Skip to main content
Journal of Fungi logoLink to Journal of Fungi
. 2022 Feb 24;8(3):225. doi: 10.3390/jof8030225

New Species of Aspergillus (Aspergillaceae) from Tropical Islands of China

Xin-Cun Wang 1,*, Wen-Ying Zhuang 1,*
Editor: José Francisco Cano-Lira1
PMCID: PMC8954917  PMID: 35330227

Abstract

Aspergillus species are cosmopolitan and ubiquitous, closely related to human daily life. They are also of food, industrial and medical importance. From the examination of cultures isolated from soil samples collected on tropical islands of China, four new species of the genus were discovered based on phylogenetic analyses and morphological comparisons. Aspergillus xishaensis sp. nov. and A. neoterreus sp. nov. belong to sections Flavipedes and Terrei of subgenus Circumdati, and A. hainanicus sp. nov. and A. qilianyuensis sp. nov. are in sections Cavernicolarum and Nidulantes of subgenus Nidulantes. To accommodate A. hainanicus, a new series Hainanici was proposed. Detailed descriptions and illustrations of the new taxa were provided.

Keywords: Ascomycota, Eurotiales, fungal biodiversity, phylogeny, taxonomy

1. Introduction

Species of Aspergillus P. Micheli ex Haller are cosmopolitan and ubiquitous. Some of them are closely related to human daily life. Strains of A. niger Tiegh. and A. oryzae (Ahlb.) Cohn were used for the fermentation of food for more than two millennia and the manufacturing of food enzymes for over 50 years [1]. Aspergillus niger is also a workhorse and cell factory for the production of citric acid, an organic acid with high economic importance, which is widely used in beverage, food, detergents, cosmetics and pharmaceutical industries [2]. Aflatoxins, produced by A. flavus Link and other aspergilli, are highly toxic secondary metabolites and severely contaminate food supplies of humans and animals, resulting in health hazards and even death [3]. Some black aspergilli were reported to be postharvest pathogens of economically important crops, e.g., A aculeatus Iizuka, A. japonicus Saito and A. uvarum G. Perrone et al. infecting the fruits of grapes [4]. Aspergillosis infections caused by Aspergillus species are of significant morbidity and mortality. Mostly, they are attributed to A. fumigatus Fresen., followed by A. flavus and A. terreus Thom [5].

The genus was originally introduced in 1729 and has more than one thousand names recorded in the database Index Fungorum. According to a recent monographic study, Aspergillus was divided into six subgenera (namely, Aspergillus, Circumdati, Cremei, Fumigati, Nidulantes and Polypaecilum), 27 sections and 75 series, with 446 species accepted [6]. Recently, more than 20 new species were added, e.g., A. kumbius (Pitt) and A. malvicolor A.D. Hocking in sect. Circumdati, A. agricola Pummi Singh et al. and A. burnettii Pitt in section Flavi, A. alboluteus F. Sklenar et al. and A. okavangoensis Visagie and Nkwe in section Flavipedes, A. nanangensis Pitt in section Janorum, A. hydei Doilom and A. vinaceus Ferranti et al. in section Nigri, and A. barbosae A.C.R. Barros-Correia et al. in section Terrei of subgenus Circumdati; A. arizonensis Jurjević et al. and A. banksianus Pitt in section Fumigati of subgenus Fumigati; A. lannaensis N. Suwannarach et al. in section Sparsi, and A. sigarelli B.D. Sun et al. in section Usti of subgenus Nidulantes; A. limoniformis Z.F. Zhang and L. Cai and A. telluris B.D. Sun et al. in sect. Polypaecilum of subgenus Polypaecilum [7,8,9,10,11,12,13,14,15,16,17,18,19]. The increasing number of species reveals the extremely high biodiversity of Aspergillus.

During the examinations of the cultures isolated from sandy soil collected on tropical islands of China, four new species were discovered based on phylogenetic analyses and morphological comparisons. They belong to sections Flavipedes and Terrei of subgenus Circumdati and sections Cavernicolarum and Nidulantes of subgenus Nidulantes, respectively. The detailed descriptions and illustrations of the new taxa are provided.

2. Materials and Methods

2.1. Fungal Materials

Cultures were isolated from sandy soil collected on tropical islands of China in 2015. Dried cultures were deposited in the Herbarium Mycologicum Academiae Sinicae (HMAS), and living ex-type strains were preserved in the China General Microbiological Culture Collection Center (CGMCC).

2.2. Morphological Observations

Morphological characterization was conducted following standardized methods [20]. Four standard growth media were used: Czapek yeast autolysate agar (CYA, yeast extract Oxoid), malt extract agar (MEA, Amresco), yeast extract agar (YES) and potato dextrose agar (PDA). If sporulation failed on the above media, PDA with 3% sea salts (3% NaCl, Psaitong) and oatmeal agar (OA) were further applied. The methods for inoculation, incubation, microscopic examinations and digital recordings followed our previous studies [21,22,23,24].

2.3. Molecular Experiments

DNA was extracted from the cultures grown on PDA for 7 days using the Plant Genomic DNA Kit (DP305, TIANGEN Biotech, Beijing, China). Polymerase chain reaction (PCR) amplifications of the internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene regions were conducted with the routine methods [21,22,23,24]. The products were purified and subject to sequencing on an ABI 3730 DNA Sequencer (Applied Biosystems). Although the ITS region is proposed as the universal DNA barcode for fungi, it is not sufficient to distinguish species of Aspergillus. The ITS sequences provided in this study might be helpful for other researchers in case of need.

2.4. Phylogenetic Analyses

Forward and reverse sequences newly generated in this study were assembled using Seqman v. 7.1.0 (DNASTAR Inc., Madison, WI, USA). The assembled sequences were deposited at GenBank. The sequences used for phylogenetic analyses are listed in Table 1 and Table 2. Sequences of the combined loci (BenA, CaM and RPB2) of each of the two subgenera were aligned using MAFFT v. 7.221 [25] and then manually edited and combined in BioEdit v. 7.1.10 [26] and MEGA v. 6.0.6 [27]. The combined datasets of individual subgenera were analyzed to infer their phylogeny. Maximum likelihood (ML) analyses were conducted using RAxML-HPC2 [28] on XSEDE 8.2.12 on CIPRES Science Gateway v. 3.3 [29] with the default GTRCAT model. Bayesian inference (BI) analyses were performed with MrBayes v. 3.2.5 [30]. Appropriate nucleotide substitution models and parameters were determined by Modeltest v. 3.7 [31]. The consensus trees were viewed in FigTree v. 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 3 June 2015). Aspergillus flavus of subgen. Circumdati sect. Flavi served as an outgroup.

Table 1.

Fungal species and sequences used in phylogenetic analyses of Aspergillus subgen. Nidulantes.

Section Series Species Strain Locality Substrate ITS BenA CaM RPB2
Aenei Aenei A. aeneus Sappa 1954 CBS 128.54 T Somalia forest soil EF652474 EF652298 EF652386 EF652210
A. bicolor M. Chr. and States 1978 CBS 425.77 T USA soil EF652511 EF652335 EF652423 EF652247
Bispori Bispori A. bisporus Kwon-Chung and Fennell 1971 CBS 707.71 T USA soil EF661208 EF661121 EF661139 EF661077
Cavernicolarum Cavernicolarum A. californicus Frisvad et al. 2011 CBS 123895 T USA chaparral of Adenostoma fasciculatum FJ531153 FJ531180 FJ531128 MN969065
A. cavernicola Lörinczi 1969 CBS 117.76 T Romania on walls of cave EF652508 EF652332 EF652420 EF652244
A. kassunensis Baghd. 1968 CBS 419.69 T Syria soil EF652461 EF652285 EF652373 EF652197
A. subsessilis Raper and Fennell 1965 CBS 502.65 T USA desert soil EF652485 EF652309 EF652397 EF652221
Egyptiaci A. egyptiacus Moub. and Moustafa 1972 CBS 656.73 T Egypt sandy soil EF652504 EF652328 EF652416 EF652240
Hainanici A. hainanicus X.C. Wang and W.Y. Zhuang, sp. nov. ZC79 T China: Hainan sandy soil OM414846 OM475626 OM475630 OM475634
Nidulantes Aurantiobrunnei A. aurantiobrunneus Raper and Fennell 1965 CBS 465.65 T Australia canvas haversack for respirator EF652465 EF652289 EF652377 EF652201
Multicolores A. multicolor Sappa 1954 CBS 133.54 T Somalia forest soil EF652477 EF652301 EF652389 EF652213
Nidulantes A. nidulans (Eidam) G. Winter 1884 CBS 589.65 T Belgium unknown EF652427 EF652251 EF652339 EF652163
Speluncei A. spelunceus Raper and Fennell 1965 CBS 497.65 T USA soil and dead Orthoptera EF652490 EF652314 EF652402 EF652226
Stellati A. stellatus Curzi 1934 CBS 598.65 T Panama soil EF652426 EF652250 EF652338 EF652162
Unguium A. unguis (Émile-Weill and L. Gaudin) Thom and Raper 1934 CBS 132.55 T USA shoe leather EF652443 EF652267 EF652355 EF652179
Versicolores A. amoenus M. Roberg 1931 CBS 111.32 T Germany fruit of Berberis sp. EF652480 JN853946 JN854035 JN853824
A. austroafricanus Jurjević et al. 2012 CBS 145748 T South Africa soil JQ301891 JN853963 JN854025 JN853814
A. creber Jurjević et al. 2012 CBS 145749 T USA air JQ301889 JN853980 JN854043 JN853832
A. cvjetkovicii Jurjević et al. 2012 CBS 599.65 T USA soil EF652440 EF652264 EF652352 EF652176
A. fructus Jurjević et al. 2012 CBS 584.65 T USA fruit of date palm EF652449 EF652273 EF652361 EF652185
A. griseoaurantiacus Visagie et al. 2014 CBS 138191 T Micronesia house dust KJ775553 KJ775086 KJ775357 KU866988
A. hongkongensis C.C. Tsang et al. 2016 CBS 145671 T China: Hong Kong nails of Homo sapiens AB987907 LC000552 MN969320 LC000578
A. jensenii Jurjević et al. 2012 NRRL 58600 T USA soil JQ301892 JN854007 JN854046 JN853835
A. pepii Despot et al. 2016 CBS 142028 T Croatia air KU613368 KU613371 KU613365 n.a.
A. protuberus Munt.-Cvetk. 1968 CBS 602.74 T former Yugoslavia rubber coated electric cables EF652460 EF652284 EF652372 EF652196
A. puulaauensis Jurjević et al. 2012 CBS 145750 T USA: Hawaii dead hardwood JQ301893 JN853979 JN854034 JN853823
A. qilianyuensis X.C. Wang and W.Y. Zhuang, sp. nov. ZC101 T China: Hainan sandy soil OM414847 OM475627 OM475631 OM475635
A. subversicolor Jurjević et al. 2012 CBS 145751 T India green berries of coffee JQ301894 JN853970 JN854010 JN853799
A. sydowii (Bainier and Sartory) Thom and Church 1926 CBS 593.65 T France unknown EF652450 EF652274 EF652362 EF652186
A. tabacinus Nakaz. et al. 1934 CBS 122718 T unknown tobacco EF652478 EF652302 EF652390 EF652214
A. tennesseensis Jurjević et al. 2012 CBS 145752 T USA toxic dairy feed JQ301895 JN853976 JN854017 JN853806
A. venenatus Jurjević et al. 2012 CBS 145753 T USA toxic dairy feed JQ301896 JN854003 JN854014 JN853803
A. versicolor (Vuill.) Tirab. 1908 CBS 583.65 T unknown unknown EF652442 EF652266 EF652354 EF652178
Ochraceorosei Funiculosi A. funiculosus G. Sm. 1956 NRRL 4744 T Nigeria loam soil EF661223 EF661112 EF661175 EF661078
A. lannaensis N. Suwannarach et al. 2021 SDBR-CMUO8 T Thailand soil MW588211 MW219783 MW219781 MW219785
Ochraceorosei A. ochraceoroseus Bartoli and Maggi 1979 CBS 550.77 T Côte d’Ivoire forest soil EF661224 EF661113 EF661137 EF661074
Raperorum Raperorum A. ivoriensis Bartoli and Maggi 1979 CBS 551.77 T Côte d’Ivoire forest soil EF652441 EF652265 EF652353 EF652177
A. raperi Stolk and J.A. Mey. 1957 CBS 123.56 T Congo soil EF652454 EF652278 EF652366 EF652190
Silvatici Silvatici A. silvaticus Fennell and Raper 1955 CBS 128.55 T Ghana soil EF652448 EF652272 EF652360 EF652184
Sparsi Biplani A. biplanus Raper and Fennell 1965 CBS 468.65 T Costa Rica soil EF661210 EF661116 EF661130 EF661036
Conjuncti A. conjunctus Kwon-Chung and Fennell 1965 CBS 476.65 T Costa Rica soil EF661179 EF661111 EF661133 EF661042
Implicati A. implicatus Persiani and Maggi 1994 CBS 484.95 T Côte d’Ivoire forest soil FJ491656 FJ491667 FJ491650 MN969078
Sparsi A. sparsus Raper and Thom 1944 CBS 139.61 T Costa Rica soil EF661181 EF661125 EF661173 EF661071
Usti Calidousti A. calidoustus Varga et al. 2008 CBS 121601 T Netherlands bronchoalveolar lavage fluid of Homo sapiens HE616558 FJ624456 HE616559 MN969061
Deflecti A. deflectus Fennell and Raper 1955 CBS 109.55 T Brazil soil EF652437 EF652261 EF652349 EF652173
Monodiorum A. monodii (Locq.-Lin.) Varga et al. 2011 CBS 435.93 T Chad dung of Agnus FJ531150 FJ531171 FJ531142 MN969082
Usti A. ustus (Bainier) Thom and Church 1926 CBS 261.67 T USA culture contaminant EF652455 EF652279 EF652367 EF652191
outgroup A. flavus Link 1809 CBS 569.65 T South Pacific cellophane AF027863 EF661485 EF661508 EF661440

GenBank accession numbers in bold indicate the newly generated sequences.

Table 2.

Fungal species and sequences used in phylogenetic analyses of Aspergillus subgen. Circumdati.

Section Series Species Strain Locality Substrate ITS BenA CaM RPB2
Flavipedes Flavipedes A. ardalensis A. Nováková et al. 2015 CBS 134372 T Spain soil FR733808 HG916683 HG916725 HG916704
A. capensis Visagie et al. 2014 CBS 138188 T South Africa house dust KJ775550 KJ775072 KJ775279 KP987020
A. flavipes (Bainier and R. Sartory) Thom and Church 1926 NRRL 302 T France dung of dog EF669591 EU014085 EF669549 EF669633
A. iizukae Sugiy 1967 CBS 541.69 T Japan core sample from stratigraphic drilling EF669597 EU014086 EF669555 EF669639
A. micronesiensis Visagie et al. 2014 CBS 138183 T Micronesia house dust KJ775548 KJ775085 KP987067 KP987023
A. neoflavipes Hubka et al. 2015 CBS 260.73 T Thailand forest soil EF669614 EU014084 EF669572 EF669656
A. okavangoensis Visagie and Nkwe 2021 CBS 147420 T Botswana bat guano contaminated soil in cave MW480880 MW480788 MW480706 MW480790
A. suttoniae J.P.Z. Siqueira et al. 2018 FMR 13523 T USA sputum of Homo sapiens LT899487 LT899536 LT899589 LT899644
A. templicola Visagie et al. 2014 CBS 138181 T Mexico church dust KJ775545 KJ775092 KJ775394 KP987017
A. urmiensis Arzanlou et al. 2016 CBS 139558 T Iran soil KP987073 KP987041 KP987056 KP987030
A. xishaensis X.C. Wang and W.Y. Zhuang, sp. nov. ZC108 T China: Hainan sandy soil OM414848 OM475628 OM475632 OM475636
Terrei Terrei A. alabamensis Balajee et al. 2009 CBS 125693 T USA wound of Homo sapiens KP987071 KP987049 EU147583 KP987018
A. aureoterreus Samson et al. 2011 CBS 503.65 T USA soil EF669580 EF669524 EF669538 EF669622
A. citrinoterreus J. Guinea et al. 2015 CBS 138921 T Spain sputum of Homo sapiens KP175260 LN680657 LN680685 MN969155
A. floccosus (Y.K. Shih) Samson et al. 2011 CBS 116.37 T China: Hubei waste cloth KP987086 FJ491714 KP987066 KP987021
A. heldtiae Visagie 2020 PPRI 4229 T South Africa seed of Pennisetum glaucum MK450656 MK450981 MK451518 MK450809
A. hortae (Langeron) C.W. Dodge 1935 CBS 124230 T Brazil ear of Homo sapiens KP987087 FJ491706 KP987054 KP987022
A. neoafricanus Samson et al. 2011 CBS 130.55 T Ghana soil EF669585 EF669516 EF669543 EF669627
A. neoterreus X.C. Wang and W.Y. Zhuang, sp. nov. ZC111 T China: Hainan sandy soil OM414849 OM475629 OM475633 OM475637
A. pseudoterreus S.W. Peterson et al. 2011 CBS 123890 T Argentina soil EF669598 EF669523 EF669556 EF669640
A. terreus Thom 1918 CBS 601.65 T USA soil EF669586 EF669519 EF669544 EF669628
Flavi Flavi A. flavus Link 1809 CBS 569.65 T South Pacific cellophane AF027863 EF661485 EF661508 EF661440

GenBank accession numbers in bold indicate the newly generated sequences.

3. Results

3.1. Phylogenetic Analysis

To determine the positions of the isolates, two combined datasets (BenA + CaM + RPB2) of Aspergillus subgenera Nidulantes and Circumdati were compiled and analyzed. The detailed characteristics of the datasets are listed in Table 3. In the phylogeny of Aspergillus subg. Nidulantes (Figure 1), the strains ZC79 and ZC101 were located in sect. Cavernicolarum and Nidulantes, respectively. The strain ZC79 was sister to the species of ser. Cavernicolarum and Egyptiaci, and a new series was proposed as ser. Hainanici to accommodate it. The strain ZC 101 formed a distinct lineage in ser. Versicolores. As shown in the phylogenetic tree of Aspergillus subg. Circumdati (Figure 2), the strain ZC108 was a member of sect. Flavipedes ser. Flavipedes, and clustered with A. micronesiensis and A. neoflavipes. The strain ZC111 was revealed to be affiliated to sect. Terrei ser. Terrei, and shared a close relationship with A. citrinoterreus.

Table 3.

Detailed characteristics of datasets of Aspergillus.

Subgenus Locus No. of Seq. Length of Alignment (bp) No. of Variable Sites No. of Parsimony-Informative Sites Model for BI
Nidulantes BenA 48 528 292 235
CaM 48 829 477 408
RPB2 47 1014 429 377
combined 48 2371 1198 1020 TIM + I + G
Circumdati BenA 22 541 273 199
CaM 22 589 286 218
RPB2 22 998 301 216
combined 22 2128 860 633 TIM + I + G

Full names of the used models: TIM + I + G (transition model with invariable sites and gamma distribution).

Figure 1.

Figure 1

ML phylogeny of Aspergillus subgen. Nidulantes inferred from combined BenA, CaM and RPB2 dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. *Asterisk denotes 100% bootstrap or 1.00 posterior probability.

Figure 2.

Figure 2

ML phylogeny of Aspergillus subgen. Circumdati inferred from combined BenA, CaM and RPB2 dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. *Asterisk denotes 100% bootstrap or 1.00 posterior probability.

3.2. Taxonomy

Series Hainanici X.C. Wang and W.Y. Zhuang, ser. nov.

Fungal Names: FN570966.

Etymology: Named after Aspergillus hainanicus.

Type: Aspergillus hainanicus X.C. Wang and W.Y. Zhuang.

In Aspergillus subgen. Nidulantes sect. Cavernicolarum.

Diagnosis: Series Hainanici belongs to subgen. Nidulantes sect. Cavernicolarum and is sister to series Cavernicolarum and Egyptiaci (Figure 1). Colonies no growth at 37 °C; conidia en masse greyish black; conidiophores biseriate; stipes short, thick walls, brown; vesicles globose to subglobose; metulae cylindrical to obovate, covering almost a half surface of the vesicle; phialides flask-shaped; conidia large, subglobose, strongly echinulate.

Aspergillus hainanicus X.C. Wang and W.Y. Zhuang, sp. nov. Figure 3.

Figure 3.

Figure 3

Colonial and microscopic morphology of Aspergillus hainanicus (ZC79). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA, MEA, YES and PDA); (BF) Conidiophores; (G) Conidia. Bars: (D) = 15 µm, applies to (B,C); (G) = 10 µm, applies to (E,F).

Fungal Names: FN570967.

Etymology: The specific epithet refers to the type locality.

In Aspergillus subgen. Nidulantes sect. Cavernicolarum ser. Hainanici.

Typification: CHINA. Hainan Province, Sansha City, Xisha District, Xisha Islands, Xuande Islands, Yongxing Island, 16°50′4″ N 112°20′49″ E, in sandy soil (phosphorous lime soil) under unidentified plants, 29 March 2015, Ye-Wei Xia, culture, Kai Chen, ZC79 (holotype HMAS 247855, ex-type strain CGMCC 3.20888).

DNA barcodes: ITS OM414846, BenA OM475626, CaM OM475630, RPB2 OM475634.

Colony diam.: 7 days, 25 °C (unless stated otherwise): CYA 18–20 mm; CYA 37 °C no growth; MEA 16–17 mm; YES 21–22 mm; PDA 16–17 mm.

Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, concave at centers, protuberant at margins, radially sulcate; margins narrow, entire; mycelia white and then buff; texture velutinous; sporulation sparse; conidia en masse greyish black; soluble pigments light brown; exudates tiny, hyaline and clear; reverse yellow to orange, but black at centers and with black sectors. On MEA 25 °C, 7 days: Colonies irregular, protuberant; margins narrow, entire; mycelia white and then cream to light yellow; texture velutinous; sporulation absent; soluble pigments light brown; exudates tiny, hyaline and clear; reverse buff, yellow to orange, but black at centers. On YES 25 °C, 7 days: Colonies nearly circular or irregular, protuberant at centers, radially sulcate; margins narrow, fimbriate; mycelia white; texture velutinous; sporulation sparse; conidia en masse greyish black; soluble pigments greenish-brown; exudates absent; reverse orange to black. On PDA 25 °C, 7 days: Colonies irregular, protuberant; margins narrow, entire; mycelia white and then cream to light yellow; texture velutinous; sporulation absent; soluble pigments yellow; exudates tiny, hyaline and clear; reverse buff, yellow to orange, and with black sectors.

Micromorphology: Conidial heads radiate; stipes short, 55–90 × 4.5–6.0 μm, thick walls, smooth, brown, not septate; vesicles 7.5–13 × 9.0–13 μm, globose to subglobose; biseriate; metulae 5.0–9.0 × 3.0–6.5 μm, cylindrical to obovate, covering almost a half surface of the vesicle; phialides 5.5–8.0 × 3.5–5.0 μm, flask-shaped; conidia 6.0–9.5 μm, subglobose, strongly echinulate.

Note: This species is phylogenetically related to A. californicus, A. cavernicola, A. kassunensis and A. subsessilis of ser. Cavernicolarum and A. egyptiacus of ser. Egyptiaci (Figure 1), but differs from the former four species in its brown stipe and larger, strongly echinulate conidia, and differs from the latter one due to no growth on CYA at 37 °C, slower growth rates on MEA and YES, brown stipe and larger and strongly echinulate conidia (Table 4).

Table 4.

Morphological comparisons of new species and their closely related species.

Species CYA 25 °C (mm) CYA 37 °C (mm) MEA (mm) YES (mm) Conidia Shape Conidia Wall Conidia Size (µm) Reference
A. cavernicola 10–12 no growth 12–13 14–15 subglobose smooth to echinulate 5–6 × 3.5–4.5 [19]
A. californicus 20–24 no growth 19–20 26–27 subglobose to ellipsoidal smooth to finely roughened 3–4.5 × 2.5–4.5 [19]
A. kassunensis 15–16 no growth 18–20 21–22 globose smooth 2–3 [19]
A. subsessilis 16–17 no growth 12–13 18–19 globose smooth 3–4 [19]
A. egyptiacus 13–20 21–24 29–30 32–45 globose to subglobose smooth 4.5–6.5 × 3.5–6 [19]
A. hainanicus 18–20 no growth 16–17 21–22 subglobose strongly echinulate 6–9.5 This study
A. versicolor 28–36 8 21–31 n.a. spherical to subspherical finely roughened 2.5–3.5 [32]
A. qilianyuensis 21–23 no growth 17–20 29–30 subglobose smooth 2–3 This study
A. micronesiensis 22–28 17–25 20–25 35–44 globose to subglobose smooth to finely roughened 2.5–3.5 [33]
A. neoflavipes 30–33 20–22 34–35 n.a. globose to subglobose smooth 2.5–3 [34]
A. xishaensis 19–22 19–21 16–20 25–29 globose to subglobose smooth 3–4 This study
A. citrinoterreus 33–35 n.a. 23–25 n.a. globose to subglobose smooth 2–3 × 1.5–3 [35]
A. neoterreus 26–28 57–58 21–23 37–40 subglobose to broad ellipsoid smooth 2–2.5 This study

Aspergillus neoterreus X.C. Wang and W.Y. Zhuang, sp. Nov. Figure 4.

Figure 4.

Figure 4

Colonial and microscopic morphology of Aspergillus neoterreus (ZC111). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA, MEA, YES and PDA); (BF) Conidiophores; (G) Conidia. Bars: (C) = 20 µm, applies to (B); (E) = 12.5 µm, applies to (D); (F) = 10 µm, applies to (G).

Fungal Names: FN570968.

Etymology: The specific epithet refers to the close relationship with A. terreus.

In Aspergillus subgen. Circumdati sect. Terrei ser. Terrei.

Typification: CHINA. Hainan Province, Sansha City, Xisha District, Xisha Islands, Xuande Islands, Qilianyu Islands, Nanshazhou Island, 16°55′46″ N 112°20′55″ E, in sandy soil (phosphorous lime soil) under unidentified plants, 29 March 2015, Ye-Wei Xia, culture, Kai Chen, ZC111 (holotype HMAS 247856, ex-type strain CGMCC 3.20891).

DNA barcodes: ITS OM414849, BenA OM475629, CaM OM475633, RPB2 OM475637.

Colony diam.: 7 days, 25 °C (unless stated otherwise): CYA 26–28 mm; CYA 37 °C 57–58 mm; MEA 21–23 mm; YES 37–40 mm; PDA 20–22 mm.

Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, slightly protuberant at centers, concentrically sulcate; margins narrow, entire; mycelia white; texture velutinous; sporulation moderately dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse light brown. On CYA 37 °C, 7 days: Colonies nearly circular or irregular, plain, radially sulcate; margins moderately wide, irregular; mycelia white; texture velutinous; sporulation dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse yellow-brown to dark brown. On MEA 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins wide, entire; mycelia white; texture velutinous; sporulation moderately dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse buff to yellow-brown, but light brown at centers. On YES 25 °C, 7 days: Colonies nearly circular, concave at centers, strongly sulcate; margins wide, fimbriate; mycelia white; texture velutinous; sporulation moderately dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse yellow-brown to light brown. On PDA 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins narrow, irregular; mycelia white; texture velutinous; sporulation dense; conidia en masse wheat, yellow-brown to khaki; soluble pigments absent; exudates absent; reverse pink-brown, but greenish-brown at centers.

Micromorphology: Conidial heads radiate; stipes 150–225 × 2.5–7.5 μm, thick walls, smooth, hyaline or blackish, not septate; vesicles 11–16.5 × 8.5–27 μm, subglobose to ellipsoid; biseriate; metulae 6.0–7.5 × 2.0–3.0 μm, cylindrical, covering a half to two-thirds the surface of the vesicle; phialides 7.0–8.5 × 1.5–2.0 μm, acerose; conidia 2.0–2.5 μm, subglobose to broad ellipsoid, smooth.

Note: This species is phylogenetically related to A. citrinoterreus (Figure 2) but differs in slower growth rate on CYA and smaller conidia (Table 4).

Aspergillus qilianyuensis X.C. Wang and W.Y. Zhuang, sp. Nov. Figure 5.

Figure 5.

Figure 5

Colonial and microscopic morphology of Aspergillus qilianyuensis (ZC101). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA, MEA, YES and PDA); (BF) Conidiophores; (G) Conidia. Bars: (D) = 12.5 µm, applies to (B,C); (G) = 10 µm, applies to (E,F).

Fungal Names: FN570969.

Etymology: The specific epithet refers to the type locality.

In Aspergillus subgen. Nidulantes sect. Nidulantes ser. Versicolores.

Typification: CHINA. Hainan Province, Sansha City, Xisha District, Xisha Islands, Xuande Islands, Qilianyu Islands, Nanshazhou Island, 16°55′46″ N 112°20′55″ E, in sandy soil (phosphorous lime soil) under unidentified plants, 29 March 2015, Ye-Wei Xia, culture, Kai Chen, ZC101 (holotype HMAS 247857, ex-type strain CGMCC 3.20889).

DNA barcodes: ITS OM414847, BenA OM475627, CaM OM475631, RPB2 OM475635.

Colony diam.: 7 days, 25 °C (unless stated otherwise): CYA 21–23 mm; CYA 37 °C no growth; MEA 17–20 mm; YES 29–30 mm; PDA 19–20 mm.

Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, protuberant, concentrically and radially sulcate; margins narrow, entire; mycelia white and then pink; texture velutinous; sporulation sparse; conidia en masse light greyish green; soluble pigments absent; exudates absent; reverse buff to pink-brown. On MEA 25 °C, 7 days: Colonies nearly circular, slightly protuberant at central areas; margins wide, entire; mycelia white and becoming yellow; texture velutinous; sporulation moderately dense; conidia en masse greyish green; soluble pigments absent; exudates absent; reverse buff to vivid yellow, but orange-brown at centers. On YES 25 °C, 7 days: Colonies nearly circular, protuberant or concave at centers, concentrically and radially sulcate, deep; margins narrow, entire; mycelia white; texture velutinous; sporulation sparse; conidia en masse light yellow; soluble pigments absent; exudates absent; reverse yellow-brown. On PDA 25 °C, 7 days: Colonies nearly circular, slightly protuberant at central areas; margins wide, entire; mycelia white and then yellow; texture velutinous; sporulation moderately dense; conidia en masse greyish green; soluble pigments absent; exudates absent; reverse buff, yellow-brown to orange-brown.

Micromorphology: Conidial heads radiate; stipes 225–325 × 4.0–8.0 μm, thick walls, smooth, hyaline or blackish, not septate; vesicles 16–20 × 10–18 μm, ellipsoid; biseriate; metulae 5.0–6.0 × 3.0–3.5 μm, cylindrical, covering two-thirds to almost the entire surface of the vesicle; phialides 6.0–8.0 × 2.0–2.5 μm, flask-shaped to acerose; conidia 2.0–3.0 μm, subglobose, smooth.

Note: This species formed a distinct lineage in ser. Versicolores (Figure 1). Morphologically, it differs from the type species of this series, A. versicolor, in slower growth rates on CYA and MEA and smooth and smaller conidia (Table 4).

Aspergillus xishaensis X.C. Wang and W.Y. Zhuang, sp. nov. Figure 6.

Figure 6.

Figure 6

Colonial and microscopic morphology of Aspergillus xishaensis (ZC108). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES and PDA; bottom row left to right, reverse CYA and YES, obverse PDA with 3% NaCl and OA); (BF) Conidiophores; (G) Conidia. Bars: (B) = 20 µm, applies to (C,D); (E) = 15 µm; (F) = 10 µm, applies to (G).

Fungal Names: FN570970.

Etymology: The specific epithet refers to the type locality.

In Aspergillus subgen. Circumdati sect. Flavipedes ser. Flavipedes.

Typification: CHINA. Hainan Province, Sansha City, Xisha District, Xisha Islands, Xuande Islands, Qilianyu Islands, Nanshazhou Island, 16°55′46″ N 112°20′55″ E, in sandy soil (phosphorous lime soil) under unidentified plants, 29 March 2015, Ye-Wei Xia, culture, Kai Chen, ZC108 (holotype HMAS 247858, ex-type strain CGMCC 3.20890).

DNA barcodes: ITS OM414848, BenA OM475628, CaM OM475632, RPB2 OM475636.

Colony diam.: 7 days, 25 °C (unless stated otherwise): CYA 19–22 mm; CYA 37 °C 19–21 mm; MEA 16–20 mm; YES 25–29 mm; PDA 18–22 mm; PDA (3% NaCl) 19–20 mm; OA 19–20 mm.

Colony characteristics: On CYA 25 °C, 7 days: Colonies irregular, protuberant, radially sulcate; margins narrow, entire; mycelia white and then light yellow; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates absent; reverse yellow-brown to light brown. On CYA 37 °C, 7 days: Colonies nearly circular, protuberant at centers, radially sulcate; margins wide, fimbriate; mycelia white and then light yellow; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates absent; reverse yellow-brown to dark brown. On MEA 25 °C, 7 days: Colonies nearly circular or irregular, protuberant; margins narrow, entire; mycelia white and then cream; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates absent; reverse light brown, but buff at margins. On YES 25 °C, 7 days: Colonies nearly circular, protuberant at centers, radially sulcate; margins narrow, entire; mycelia white and then light cream; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates absent; reverse yellow-brown to orange-brown. On PDA 25 °C, 7 days: Colonies nearly circular or irregular, protuberant; margins narrow, entire; mycelia white and then light cream; texture velutinous; sporulation absent; soluble pigments yellow-brown; exudates greenish-yellow, clear; reverse yellow-brown to light brown. On PDA (3% NaCl) 25 °C, 7 days: Colonies oblong, protuberant; margins moderately wide, entire; mycelia cream; texture velutinous; sporulation dense; conidia en masse white to cream; soluble pigments light yellow-brown; exudates absent; reverse yellow-brown to light brown. On OA 25 °C, 7 days: Colonies nearly circular or irregular, protuberant; margins wide, fimbriate; mycelia cream; texture velutinous; sporulation sparse; conidia en masse white to cream; soluble pigments yellow-brown; exudates absent; reverse light yellow, but light brown at centers.

Micromorphology: Conidial heads radiate; stipes long, 700–1400 × 7.5–10 μm, thick walls, smooth, hyaline or blackish, not septate; vesicles 18–35 × 15–35 μm, globose to broad ellipsoid; biseriate; metulae 7.0–11 × 3.5–4.5 μm, cylindrical, covering two thirds to almost the entire surface of the vesicle; phialides 9.0–11.5 × 2.5–3.0 μm, flask-shaped to acerose; conidia 3.0–4.0 μm, globose to subglobose, smooth.

Note: This species is phylogenetically related to A. micronesiensis and A. neoflavipes (Figure 2) but differs from them in slower growth rates on CYA, MEA and YES and larger conidia (Table 4).

4. Discussion

Aspergillus is a large genus with more than 400 accepted species and more than 1000 names. A comprehensive taxonomic treatment of the genus was recently established on the basis of molecular data and morphological characteristics [6]. Six subgenera, twenty-seven sections and seventy-five series were currently accepted, among which five new sections and seventy-three new series were erected. Based on the above treatment, researchers are able to quickly position their materials to specific ranks of series, sections and subgenera. Three of the four new species described in this study were classified into the known series, except for A. hainanicus, for which the new series Hainanici is proposed. Along with future discovery of new taxa, the current classification system may be updated.

In the Flavi, Fumigati, Nigri and Terrei sections of Aspergillus, some species cause the infectious disease aspergillosis, such as the most frequently occurred and well-known pathogen A. fumigatus [36]. In sect. Nidulantes, A. versicolor (Vuill.) Tirab., a close relative of A. qilianyuensis, was isolated from the skin [37] and nails [38] of humans and also invasively infected multiple organs of dogs [39,40]. Aspergillus hongkongensis C.C. Tsang et al. causes onychomycosis [41]. In subgen. Circumdati, A. citrinoterreus J. Guinea et al. and A. suttoniae J.P.Z. Siqueira et al. were isolated from the sputum of humans [35,42], and A. alabamensis Balajee et al. from the wounds of humans [43]. Whether others of these sections are potentially pathogenic requires future investigation.

Tropical islands represent a unique ecosystem. Due to their extremely isolated location and special environmental conditions, some of them are considered as the world’s biodiversity hotspots. Several species of Aspergillus were recorded from similar geographical origins, such as A. griseoaurantiacus Visagie et al. and A. micronesiensis Visagie et al. from Micronesia [33], and A. puulaauensis Jurjević et al. from Hawaii [32]. The four new species were all derived from the soil samples of the Xisha Islands, which seem to exhibit high species diversity. Further explorations on tropical islands are desperately needed, and we certainly expect to find more new fungi there.

Acknowledgments

The authors would like to thank Tai-Hui Li and Ye-Wei Xia (Guangdong Institute of Microbiology) for providing the soil samples and Kai Chen of this institute for providing cultures for this study.

Author Contributions

Conceptualization, W.-Y.Z. and X.-C.W.; methodology, X.-C.W.; software, X.-C.W.; validation, X.-C.W. and W.-Y.Z.; formal analysis, X.-C.W.; investigation, X.-C.W.; resources, X.-C.W. and W.-Y.Z.; data curation, X.-C.W.; writing—original draft preparation, X.-C.W.; writing—review and editing, W.-Y.Z. and X.-C.W.; visualization, X.-C.W.; supervision, W.-Y.Z.; project administration, W.-Y.Z.; funding acquisition, W.-Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This project was supported by the National Natural Science Foundation of China (31750001) and Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDY-SSW-SMC029).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The sequences newly generated in this study have been submitted to the GenBank database.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Frisvad J.C., Moller L.L.H., Larsen T.O., Kumar R., Arnau J. Safety of the fungal workhorses of industrial biotechnology: Update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018;102:9481–9515. doi: 10.1007/s00253-018-9354-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Behera B.C. Citric acid from Aspergillus niger: A comprehensive overview. Crit. Rev. Microbiol. 2020;46:727–749. doi: 10.1080/1040841X.2020.1828815. [DOI] [PubMed] [Google Scholar]
  • 3.Kumar P., Mahato D.K., Kamle M., Mohanta T.K., Kang S.G. Aflatoxins: A global concern for food safety, human health and their management. Front. Microbiol. 2016;7:2170. doi: 10.3389/fmicb.2016.02170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Solairaj D., Legrand N.N.G., Yang Q.Y., Zhang H.Y. Isolation of pathogenic fungi causing postharvest decay in table grapes and in vivo biocontrol activity of selected yeasts against them. Physiol. Mol. Plant Pathol. 2020;110:101478. doi: 10.1016/j.pmpp.2020.101478. [DOI] [Google Scholar]
  • 5.Balajee S.A., Houbraken J., Verweij P.E., Hong S.B., Yaghuchi T., Varga J., Samson R.A. Aspergillus species identification in the clinical setting. Stud. Mycol. 2007;59:39–46. doi: 10.3114/sim.2007.59.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Houbraken J., Kocsube S., Visagie C.M., Yilmaz N., Wang X.C., Meijer M., Kraak B., Hubka V., Bensch K., Samson R.A., et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020;95:5–169. doi: 10.1016/j.simyco.2020.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Sklenar F., Jurjevic Z., Houbraken J., Kolarik M., Arendrup M.C., Jorgensen K.M., Siqueira J.P.Z., Gene J., Yaguchi T., Ezekiel C.N., et al. Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and description of four new species. Stud. Mycol. 2021;99:100120. doi: 10.1016/j.simyco.2021.100120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Singh P., Callicott K.A., Orbach M.J., Cotty P.J. Molecular analysis of S-morphology aflatoxin producers from the United States reveals previously unknown diversity and two new taxa. Front. Microbiol. 2020;11:1236. doi: 10.3389/fmicb.2020.01236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Crous P.W., Wingfield M.J., Chooi Y.H., Gilchrist C.L.M., Lacey E., Pitt J.I., Roets F., Swart W.J., Cano-Lira J.F., Valenzuela-Lopez N., et al. Fungal Planet description sheets: 1042–1111. Persoonia. 2020;44:301–459. doi: 10.3767/persoonia.2020.44.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Correia A.C.R.B., Barbosa R.N., Frisvad J.C., Houbraken J., Souza-Motta C.M. The polyphasic re-identification of a Brazilian Aspergillus section Terrei collection led to the discovery of two new species. Mycol. Prog. 2020;19:885–903. doi: 10.1007/s11557-020-01605-4. [DOI] [Google Scholar]
  • 11.Gilchrist C.L.M., Lacey H.J., Vuong D., Pitt J.I., Lange L., Lacey E., Pilgaard B., Chooi Y.H., Piggott A.M. Comprehensive chemotaxonomic and genomic profiling of a biosynthetically talented Australian fungus, Aspergillus burnettii sp. nov. Fungal Genet. Biol. 2020;143:103435. doi: 10.1016/j.fgb.2020.103435. [DOI] [PubMed] [Google Scholar]
  • 12.Al-Bedak O.A., Moubasher A.H., Ismail M.A., Mohamed R.A. Aspergillus curvatus, a new species in section Circumdati isolated from an alkaline water of Lake Khadra in Wadi-El-Natron, Egypt. Asian J. Mycol. 2020;3:325–334. doi: 10.5943/ajom/3/1/7. [DOI] [Google Scholar]
  • 13.Al-Bedak O.A., Moubasher A.H. Aspergillus gaarensis, a new addition to section Circumdati from soil of Lake El-Gaar in Wadi-El-Natron, Egypt. Stud. Fungi. 2020;5:59–65. doi: 10.5943/sif/5/1/5. [DOI] [Google Scholar]
  • 14.Boonmee S., Wanasinghe D.N., Calabon M.S., Huanraluek N., Chandrasiri S.K.U., Jones G.E.B., Rossi W., Leonardi M., Singh S.K., Rana S., et al. Fungal diversity notes 1387–1511: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Divers. 2021;111:1–335. doi: 10.1007/s13225-021-00489-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Doilom M., Guo J.W., Phookamsak R., Mortimer P.E., Karunarathna S.C., Dong W., Liao C.F., Yan K., Pem D., Suwannarach N., et al. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: Four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front. Microbiol. 2020;11:585215. doi: 10.3389/fmicb.2020.585215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Zhang Z.F., Zhou S.Y., Eurwilaichitr L., Ingsriswang S., Raza M., Chen Q., Zhao P., Liu F., Cai L. Culturable mycobiota from Karst caves in China II, with descriptions of 33 new species. Fungal Divers. 2021;106:29–136. doi: 10.1007/s13225-020-00453-7. [DOI] [Google Scholar]
  • 17.Sun B.D., Huang P.P., Wei H.L., Cai W.J., Wang L., Liu S.K., Jiang X.Z., Chen A.J. Aspergillus telluris, a new soil derived species belonging to Aspergillus subgenus Polypaecilum. Phytotaxa. 2020;455:137–151. doi: 10.11646/phytotaxa.455.2.5. [DOI] [Google Scholar]
  • 18.Da Silva J.J., Iamanaka B.T., Ferranti L.S., Massi F.P., Taniwaki M.H., Puel O., Lorber S., Frisvad J.C., Fungaro M.H.P. Diversity within Aspergillus niger clade and description of a new species: Aspergillus vinaceus sp. nov. J. Fungi. 2020;6:371. doi: 10.3390/jof6040371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Sun B.D., Houbraken J., Frisvad J.C., Jiang X.Z., Chen A.J., Samson R.A. New species in Aspergillus section Usti and an overview of Aspergillus section Cavernicolarum. Int. J. Syst. Evol. Microbiol. 2020;70:5401–5416. doi: 10.1099/ijsem.0.004425. [DOI] [PubMed] [Google Scholar]
  • 20.Visagie C.M., Houbraken J., Frisvad J.C., Hong S.B., Klaassen C.H., Perrone G., Seifert K.A., Varga J., Yaguchi T., Samson R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014;78:343–371. doi: 10.1016/j.simyco.2014.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Wang X.C., Chen K., Xia Y.W., Wang L., Li T.H., Zhuang W.Y. A new species of Talaromyces (Trichocomaceae) from the Xisha Islands, Hainan, China. Phytotaxa. 2016;267:187–200. doi: 10.11646/phytotaxa.267.3.2. [DOI] [Google Scholar]
  • 22.Wang X.C., Chen K., Qin W.T., Zhuang W.Y. Talaromyces heiheensis and T. mangshanicus, two new species from China. Mycol. Prog. 2017;16:73–81. doi: 10.1007/s11557-016-1251-3. [DOI] [Google Scholar]
  • 23.Wang X.C., Chen K., Zeng Z.Q., Zhuang W.Y. Phylogeny and morphological analyses of Penicillium section Sclerotiora (Fungi) lead to the discovery of five new species. Sci. Rep. 2017;7:8233. doi: 10.1038/s41598-017-08697-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Zhang Z.K., Wang X.C., Zhuang W.Y., Cheng X.H., Zhao P. New species of Talaromyces (Fungi) isolated from soil in southwestern China. Biology. 2021;10:745. doi: 10.3390/biology10080745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98. [Google Scholar]
  • 27.Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. [DOI] [PubMed] [Google Scholar]
  • 29.Miller M.A., Pfeiffer W., Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; Proceedings of the Gateway Computing Environments Workshop (GCE); New Orleans, LA, USA. 14 November 2010; pp. 1–8. [Google Scholar]
  • 30.Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Posada D., Crandall K.A. MODELTEST: Testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. [DOI] [PubMed] [Google Scholar]
  • 32.Jurjevic Z., Peterson S.W., Horn B.W. Aspergillus section Versicolores: Nine new species and multilocus DNA sequence based phylogeny. IMA Fungus. 2012;3:59–79. doi: 10.5598/imafungus.2012.03.01.07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Visagie C.M., Hirooka Y., Tanney J.B., Whitfield E., Mwange K., Meijer M., Amend A.S., Seifert K.A., Samson R.A. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud. Mycol. 2014;78:63–139. doi: 10.1016/j.simyco.2014.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Hubka V., Novakova A., Kolarik M., Jurjevic Z., Peterson S.W. Revision of Aspergillus section Flavipedes: Seven new species and proposal of section Jani sect. nov. Mycologia. 2015;107:169–208. doi: 10.3852/14-059. [DOI] [PubMed] [Google Scholar]
  • 35.Guinea J., Sandoval-Denis M., Escribano P., Pelaez T., Guarro J., Bouza E. Aspergillus citrinoterreus, a new species of section Terrei isolated from samples of patients with nonhematological predisposing conditions. J. Clin. Microbiol. 2015;53:611–617. doi: 10.1128/JCM.03088-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Latge J.P., Chamilos G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019;33:e00140-18. doi: 10.1128/CMR.00140-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Steele A.E. A case of infection with Aspergillus versicolor. Boston Med. Surg. J. 1926;195:536–538. doi: 10.1056/NEJM192609091951105. [DOI] [Google Scholar]
  • 38.Torres-Rodriguez J.M., Madrenys-Brunet N., Siddat M., Lopez-Jodra O., Jimenez T. Aspergillus versicolor as cause of onychomycosis: Report of 12 cases and susceptibility testing to antifungal drugs. J. Eur. Acad. Dermatol. Venereol. 1998;11:25–31. doi: 10.1111/j.1468-3083.1998.tb00949.x. [DOI] [PubMed] [Google Scholar]
  • 39.Zhang S., Corapi W., Quist E., Griffin S., Zhang M. Aspergillus versicolor, a new causative agent of canine disseminated aspergillosis. J. Clin. Microbiol. 2012;50:187–191. doi: 10.1128/JCM.05388-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Maniam R., Selvarajah G.T., Mazlan M., Lung Than L.T. Pulmonary papillary adenocarcinoma with Aspergillus versicolor infection in a dog. Med. Mycol. Case Rep. 2018;19:25–29. doi: 10.1016/j.mmcr.2017.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Tsang C.C., Hui T.W., Lee K.C., Chen J.H., Ngan A.H., Tam E.W., Chan J.F., Wu A.L., Cheung M., Tse B.P., et al. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing. Diagn. Microbiol. Infect. Dis. 2016;84:125–134. doi: 10.1016/j.diagmicrobio.2015.10.027. [DOI] [PubMed] [Google Scholar]
  • 42.Siqueira J.P.Z., Wiederhold N., Gene J., Garcia D., Almeida M.T.G., Guarro J. Cryptic Aspergillus from clinical samples in the USA and description of a new species in section Flavipedes. Mycoses. 2018;61:814–825. doi: 10.1111/myc.12818. [DOI] [PubMed] [Google Scholar]
  • 43.Balajee S.A., Baddley J.W., Peterson S.W., Nickle D., Varga J., Boey A., Lass-Florl C., Frisvad J.C., Samson R.A., the ISHAM Working Group on A. terreus Aspergillus alabamensis, a new clinically relevant species in the section Terrei. Eukaryot. Cell. 2009;8:713–722. doi: 10.1128/EC.00272-08. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The sequences newly generated in this study have been submitted to the GenBank database.


Articles from Journal of Fungi are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES