vitrai J., Juhász D., Németh J.P., Holló A. Fluoxetine use is associated with improved survival of patients with COVID-19 pneumonia: a retrospective case-control study. Ideggyogy. Sz. 2021;74(11–12):389–396. doi: 10.18071/isz.74.0389. [DOI] [PubMed] [Google Scholar]
  32. Oskotsky T., Maric I., Tang A., Oskotsky B., Wong R.J., Aghaeepour N., Sirota M., Stevenson D.K. Mortality risk among patients with COVID-19 prescribed selective serotonin reuptake inhibitor antidepressants. JAMA Netw. Open. 2021;4(11) doi: 10.1001/jamanetworkopen.2021.33090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reis G., Dos Santos Moreira-Silva E.A., Silva D.C.M., Thabane L., Milagres A.C., Ferreira T.S., Dos Santos C.V.Q., de Souza Campos V.H., Nogueira A.M.R., de Almeida A., Callegari E.D., de Figueiredo Neto A.D., Savassi L.C.M., Simplicio M.I.C., Ribeiro L.B., Oliveira R., Harari O., Forrest J.I., Ruton H., Sprague S., McKay P., Glushchenko A.V., Rayner C.R., Lenze E.J., Reiersen A.M., Guyatt G.H., Mills E.J. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: the TOGETHER randomised, platform clinical trial. Lancet Glob. Health. 2021;10:e42–e51. doi: 10.1016/S2214-109X(21)00448-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Reis G., Dos Santos Moreira Silva E.A., Medeiros Silva D.C., Thabane L., Cruz Milagres A., Ferreira T.S., Quirino Dos Santos C.V., de Figueiredo Neto A.D., Diniz Callegari E., Monteiro Savassi L.C., Campos Simplicio M.I., Barra Ribeiro L., Oliveira R., Harari O., Bailey H., Forrest J.I., Glushchenko A., Sprague S., McKay P., Rayner C.R., Ruton H., Guyatt G.H., Mills E.J. Effect of early treatment with metformin on risk of emergency care and hospitalization among patients with COVID-19: the TOGETHER randomized platform clinical trial. Lancet Reg. Health Am. 2022;6 doi: 10.1016/j.lana.2021.100142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rizk J.G., Kalantar-Zadeh K., Mehra M.R., Lavie C.J., Rizk Y., Forthal D.N. Pharmaco-immunomodulatory therapy in COVID-19. Drugs. 2020;80(13):1267–1292. doi: 10.1007/s40265-020-01367-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rosen D.A., Seki S.M., Fernández-Castañeda A., Beiter R.M., Eccles J.D., Woodfolk J.A., Gaultier A. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med. 2019;11(478) doi: 10.1126/scitranslmed.aau5266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rosen D.A., Seki S.M., Fernández-Castañeda A., Beiter R.M., Eccles J.D., Woodfolk J.A., Gaultier A. Modulation of the sigma-1 receptor–IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med. 2019;11(478) doi: 10.1126/scitranslmed.aau5266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schloer S., Brunotte L., Goretzko J., Mecate-Zambrano A., Korthals N., Gerke V., Ludwig S., Rescher U. Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerg. Microbes Infect. 2020;9(1):2245–2255. doi: 10.1080/22221751.2020.1829082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Seftel D., Boulware D.R. Prospective cohort of fluvoxamine for early treatment of coronavirus disease 19. Ideggyogy. Sz. 2021;8(2) doi: 10.1093/ofid/ofab050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Singh L.K., Tikka S.K. Nondisrupted, safety ensured, opioid substitution clinic in a COVID-19 designated hospital of a resource-limited state in India. Asia Pac. Psychiatry. 2021;13(2) doi: 10.1111/appy.12428. [DOI] [PubMed] [Google Scholar]
  41. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010;25(9):603–605. doi: 10.1007/s10654-010-9491-z. [DOI] [PubMed] [Google Scholar]
  42. Sukhatme V.P., Reiersen A.M., Vayttaden S.J., Sukhatme V.V. Fluvoxamine: a review of its mechanism of action and its role in COVID-19. Front. Pharmacol. 2021;763 doi: 10.3389/fphar.2021.652688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Torres I., Artaza O., Profeta B., Alonso C., Kang J. COVID-19 vaccination: returning to WHO's health for all. Lancet Glob. Health. 2020;8(11):e1355–e1356. doi: 10.1016/S2214-109X(20)30415-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vela J.M. Repurposing sigma-1 receptor ligands for COVID-19 therapy? Front. Pharmacol. 2020;11 doi: 10.3389/fphar.2020.582310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. WHO Solidarity Trial Consortium Repurposed antiviral drugs for Covid-19 - interim WHO solidarity trial results. N. Engl. J. Med. 2021;384(6):497–511. doi: 10.1056/NEJMoa2023184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA. 2020;324(8):782–793. doi: 10.1001/jama.2020.12839. [DOI] [PubMed] [Google Scholar]
  47. Zhou X., Teng T., Zhang Y., Del Giovane C., Furukawa T.A., Weisz J.R., Li X., Cuijpers P., Coghill D., Xiang Y., Hetrick S.E., Leucht S., Qin M., Barth J., Ravindran A.V., Yang L., Curry J., Fan L., Silva S.G., Cipriani A., Xie P. Comparative efficacy and acceptability of antidepressants, psychotherapies, and their combination for acute treatment of children and adolescents with depressive disorder: a systematic review and network meta-analysis. Lancet Psychiatry. 2020;7(7):581–601. doi: 10.1016/S2215-0366(20)30137-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Affective Disorders are provided here courtesy of Elsevier

RESOURCES