Skip to main content
Journal of Fungi logoLink to Journal of Fungi
. 2022 Feb 22;8(3):218. doi: 10.3390/jof8030218

Exploring the Relationships between Four New Species of Boletoid Fungi from Northern China and Their Related Species

Yang Wang 1,2, Yong-Lan Tuo 2, Dong-Mei Wu 3, Neng Gao 3, Zhen-Hao Zhang 2, Gu Rao 2, Xiao-Min Wang 4, Jing Wang 5, Dan Dai 6, Yu Li 2,*, Bo Zhang 2,*
Editors: Vladimír Antonín, Hana Sevcikova
PMCID: PMC8955560  PMID: 35330220

Abstract

The family Boletaceae primarily represents ectomycorrhizal fungi, which play an essential ecological role in forest ecosystems. Although the Boletaceae family has been subject to a relatively global and comprehensive history of work, novel species and genera are continually described. During this investigation in northern China, many specimens of boletoid fungi were collected. Based on the study of their morphology and phylogeny, four new species, Butyriboletus pseudoroseoflavus, Butyriboletus subregius, Tengioboletus subglutinosus, and Suillellus lacrymibasidiatus, are introduced. Morphological evidence and phylogenetic analyses of the single or combined dataset (ITS or 28S, rpb1, rpb2, and tef1) confirmed these to be four new species. The evidence and analyses indicated the new species’ relationships with other species within their genera. Detailed descriptions, color photographs, and line drawings are provided. The species of Butyriboletus in China were compared in detail and the worldwide keys of Tengioboletus and Suillellus were given.

Keywords: Boletales, biodiversity, molecular analyses, taxonomy

1. Introduction

Boletaceae Chevall. [1], a family with more than 70 genera, is one of the most prominent and diverse among the basidiomycetes [2]. It is mainly characterized by being tubulose with infrequent lamellate or loculate hymenophora, and by a fleshy context. Most Boletaceae species have value for humans and are essential for mutualistic symbiosis with trees [3,4,5,6]. Although the family Boletaceae was established nearly two centuries ago, the species diversity of the family increased significantly in the last few decades [7,8,9,10,11,12,13,14,15,16,17,18,19]. Because the morphology of Boletaceae has convergent characteristics, the classification did not correspond to the phylogeny of Boletaceae for a long time. With the development of molecular biology, the method of genealogical concordance phylogenetic species recognition (GCPSR) [20] was used to identify species of fungi, resolved some doubts about the status of taxa, and contributed to a better understanding of the relationships of the genera in this family [5,21,22]. In the past two decades, new genera and new species have rapidly increased, and the evolution of ectomycorrhizas of Boletales was gradually disclosed [23,24].

In China, the family Boletaceae has continued to receive increasing attention from mycologists [5,25,26,27,28,29,30,31,32]. However, the previous studies were focused on southern China, and the species diversity remained unclear in northern China. During previous field collection in the north of China, we obtained many specimens. Based on our analyses of their morphology and phylogeny, we propose four new species: Butyriboletus pseudoroseoflavus, Butyriboletus subregius, Tengioboletus subglutinosus, and Suillellus lacrymibasidiatus.

Butyriboletus was erected by Arora et al. [33] to accommodate the Boletus sect. Appendiculati. It is characterized by a reddish to brown pileus and a yellow hymenophore, usually staining blue when bruised. Five species have been described in China, i.e., Bu. huangnianlaii N.K. Zeng, H. Chai & Zhi Q. Liang [28], Bu. pseudospeciosus Kuan Zhao & Zhu L. Yang [5], Bu. roseoflavus (Hai B. Li & Hai L. Wei), D. Arora & J.L. Frank [33], Bu. sanicibus D. Arora & J.L. Frank [33], and Bu. yicibus D. Arora & J.L. Frank [32].

Tengioboletus was established by Wu et al. [5], including three species: T. glutinosus G. Wu & Zhu L. Yang, T. reticulatus G. Wu & Zhu L. Yang, and T. fujianensis N.K. Zeng & Zhi Q. Liang [5,34]. Tengioboletus can be distinguished easily from other Boletaceae genera by combining the following characteristics: a yellow context; hymenophore that change color when injured; tubes that are concolorous with the surface; cystidia that are scattered; subfusiform-ventricose or clavate shape; and an epithelium to ixotrichodermium pileipellis.

Suillellus, typified by Boletus luridus Schaeff, was established by Murrill in 1909 [7]. According to Vizzini et al. [13], Suillellus s.str. is characterized by basidiomata that are usually slender, stipes that are cylindrical and sometimes covered with reticulation, pileus that are reddish brown to olivaceous and turn to blue when bruised, the presence or absence of Bataille’s line, and a context that is reddish in the stipe base and bluing when exposed to air and positive amyloid reaction.

2. Materials and Methods

2.1. Samplings and Morphological Analyses

Materials were collected from Jilin province and the Xinjiang Uygur Autonomous Region, China. Voucher specimens were deposited in the Herbarium of Mycology of the Jilin Agriculture University (HMJAU). Descriptions of the colors of basidiomata used color coding from Kornerup and Wanscher [35]. The micro-morphological structures were performed in a 5% KOH solution and then in a 1% Congo Red or Melzer’s reagent solution. The amyloid reaction was tested following Imler’s procedure [36,37]. The abbreviations for basidiospore measurements (n/m/p) indicate “n” basidiospores from “m” basidiomata of “p” specimens. The sizes of basidiospores are given as (a) b–m–c (d), where “a” is the smallest value, “d” is the largest value, “m” is the average value point, and “b–c” covers a minimum of 95% of the values. “Q” stands for the ratio of the length and the width of the basidiospores and “Q ± av” stands for for the average Q of all basidiospores ± sample standard deviation. The scanning electron microscope (SEM) was used to observe the ultrastructure of the spores.

2.2. DNA Extraction, PCR Amplification, and Sequencing

Genomic DNA was extracted from dried specimens, using the NuClean Plant Genomic DNA kit (CWBIO). For the amplification of ITS, 28S, rpb1, rpb2, and tef1, we used primer pairs ITS1/4, LROR/LR5, RPB1-B-F/RPB1-B-R, RPB2-B-F1/RPB2-B-R, and 983F/1567R, respectively [5,22,25,38,39,40,41,42]. PCR amplification procedures were set to refer to Zhang et al. [43], White et al. [39], and Kuo and Ortiz-Santana [44]. Then, PCR productions were sent to Sangon Biotech Co. Ltd. (Shanghai, China) to be directly sequenced using the ABI 3730xl DNA analyzer.

2.3. Data Analysis

Newly generated sequences were uploaded to NCBI (https://www.ncbi.nlm.nih.gov/, accessed on 10 January 2022), as shown in Table 1, with other similar sequences downloaded from the NCBI and UNITE (https://unite.ut.ee/, accessed on 10 January 2022) datasets. DNA sequences were aligned and manually modified using Bioedit v7.1.3 [45]. In the multi-locus dataset (28S + rpb1 + rpb2 + tef1) of Tengioboletus, 894 bp for 28S, 758 bp for rpb1, 710 bp for rpb2, and 638 bp for tef1, and in the four-locus dataset (tef1 + 28S + rpb2 + ITS) of Butyriboletus, 730 bp for tef1, 863 bp for 28S, 834 bp for rpb2, and 809 bp for ITS. The data used for phylogenetic analyses for Suillellus included the ITS dataset and a multi-locus dataset (tef1 + 28S + rpb1 + rpb2), For the multi-locus dataset, 907 bp for 28S, 791 bp for rpb1, 719 bp for rpb2, and 631 bp for tef1. The best models of the multi-locus datasets were searched via PartitionFinder 2 [46]. Meanwhile, the best model of the ITS dataset was searched via Modelfinder [47]. Phylogenetic analyses were carried out using the maximum likelihood method (ML) and the Bayes inference (BI) method. The models employed for each of the four loci of Tengioboletus, and Butyriboletus were GTR + I + G for 28S, SYM + G for rpb1, K80 + G for rpb2, SYM + I + G for tef1, and GTR + I + G for ITS, GTR + I + G for 28S, K80 + G for rpb2, SYM + I + G for tef1, respectively. For the multi-locus dataset of Suillellus, the best models for each locus were K80 + I + G for rpb1 and SYM + I + G for 28S, rpb2, and tef1. In the ITS dataset of Suillellus, the best models for ML analysis and BI analyses were K2P + I + G4. For ML analyses, the datasets were analyzed using IQ-TREE [48] under an ultrafast bootstrap, with 5000 replicates. For BI analyses, the multi-locus datasets were analyzed using MrBayes 3.2.6 [49], running in a total of 2,000,000 generations, and sampled every 1000 generations. The initial 25% of the sampled data were discarded as burn-in. Other parameters were kept at their default settings.

Table 1.

Information of DNA sequences used to reconstruct phylogenetic trees. Sequences newly generated in this study are indicated in bold.

Taxon Voucher ID ITS 28S TEF1 RPB1 RPB2 References
Tengioboletus glutinosus HKAS53425 KF112341 KF112204 KF112578 KF112800 [22]
T. glutinosus HKAS53452 KT990655 KT990844 KT990994 KT990480 [5]
T. reticulatus HKAS53426 KF112491 KF112313 KF112649 KF112828 [22]
T. reticulatus HKAS52241 KT990657 KT990845 KT990995 KT990481 [5]
T. reticulatus HKAS53453 KT990656 KT990846 KT990482 [5]
T. funjianensis HKAS76661 KF112342 KF112205 KF112801 [22]
T. funjianensis HKAS77869 KT990658 KT990847 KT990996 KT990483 [5]
T. subglutinosus HMJAU59034 (T286) OL588198 OL739119 OL739121 this study
T. subglutinosus HMJAU59035 (T293) OL588197 OL739120 OL739122 OL739118 this study
Porphyrellus porphyrosporus MB97-023 DQ534643 GU187734 GU187475 GU187800 [50]
P. porphyrosporus HKAS76671 KF112482 KF112243 KF112611 KF112718 [22]
Tylopilus sp. HKAS50211 KT990552 KT990752 KT990920 KT990389 [22]
Tylopilus sp. HKAS59826 KT990558 [5]
Tylopilus sp. HKAS90198 KT990559 [5]
Strobilomyces atrosquamosus HKAS55368 KT990648 KT990839 KT990989 KT990476 [5]
S. atrosquamosus HKAS78563 KT990649 KT990833 KT990983 KT990470 [5]
S. echinocephalus HKAS59420 KF112463 KF112256 KF112600 KF112810 [22]
P. aff. alboater HKAS55375 KT990622 KT990816 KT990969 [5]
P. nigropurpureus HKAS74938 KF112466 KF112246 KF112763 [22]
P. nigropurpureus HKAS52685 KT990627 KT990821 KT990973 KT990459 [5]
P. nigropurpureus HKAS53370 KT990628 KT990822 KT990974 KT990460 [5]
P. holophaeus HKAS50508 KF112465 KF112244 KF112553 [22]
P. holophaeus HKAS74894 KF112474 KF112245 KF112554 [22]
P. castaneus HKAS63076 KT990548 KT990749 KT990916 KT990386 [5]
P. castaneus HKAS52554 KT990697 KT990883 KT991026 KT990502 [5]
P. orientifumosipes HKAS75078 KF112481 KF112242 KF112717 [22]
P. orientifumosipes HKAS53372 KT990629 KT990823 KT990975 KT990461 [5]
Boletus bainiugan HKAS52235 KF112457 KF112203 KF112587 KF112705 [22]
B. bainiugan HKAS55393 JN563852 JN563868 [51]
B. fagacicola HKAS55975 JN563853 JN563879 [51]
B. fagacicola HKAS71347 JQ172790 JQ172791 [51]
Xanthoconium affine NY00815399 (REH8660) KT990661 KT990850 KT990999 KT990486 [5]
X. porophyllum HKAS90217 KT990662 KT990851 KT991000 KT990487 [5]
Baorangia pseudocalopus HKAS63607 KF112355 KF112167 [22]
Ba. pseudocalopus HKAS75081 KF112356 KF112168 [22]
Butyriboletus abieticola Arora11087 KC184412 KC184413 [33]
Bu. appendiculatus Bap1 KJ419923 AF456837 JQ327025 [52]
Bu. appendiculatus BR50200893390-25 KT002598 KT002609 KT002633 [53]
Bu. appendiculatus BR50200892955-50 KJ605668 KJ605677 KJ619472 KP055030 [54]
Bu. appendiculatus MB000286 KT002599 KT002610 KT002634 [53]
Bu. autumniregius Arora11108 KC184423 KC184424 [33]
Bu. brunneus NY00013631 KT002600 KT002611 KT002635 [53]
Bu. fechtneri AT2003097 KC584784 KF030270 [21]
Exsudoporus frostii JLF2548 KC812303 KC812304 [33]
E. frostii NY815462 JQ924342 KF112164 KF112675 [22]
E. floridanus BOS 617, BZ 3170 MN250222 MK601725 MK721079 MK766287 [43]
Bu. hainanensis N.K. Zeng 1197 (FHMU 2410) KU961653 KU961651 KU961658 [32]
Bu. hainanensis N.K. Zeng 2418 (FHMU 2437) KU961654 KU961652 KU961656 KX453856 [32]
Bu. huangnianlaii N.K. Zeng 3245 (FHMU 2206) MH885350 MH879688 MH879717 MH879740 [28]
Bu. huangnianlaii N.K. Zeng 3246 (FHMU 2207) MH885351 MH879689 MH879718 MH879741 [28]
Bu. peckii 3959 JQ326999 JQ327026 [55]
Bu. persolidus Arora11110 KC184444 [33]
Bu. primiregius DBB00606 KC184451 [33]
Bu. fuscoroseus BR50201618465-02 KT002602 KT002613 KT002637 [53]
Bu. fuscoroseus BR50201533559-51 KT002603 KT002614 KT002638 [53]
Bu. pseudospeciosus HKAS59467 KF112331 KF112176 KF112672 [22]
Bu. pseudospeciosus HKAS63513 KT990541 KT990743 KT990380 [5]
Bu. pseudospeciosus HKAS63596 KT990542 KT990744 KT990381 [5]
Bu. pseudospeciosus N.K. Zeng 2127 (FHMU 1391) MH885349 MH879687 MH879716 [28]
Bu. fuscoroseus MG383a KC184458 [33]
Bu. pulchriceps DS4514 KF030261 KF030409 [21]
Bu. pulchriceps R. Chapman 0945 KT002604 KT002615 KT002639 [53]
Bu. querciregius Arora11100 KC184461 [33]
Bu. regius MB000287 KT002605 KT002616 KT002640 [53]
Bu. regius MG408a KC584789 KC584790 [33]
Bu. regius PRM:923465 KJ419920 KJ419931 [56]
Bu. roseoflavus Arora11054 KC184434 KC184435 [33]
Bu. roseoflavus HKAS63593 KJ909517 KJ184559 KJ184571 [53]
Bu. roseoflavus HKAS54099 KJ909519 KF739665 KF739779 [53]
Bu. roseoflavus N.K. Zeng 2123 (FHMU 1387) MH885348 MH879686 MH879715 [28]
Bu. pseudoroseoflavus HMJAU59470 (T274) OL604164 OL587853 OL739124 OL739126 this study
Bu. pseudoroseoflavus HMJAU59471 (R383) OL604165 OL587852 OL739123 OL739125 this study
Bu. Roseopurpureus E.E. Both3765 KT002606 KT002617 KT002641 [53]
Bu. Roseopurpureus JLF2566 KC184466 KC184467 [33]
Bu. Roseopurpureus MB06-059 KC184464 KF030262 KF030410 [21]
Bu. sanicibus Arora99211 KC184469 KC184470 [33]
Bu. subregius HMJAU60200 (T95) OM237336 OM237339 OM285111 OM285109 this study
Bu. subregius HMJAU60201 (T198) OM237337 OM237340 OM285112 OM285110 this study
Butyriboletus sp. MHHNU7456 KT990539 KT990741 KT990378 [5]
Butyriboletus sp. HKAS52525 KF112337 KF112163 KF112671 [22]
Butyriboletus sp. HKAS57774 KF112330 KF112155 KF112670 [22]
Bu. hainanensis HKAS59814 KF112336 KF112199 KF112699 [22]
Butyriboletus yicibus HKAS63528 KF112332 KF112156 KF112673 [22]
Bu. Subappendiculatus MB000260 KT002607 KT002618 KT002642 [53]
Bu. subsplendidus HKAS52661 KF112339 KF112169 KF112676 [5]
Bu. taughannockensis 263101 MH257559 MH236172
Bu. taughannockensis 250839 MH234472 MH234473
Bu. taughannockensis 252208 MH236100 MH236099
Bu. yicibus Arora9727 KC184474 KC184475 [33]
Bu. yicibus HKAS57503 KT002608 KT002620 KT002644 [53]
Bu. yicibus HKAS68010 KJ909521 KT002619 KT002643 [53]
Gymnogaster boletoides NY01194009 (REH9455) KT990572 KT990768 KT990406 [5]
Rugiboletus brunneiporus HKAS83209 KM605134 KM605144 KM605168 [27]
R. extremiorientalis HKAS63635 KF112403 KF112198 KF112720 [22]
Crocinoboletus laetissimus HKAS50232 KT990567 KT990762 KT990925 [5]
C. laetissimus HKAS59701 KF112436 KF112711 [22]
C. rufoaureus HKAS53424 KF112435 KF112206 KF112533 KF112710 [22]
C. rufoaureus HKAS59820 KF112434 KF112532 KF112709 [22]
Cyanoboletus brunneoruber HKAS63504 KF112368 KF112194 KF112531 KF112702 [22]
Cy. brunneoruber HKAS80579 (1) KT990568 KT990763 KT990926 KT990401 [5]
Cy. brunneoruber HKAS80579 (2) KT990569 KT990764 KT990927 KT990402 [5]
Cy. instabilis HKAS59554 KF112412 KF112186 KF112528 KF112698 [22]
Cy. pulverulentus 9606 KF030313 KF030418 KF030364 [21]
Baorangia pseudocalopus HKAS63607 KF112355 KF112167 KF112519 KF112677 [22]
Ba. pseudocalopus HKAS75081 KF112356 KF112168 KF112520 KF112678 [22]
Lanmaoa angustispora HKAS74765 KF112322 KF112159 KF112521 KF112680 [22]
L. angustispora HKAS74752 KM605139 KM605154 KM605166 KM605177 [27]
L. angustispora HKAS74759 KM605140 KM605155 KM605167 KM605178 [27]
L. asiatica HKAS54094 KF112353 KF112161 KF112522 KF112682 [22]
L. asiatica HKAS63516 KT990584 KT990780 KT990935 KT990419 [5]
L. fragrans 18555 JF907800
Neoboletus brunneissimus HKAS52660 KF112314 KF112143 KF112492 KF112650 [22]
N. hainanaensis HKAS63515 KT990614 KT990808 KT990964 KT990449 [5]
N. ferrugineus HKAS77617 KT990595 KT990788 KT990943 KT990430 [5]
N. ferrugineus HKAS77718 KT990596 KT990789 KT990944 KT990431 [5]
N. flavidus HKAS59443 KU974139 KU974136 KU974142 KU974144 [5]
N. flavidus HKAS58724 KU974140 KU974137 KU974143 KU974145 [5]
Porphyrellus castaneus HKAS52554 KT990697 KT990883 KT991026 KT990502 [5]
P. castaneus HKAS63076 KT990548 KT990749 KT990916 KT990386 [5]
P. castaneus HKAS68575 KT990560 [5]
P. holophaeus HKAS59407 KT990708 KT990888 KT991030 KT990506 [5]
P. nigropurpureus HKAS52685 KT990627 KT990821 KT990973 KT990459 [5]
P. nigropurpureus HKAS53370 KT990628 KT990822 KT990974 KT990460 [5]
P. orientifumosipes HKAS75078 KF112481 KF112242 KF112717 [22]
P. orientifumosipes HKAS53372 KT990629 KT990823 KT990975 KT990461 [5]
Rubroboletus dupainii JAM0607 KF030413 KF030361 [21]
R. latisporus HKAS63517 KP055022 KP055019 KP055025 KP055028 [25]
R. latisporus HKAS80358 KP055023 KP055020 KP055026 KP055029 [25]
R. rhodosanguineus 4252 KF030252 KF030412 [21]
R. rhodoxanthus HKAS84879 KT990637 KT990831 KT990981 KT990468 [5]
R. sinicus HKAS68620 KF112319 KF112146 KF112504 KF112661 [22]
R. sinicus HKAS56304 KJ605673 KJ619483 KJ619482 KP055031 [54]
Suillellus amygdalinus 112605ba JQ326996 JQ327024 KF030360 [55]
S. amygdalinus NY00035656 (Thiers54483) KT990650 KT990840 KT990990 KT990477 [5]
S. subamygdalinus HKAS57262 KF112316 KF112174 KF112501 KF112660 [22]
S. subamygdalinus HKAS53641 KT990651 KT990841 KT990991 KT990478 [5]
S. subamygdalinus HKAS57953 KT990652 KT990842 KT990992 [5]
S. subamygdalinus HKAS74745 KT990653 KT990843 KT990993 KT990479 [5]
S. lacrymibasidiatus HMJAU60202 (W3194) OM237315 OM230174 OM285117 OM285113 OM285115 this study
S. lacrymibasidiatus HMJAU60203 (W3229) OM237338 OM230172 OM285116 OM285114 this study
Sutorius eximius REH9400 JQ327004 JQ327029 [55]
Su. eximius HKAS52672 KF112399 KF112207 KF112584 KF112802 [22]
Su. luridiformis AT1998054 UDB000658
Tylopilus alpinus HKAS55438 KF112404 KF112191 KF112538 KF112687 [22]
Ty. argillaceus HKAS90201 KT990588 KT990783 [5]
Ty. argillaceus HKAS90186 KT990589 KT990784 KT990424 [5]
Ty. atripurpureus HKAS50208 KF112472 KF112283 KF112620 KF112799 [22]
Ty. badiceps MB03-052 KF030336 [21]
Ty. badiceps 78206 KF030335 KF030429 [21]
Veloporphyrellus alpinus HKAS68301 JX984538 JX984550 [57]
V. alpinus HKAS57490 KF112380 KF112209 KF112555 KF112733 [22]
V. conicus BZ2408 JX984545 [57]
V. conicus BZ1670 JX984543 JX984555 [57]
V. gracilioides HKAS53590 KF112381 KF112210 KF112556 KF112734 [22]
Zangia citrina HKAS52677 HQ326940 HQ32687 [58]
Z. citrina HKAS52684 HQ326941 HQ326872 [58]
Z. erythrocephala HKAS52843 HQ326943 [58]
Z. erythrocephala HKAS52844 HQ326944 [58]
Z. olivaceobrunnea HKAS52275 HQ326947 HQ326875 [58]
Z. roseola HKAS75046 KF112414 KF112269 KF112579 KF112791 [22]
S. luridus IB2004270 EF644104 [59]
S. luridus 18902 JF907802 [60]
S. luridus 18182 JF907793 [60]
S. luridus Blu3 AY278765 [61]
S. luridus AMB12636 KC734542 [13]
S. luridus AMB12638 KC734544 [13]
S. luridus TL-6877 AJ889930
S. luridus TL-6877 UDB000077
S. luridus 1968 AY278766 [61]
S. luridus BL2-VII-10 JQ685714 [61]
S. luridus AT-04 UDB002401
S. luridus UP12 DQ658866 [62]
S. luridus 17696 JF907789 [60]
S. luridus BL1-VII-09 JQ685715
S. luridus MA-Fungi 47706 AJ419191 [63]
S. mendax AMB12632 KC734547 [13]
S. mendax AMB12633 KC734548 [13]
S. mendax AMB12634 KC734543 [13]
S. mendax AMB12635 KC734545 [13]
S. mendax AMB12637 KC734540 [13]
S. mendax AMB12640 KC734541 [13]
Boletus luridus UF107 HM347662
B. amygdalinus src491 DQ974705 [64]
B. comptus 17827 JF907791 [60]
B. comptus AMB12639 KC734539 [13]
B. queletii 17196 JF907784 [60]
B. queletii 17208 JF907785 [60]
B. queletii AMB12641 KC734546 [13]
B. queletii JV01-231 UDB000760
N. erythropus MA-Fungi 47702 AJ419188 [63]
N. erythropus BOER_TO_2 (AAM630/06) FM958177
N. erythropus UF278 HM347644
N. erythropus UF276 HM347643
N. erythropus UF269 HM347665
N. erythropus DG05-54 UDB001523
N. erythropus SU46 DQ131633 [65]
N. erythropus SU47 DQ131634 [65]
N. erythropus Daniels 582 AJ496595 [63]
Caloboletus calopus AT1998059 UDB000659
Ca. radicans TUF106003 UDB003224
Bu. fuscoroseus AH96025 UDB000649
Bu. fuscoroseus AT1996017 UDB000652
Bu. fechtneri AT2003097 UDB000703 [21]
Imperator rhodopurpureus AT1996058 UDB000654
R. pulchrotinctus GS0860 UDB000407
R. satanas AT1998051 UDB000415
R. rubrosanguineus GS0405 UDB000410
R. rhodoxanthus AT2000182 UDB001116
Cyanoboletus pulverulentus RT00004 EU819502
Cyanoboletus pulverulentus AH97030 UDB000408 [66]
B. aestivalis AT2004040 UDB001113
B. aereus AT2000198 UDB000943

3. Results

3.1. Molecular Phylogeny

The four-locus dataset (28S + rpb1 + rpb2 + tef1) of Tengioboletus (Supplementary File S1) contained 33 sequences and 3000 bp nucleotide sites. The alignment was submitted to TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S29030, accessed on 15 January 2022). Because the ML tree’s topology was the same as the BI tree’s topology, only the ML tree was shown (Figure 1). Xanthoconium affine (Peck) Singer and Xanthoconium porophyllum G. Wu & Zhu L. Yang were chosen as outgroups. The phylogenetic tree showed that two T. subglutinosus sequences formed an independent lineage, with bootstrap proportions (BP) = 100 and posterior probability (PP) = 1, and formed a sister group with T. glutinosus (BP = 100, PP = 1).

Figure 1.

Figure 1

Phylogenetic analysis of Tengioboletus inferred from ML analysis. BP value (>70) and PP value (>8) are shown around branches. Our new species sequences are indicated in bold.

The four-locus dataset (ITS + 28S + tef1 + rpb2) of Butyriboletus (Supplementary File S2) consisted of 58 taxa and 3011 nucleotide sites (Figure 2). The alignment was submitted to TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S29034, accessed on 15 January 2022). Baorangia pseudocalopus (Hongo) G. Wu & Zhu L. Yang was chosen as the outgroup. The phylogram indicated our collections—HMJAU59471, HMJAU59470, and HMJAU60200, HMJAU60201—were grouped together respectively and formed two independent lineages with high support value (BP = 100, PP = 1 and BP = 99, PP = 1).

Figure 2.

Figure 2

Phylogenetic analysis of Butyriboletus inferred from ML analysis. BP value (>70) and PP value (>9) are shown around branches. Our new species sequences are indicated in bold.

The four-locus dataset (28S + rpb1 + rpb2 + tef1) of Suillellus (Supplementary File S3) involved 64 taxa and 3048 bp sites. Tylopilus alpinus Y.C. Li & Zhu L. Yang and Tylopilus atripurpureus (Corner) E. Horak were selected as outgroups. The alignment was submitted to TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S29037, accessed on 15 January 2022). The phylogram showed our species belongs to Suillellus (Figure 3). It formed an independent sister clade to Suillellus subamygdalinus Kuan Zhao & Zhu L. Yang, with a solid support (BP = 92, PP = 1). The ITS dataset of Suillellus (Supplementary File S4) consisted of 55 taxa and 885 bp sites. Boletus aestivalis (Paulet) Fr. and Boletus aereus Bull. were chosen as outgroups (Figure 4). The alignment was submitted to TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S29087, accessed on 15 January 2022). The phylogram showed that our species was close to Suillellus comptus (Simonini) Vizzini, Simonini & Gelardi and formed an independent and robust support clade (BP = 98, PP = 1).

Figure 3.

Figure 3

Phylogenetic analysis of Suillellus inferred from ML analysis based on the multi-locus dataset. BP value (>70) and PP value (>9) are shown around branches. Our new species sequences are indicated in bold.

Figure 4.

Figure 4

Phylogenetic analysis of Suillellus inferred from Bayes inference analysis based on ITS dataset. BP value (>70) and PP value (>9) are shown around branches. Our new species sequences are indicated in bold.

3.2. Taxonomy

Butyriboletus pseudoroseoflavus Yang Wang, Bo Zhang & Yu Li, sp. nov.

Mycobank No.: 842167.

Figure 5e, Figure 6 and Figure 7d.

Figure 5.

Figure 5

Basidiomata of boletes. (ac) Suillellus lacrymibasidiatus; (d) Butyriboletus subregius; (e) Butyriboletus pseudoroseoflavus (e from HMJAU 59470); (f) Tengioboletus subglutinosus (f from HMJAU 59037). (ac) Photos by Yang Wang; (df) Photos by Yong-Lan Tuo.

Figure 6.

Figure 6

Butyriboletus pseudoroseoflavus. (a) Basidiospores; (b) Basidia and pleurocystidia; (c) Pileipellis; (d) Stipitipellis; (e) Pleurocystidia; (f) Cheilocystidia. Scale bars: (be) =10 μm; (a,f) =5 μm.

Figure 7.

Figure 7

Basidiospores observed in the SEM. (a,b) Suillellus lacrymibasidiatus; (c) Butyriboletus subregius; (d) Butyriboletus pseudoroseoflavus; (e,f) Tengioboletus subglutinosus.

Etymology. The epithet “pseudoroseoflavus” refers to its similarity to B. roseoflavus.

Holotypus. China. Jilin Province, Jian city, Wunvfeng National Forest Park, 125°34′33″ E, 40°52′7″ N, under Quercus mongolica, on dark-brown soil, alt. 1210 m, 16 August 2019, Gu Rao 383 (HMJAU 59471!).

Basidiomata large. Pileus 13.5–17.0 cm in diameter, hemispherical to applanate, with slightly or distinctly appendiculate margin, sometimes incurved at the margin when young; surface tomentose, pink (12A4) to greyish rose (11B5), context 1.1–1.8 cm thick, light yellow (1A5), unchanging in color when injured. Hymenophore adnate to decurrent, surface greenish yellow (1B8), becoming greenish blue (23B8) quickly when bruised; pores round to angular, ca. 1–3/mm; tubes 1.5–1.7 cm long, concolorous with pore surface, unchanging color when injured. Stipe 9.0–14.7 × 2.0–3.6 cm, subcylindrical, robust, yellow on the upper portion, vivid red (10A8) downwards, surface almost wholly covered yellow (2B8) reticulation or at least upper two thirds; basal mycelium white.

Basidiospores (60/3/2) (7.0) 10.2–10.6–11.0 (16.0) × (2.0) 3.1–3.2–3.7 (4.0) μm, Q = (2.0) 2.5–4.6 (5.3), Qm = 3.30 ± 0.58, elongate oblong to subfusoid, inequilateral with a suprahilar depression in side view, light yellow in 5% KOH, smooth. Hymenophoral trama boletoid, hyphae cylindrical, 2.5–10 μm wide. Basidia clavate, thin-walled, 16.0–33.0 × 2.0–10.0 μm, 2- and 4-spored. Cheilocystidia 31.5–50.0 × 5.0–10.0 μm, narrowly lageniform, thin-walled, pale yellow in 5% KOH. Pleurocystidia 37.5–62.5 × 5.0–11.5 μm, similar to cheilocystidia in shape. Pileipellis trichodermium, filamentous hyphae 1.7–7.5 μm wide. Stipitipellis fertile, hymeniform with thin-walled and inflated terminal cells (13.8–26.0 × 6.8–13.8 μm). Stipe trama composed of parallel hyphae 2.5–7.5 μm wide. Clamp connections not observed.

Habitat: solitary or scattered on a dark-brown soil of Quercus mongolica forest.

Known distribution: currently, only known from Jilin province, China.

Additional collection examined: China. Jilin Province, Jian city, Wunvfeng National Forest Park, 125°34′33″ E, 40°52′7″ N, under Quercus mongolica, on dark-brown soil, alt. 950 m, 5 August 2020, Yong-Lan Tuo 274 (HMJAU 59470).

Notes: Butyriboletus pseudoroseoflavus is characterized by a pink to greyish rose pileus, greenish yellow pores changing to greenish blue when bruised, a stipe surface almost wholly covered with yellow reticulation, a stipe of unchanging color when injured, and large and narrow basidiospores. Morphologically and phylogenetically, Bu. pseudoroseoflavus is similar to Bu. roseoflavus (Hai B. Li & Hai L. Wei) D. Arora & J.L. Frank, which was initially described in specimens from eastern China (Zhejiang province) and southwestern China (Yunnan province) by Li et al. [67]. However, Bu. pseudoroseoflavus differs from Bu. roseoflavus in its adnate to decurrent hymenophore and its relatively larger and narrower basidiospores, with a more considerable Q value and pleurocystidia larger than cheilocystidia [5]. In morphological features, Bu. pseudoroseoflavus is also similar to Bu. cepaeodoratus (Taneyama & Har. Takah.) Vizzini & Gelardi, Bu. roseogriseus (Šutara, M. Graca, M. Kolařík, Janda & Kříž) Vizzini & Gelardi, Bu. primiregius D. Arora & J.L. Frank, Bu. regius (Krombh.) D. Arora & J.L. Frank., and Bu. fuscoroseus (Smotl.) Vizzini & Gelardi, but the pileus of Bu. cepaeodoratus always has a duller color, its stipe stains blue when injured, and its basidiospores are broader than those of Bu. pseudoroseoflavus [68]. Both stipe and context of Bu. roseogriseus and Bu. primiregius turn blue when injured, and have broader basidiospores, Q = (1.95) 2.20–2.42 (2.57) and Q = 3.5, respectively [32,56]. The pores of Bu. regius are unchanging to blue when bruised; the stipe is usually ventricose when young, showing at the base rare faintly reddish or purplish spots, with basidiospores weakly dextrinoid [69]. Butyriboletus fuscoroseus is characterized by its brown-pink, reddish brown, or purplish brown pileus, decurrent hymenophore, stipe staining blue when bruised or cut, and the narrow basidiospores [56]. Phylogenetically, Bu. pseudoroseoflavus is similar to Bu. abieticola. However, Bu. abieticola is characterized by a light rose-colored pileus, with tan-colored spots interspersed, a white context, a hymenium dextrinoid, and hyaline spiral incrustations on most hyphae [70]. Reference Table 2 provides the critical characteristics distinguishing Bu. pseudoroseoflavus from other species in China.

Table 2.

Morphological comparisons of Butyriboletus pseudoroseoflavus sp. nov. and Butyriboletus subregius sp. nov. with other Butyriboletus spp. reported in China.

Species Pileus Context Hymenophore Stipe Spores Cystidia
Butyriboletus huangnianlaii Surface dry, finely tomentose, brown to reddish brown Yellowish to yellow, changing blue quickly when injured Adnate or slightly depressed, changing blue quickly when injured Stipitipellis, fertile hymeniform, fusiform, or subfusiform terminal cells (7.0) 7.5–10.5 (11.0) × 3.0–4.0 μm, olive-brown to yellowish brown Fusiform or subfusiform
Bu. pseudospeciosus Purplish tint, staining dark blue quickly when bruised Yellowish, staining blue to grayish blue promptly when injured Adnate, rapidly bluing when bruised Stipitipellis consisting of tufts of lageniform caulocystidia 9.0–11.0 (12.0) × 3.5–4.0 μm Narrowly lageniform to lageniform
Bu. roseoflavus Pinkish to purplish red or rose-red Yellowish or light yellow, turning blue slowly or unchanging when bruised Adnate, staining blue quickly when hurt Stipe trama composed of parallel hyphae 9.0–12.0 (13.0) × 3.0–4.0 μm Narrowly lageniform to lageniform
Bu. sanicibus Dull brown Pale yellow, usually turning blue when cut Depressed, bruising blue 11.0–15.0 × 4.0–5.0 μm Fusoid-ventricose
Bu. subregius Pastel pink Yellowish green, turning blue when cut weakly decurrent, covered with a layer of whitish mycelium when young, surface yellowish green Stipitipellis fertile, hymeniform, caulocystidia narrowly lageniform, caulobasidia subclavate, with yellowish intracellular pigments. (10.0) 11.1–11.5 (13.0) × (3.0) 4.0–4.2 (5.0) μm narrowly lageniform
Bu. yicibus Covered with fibrillose squamules, ochreous, brown to dark brown Nearly white, staining light blue very slowly when injured Adnate, degrading bluish slowly when injured Stipitipellis consisting of tufts of lageniform caulocystidia (11.0) 13.0–15.0 (16.0) × 4.0–5.0 (5.5) μm Narrowly lageniform to lageniform
Bu. pseudoroseoflavus Tomentose, pink to greyish rose Light yellow, unchanging in color when injured. Adnate to decurrent, staining blue when bruised Stipitipellis hymeniform, with terminal inflated cells (7.0) 10.2–11.0 (16.0) × (2.0) 3.1–3.7 (4.0) μm Narrowly lageniform

Butyriboletus subregius Yang Wang, Bo Zhang & Yu Li, sp. nov.

Mycobank No.: 842517.

Figure 5d, Figure 7c and Figure 8.

Figure 8.

Figure 8

Butyriboletus subregius. (a) Pleurocystidia; (b) Cheilocystidia; (c) Pileipellis; (d) Basidiospores. (e) Pleurocystidia and basidia. Scale bars: 10 μm.

Etymology.:“sub” means “near,” named because it is similar to B. regius.

Holotypus: China. Jilin Province, Jian city, Wunvfeng National Forest Park, 125°34′33″ E, 40°52′7″ N, under Quercus mongolica, on dark-brown soil, alt. 1050 m, 7 July 2020, Yong-Lan Tuo 95 (HMJAU 60200!).

Basidiomata middle to large. Pileus 7.0–13.0 cm in diameter, hemispherical or broadly hemispherical at maturity, with distinctly appendiculate margin initially, surface dry, covered with weak or distinct tomentum, pastel pink (11A4–5), context yellowish green (30A6), turning blue when cut. Hymenophore weakly decurrent, covered with a layer of whitish mycelium (1A1) when young, surface yellowish green (29A6), bluing when bruised, pores angular to nearly round, ca. 4–5/mm; tubes concolorous with hymenophore surface, about 1.1 cm long, turning blue when cut. Stipe 11.0–14.5 × 4.4–5.0 cm, subcylindrical or enlarged downwards, yellowish green (29A6) at maturity, covered with pastel red stains when young, upper 2/3 portion covered with yellowish green (29A6) reticulation, staining blue when bruised, context yellowish green (30A6), changing weakly to blue when cut.

Basidiospores (60/2/2) (10.0) 11.1–11.3–11.5 (13.0) × (3.0) 4.0–4.1–4.2 (5.0) μm, Q = (2.22) 2.40–3.00 (4.00), Qm = 2.76 ± 0.31, subfusoid to subcylindrical, inequilateral with a suprahilar depression in side view, brownish yellow in 5% KOH, smooth. Basidia 21.0–36.0 × 8.0–12.5 μm, clavate, 2– and 4–spored. Hymenophoral trama boletoid, composed of hyphae 4–7 μm in diameter. Pleurocystidia 36.3–56.7 × 7.0–14.6 μm, narrowly lageniform, thin-walled, yellowish in 5% KOH. Cheilocystidia 22.0–50.5 × 5.5–12.4 μm, narrowly lageniform. Pileipellis a trichodermium, composed of filamentous hyphae, 3.0–6.5 μm wide. Stipitipellis fertile, hymeniform, caulocystidia 23.0–43.5 × 9.0–12.5 μm, narrowly lageniform, caulobasidia 17.2–32.0 × 6.2–8.0 μm, subclavate, with yellowish intracellular pigments. Clamp connections not observed.

Habitat: solitary or scattered on a dark-brown soil of Quercus mongolica forest.

Known distribution: currently, only known from Jilin province, China.

Additional collection examined: China. Jilin Province, Jian city, Wunvfeng National Forest Park, under Quercus mongolica, on dark-brown soil, alt. 1050 m, 10 August 2019, Yong-Lan Tuo 198 (HMJAU 60201).

Notes: Butyriboletus subregius is characterized by a pastel pink pileus, a yellowish green stipe covered with reticulation of the same color and staining blue when the hymenophore and stipe are bruised. Morphologically and phylogenetically, Bu. subregius resembles Bu. autumniregius, Bu. primiregius, Bu. querciregius, Bu. regius and Bu. fuscoroseus. However, Bu. autumniregius is distinguished by its autumn fruiting season, a stipe that commonly has dark red stains toward the base, and longer spores with a larger Q value [33]; Bu. primiregius is characterized by its late spring season, and a pileus tending to dingy olive-brown as it ages or exposed in sunlight [33]; Bu. querciregius differs from Bu. subregius in its mycorrhizal host, the dull color of a pileus, relatively longer spores with larger Q value [33]; Bu. regius is different from Bu. subregius in its pileus covered with distinct scales with aging, a context usually not bluing when cut, and spores longer with larger Q value [69]. Butyriboletus fuscoroseus is different from Bu. subregius in its brown-pink, reddish brown, or purplish-brown pileus, fine reticulation covered only on the upper half of stipe and context of stipe strongly bluing when cut [56]. Reference Table 2 provides the critical characteristics distinguishing Bu. subregius from other species in China.

Tengioboletus subglutinosus Yang Wang, Bo Zhang & Yu Li, sp. nov.

Mycobank No.: 842168.

Figure 5f, Figure 7e,f and Figure 9.

Figure 9.

Figure 9

Tengioboletus subglutinosus. (a) Pileipellis; (b) Stipitipellis; (c) Basidiospores; (d) Cheilocystidia; (e,f) Pleurocystidia and basidia. Scale bars: 10 μm.

Etymology: “sub” means “near,” named because it is similar to T. glutinosus.

Holotypus: China. Jilin Province, Jian city, Wunvfeng National Forest Park, 125°34′33″ E, 40°52′7″ N, under Quercus mongolica, on dark-brown soil, alt. 650 m, 6 August 2020, Y. L. Tuo 293 (HMJAU 59035!).

Basidiomata medium to large. Pileus 6.5–9.0 cm in diameter, hemispherical to applanate, surface brownish yellow (5C8) to yellowish brown (5D8), glabrous, viscid when wet, context deep yellow (4A8), 0.6–1.5 cm thick, color unchanging when cut; hymenophore sinuate to decurrent; tubes up to 1.3 cm long, vivid yellow (3A8), changing to indistinct blue erratically or unchanging color when cut; hymenophore surface concolorous with tubes or olive yellow (3C8), staining blue when bruised; pores angular, ca. 2–3/mm. Stipe 7.2–16.0 × 1.4–2.2 cm, central, clavate to subcylindrical, solid, sometimes tapered downwards, surface concolorous with pileus surface, covered with fine reticulation at apex, context deep yellow (4A8), color unchanging when cut; basal mycelium yellow (3B8).

Basidiospores (60/2/1) (10.0) 11.5–11.7–11.9 (13.0) × (4.0) 4.2–4.3–4.4 (6.0) μm [Q = (1.70) 2.00–3.17 (3.25) 2.75 ± 0.3], elongate ellipsoid and inequilateral in side view, with distinctly suprahilar depression; greenish yellow (1A8) in 5% KOH, smooth. Hymenophoral trama of the intermediate type between phylloporoid and boletoid types. Basidia 19.0–42.0 × 6.0–13.0 μm, clavate, 2- and 4-spored, hyaline in 5% KOH. Pleurocystidia scattered, 45.0–65.0 × 9.0–15.0 μm, fusoid-ventricose to broadly fusoid-ventricose, with subacute apex or long beak, thin-walled. Cheilocystidia 36.0–50.0 × 7.5–10.5 μm, similar to pleurocystidia in shape. Pileipellis an interwoven ixotrichodermium, with inflated terminal cells 28.5–57.0 × 15.0–23.0 μm. Stipitipellis fertile, hymeniform, with subglobose to globose terminal cells, and scattered clavate basidia.

Habitat: solitary or scattered on a dark-brown soil of Quercus mongolica forest.

Known distribution: currently, only known from Jilin province, China.

Additional collections examined: China. Jilin Province, Jian city, Wunvfeng National Forest Park, under Quercus mongolica, on dark-brown soil, alt. 900 m, 6 August 2020, Yong-Lan Tuo 286 (HMJAU 59034); alt. 750 m, 11 August 2020, Yong-Lan Tuo 344 (HMJAU 59036); alt. 650 m, 23 August 2020, Yong-Lan Tuo 471 (HMJAU 59037).

Notes: Tengioboletus subglutinosus is characterized by a hymenophore surface staining blue when bruised, a pileipellis in the form of an ixotrichodermium, with inflated or clavated terminal cells. Morphologically and phylogenetically, T. subglutinosus is similar to T. glutinosus. However, T. subglutinosus is different due to its hymenophoral surface staining blue when bruised, a hymenophore sinuate to decurrent, a stipe with reticulations at the apex, and narrower spores [5]. Tengioboletus fujianensis differs from T. subglutinosus in its hymenophoral surface staining brown when bruised, prominently reticulation nearly to the stipe base and hymenophoral trama boletoid [34]. Basidiomata of T. reticulatus show a distinct olive-brown, brown-to dark-brown pileus, shorter hymenophore of unchanging color when bruised, a distinct reticulation covering stipe, and a pileipellis trichodermium, not ixotrichodermium [5].

Suillellus lacrymibasidiatus Yang Wang, Bo Zhang & Yu Li, sp. nov.

Mycobank No.: 842518.

Figure 5a–c, Figure 7a,b and Figure 10.

Figure 10.

Figure 10

Suillellus lacrymibasidiatus. (a) Basidiospores; (b) Basidia; (c) Pileipellis. Scale bars: 10 μm.

Etymology: “lacrymibasidiatus” means most of its basidia seem lacrymoid.

Holotypus: China. Xinjiang Uygur Autonomous Region: Ili Kazakh Autonomous Prefecture, Xinyuan county, 84°31′20″ E, 43°15′43″ N, under Pinus schrenkiana, on light grayish brown loess, alt. 1899 m, 3 August 2021, W3194 (HMJAU 60202!).

Basidiomata medium. Pileus 4.1–8.2 cm in diameter, hemispherical then applanate, surface oak brown (5D6) when young, brownish orange (6C6) at maturity, weakly tomentose, context yellowish white (1A2), 0.4–0.9 cm thick, turning blue when cut. Hymenophore adnexed, surface tomato red (8C8) when young, brick red (7D7) at maturity, bluing quickly when injured, pores angular, ca. 1–3/mm; tubes up to 1.3 cm long, sulfur yellow (1A5), bluing promptly when cut. Stipe 7.2–7.4 × 1.7–2.0 cm, subcylindrical, relatively slender at middle part or attenuate downwards, surface red (10A6) when young, finely longitudinally reticulated over the apex, color of surface fading to yellow and covered with distinct squamules at the middle part in ages, context pastel green (30A4), turning blue when cut; basal mycelium white.

Basidiospores (60/2/2) (11.6) 14.5–14.7–15 (17.0) × (6.7) 7.7–7.8–7.9 (9.0) μm, Q = 1.5–2.1, Qm = 1.9 ± 0.1, subamygdaloid to broadly ellipsoid, brown in 5% KOH, smooth, neither amyloid nor dextrinoid. Hymenophoral trama boletoid type, composed of 2.0–16.5 μm wide hyphae, amyloid. Basidia 20.8–38.5 × 13.0–20.1 μm, lacrymoid, 2– and 4–spored, hyaline in 5% KOH. Pleurocystidia and cheilocystidia not observed. Pileipellis a trichodermium, composed of 5.0–9.5 μm wide, yellowish brown, inamyloid hyphae. Stipitipellis hymeniderm, terminal cells inflated, 25.8–61.2 × 12.0–15.5 μm. Hyphae of the flesh in the stipe base amyloid in Melzer’s reagent. Clamp connections not observed.

Habitat: solitary or scattered on a black loam soil of Salix spp. and Populus spp. mixed forest or a light grayish brown loess of Pinus schrenkiana forest.

Known distribution: currently, only known from Xinjiang Uygur Autonomous Region, China.

Additional collection examined: China. Xinjiang Uygur Autonomous Region: Ili Kazakh Autonomous Prefecture, Zhaosu County, 80°42′30″ E, 42°59′37″ N, under river valley with presence of Salix spp. and Populus spp., on black loam soil, alt. 1697 m, 6 August 2021, W3229 (HMJAU 60203).

Notes: Suillellus lacrymibasidiatus is characterized by its oak brown to brownish orange pileus, the context staining blue when injured, and inamyloid basidiospores. Morphologically, S. lacrymibasidiatus is related to S. luridus (Schaeff.) Murrill, S. mendax (Simonini & Vizzini) Vizzini, Simonini & Gelardi, S. queletii (Schulzer) Vizzini, Simonini & Gelardi, and S. subamygdalinus Kuan Zhao & Zhu L. Yang. S. luridus is characterized by its prominent reticulation on the stipe and smaller basidiospores [71]; S. mendax is different from S. lacrymibasidiatus in its promptly bluing when pileus bruised, value of Q larger, and basidia clavate [13]; S. queletii can be distinguished from S. lacrymibasidiatus by its stipe wholly covered with fine granulation without reticulation, basidia clavate [72]; S. subamygdalinus is characterized by its basidia clavate [5]. Phylogenetically, S. lacrymibasidiatus is related to S. comptus. However, S. comptus differs from S. lacrymibasidiatus in its stipe surface staining blue when bruised, and smaller spores [71]. Among the other morphologically allied boletes, S. adalgisae (Marsico & Musumeci) N. Schwab [73], S. austrinus (Singer) Murrill [74], S. gabretae (Pilát) Blanco-Dios [75], S. luridiceps Murrill [76], and S. subvelutipes (Peck) Murrill. [77], none of them could represent a possible concurrent of S. lacrymibasidiatus.

A key to worldwide species of Tengioboletus:

1. Pores changing color when bruised 2
1. Pores unchanging color when bruised 3
2. Pores staining blue when bruised, pileipellis an ixotrichodermium T. subglutinosus
2. Pores staining brown when bruised, pileipellis an trichodermium T. fujianensis
3. Stipe covered with distinct reticulations, basidiospores larger, 12.0–14.5 × 4.5–6.0 μm, pileipellis an trichodermium T. reticulatus
3. Stipe nearly glabrous, basidiospores 10.0–12.0 × 3.5–4.5 μm, pileipellis, an ixotrichodermium T. glutinosus

A key to worldwide species of Suillellus s.str.:

1. Basidiospores usually longer than 15 μm 2
1. Basidiospores shorter than or equal to 15 μm 4
2. Stipe covered with pruinose or granulose, but without any trace of reticulation S. amygdalinus
2. Stipe covered with reticulation 3
3. Basidia lacrymoid, Q = 1.5–2.1 S. lacrymibasidiatus
3. Basidia clavate, Q = 2.0–2.6 S. subamygdalinus
4. Surface of stipe rough, but without reticulation 5
4. Stipe covered with reticulation 6
5. Stipe covered with distinct pruinose, basidiospores less than 14 μm, basidia broad clavate S. adonis
5. Stipe covered with reddish to brown granules, basidiospores can be longer than 14 μm, hymenophoral basidia clavate S. queletii
6. Stipe covered with prominent, red to orange reticulation. Basidiospores 11–14 × 4.5–6 μm S. luridus
6. Stipe with indistinctly or finely reticulation, usually distributed erratically 7
7. Q value higher than 2.6 S. mendax
7. Q value less than or equal to 2.6 8
8. Basidiospores dextrinoid, Q value can reach 2.6, reticulation yellow and fine at the upper portion of stipe S. atlanticus
8. Q value less than or equal to 2.2, pores red to orange red, stipe covered with very fine yellow, pale orange, orange, reddish orange, or pale red granules S. comptus

4. Discussion

In this study, four new species, Butyriboletus pseudoroseoflavus, Butyriboletus subregius, Tengioboletus subglutinosus, and Suillellus lacrymibasidiatus, were discovered in northern China based on morphological studies and phylogenetic analyses.

Seven species of Butyriboletus were previously reported in China, and all of them were collected from tropical and subtropical regions of China. The two new species of Butyriboletus we proposed here are the first reports of this genus in northern China. Moreover, according to Arora et al. [33], the species diversity of the genus should be more abundant in temperate climes than tropical, subtropical, or boreal ones. Based on this, we presume that northern China may be a species diversity hotspot of Butyriboletus waiting to be explored further.

Butyriboletus subregius is easily confused with Bu. autumniregius, Bu. primiregius, Bu. querciregius, and Bu. regius, morphologically. The primary distinguishing characteristics are the fruiting time and different ecological niches. According to Queiroz [78], these differences mean that the features formerly treated as secondary species criteria are relevant to species delimitation, to the extent that they provide evidence of a lineage separation. Although one ITS sequence of Bu. loyo (Phillippi) Mikšík, was uploaded to the GeneBank [79], the authors did not give a detailed morphological description to prove identification accuracy, so it was excluded from the current phylogeny. However, Bu. loyo is unique within this genus, given its combined morphological characteristics of being equilateral in profile and having red-brown basidiospores and a viscid pileus.

Due to the different color of the hymenophore surface and tubes and the usually vivid red color of basidiomata, Farid et al. [19], Bozok et al. [80], and Biketova et al. [37] all recommended Exsudoporus as a genus separate from Butyriboletus, including B. floridanus (Singer) G. Wu, Kuan Zhao & Zhu L. Yang, B. frostii (J.L. Russell) G. Wu, Kuan Zhao, & Zhu L. Yang, and E. permagnificus (Pöder) Vizzini, Simonini, & Gelard. However, only the result of Farid et al. [19] showed that the B. subsplendidus (W.F. Chiu) Kuan Zhao, G. Wu, & Zhu L. Yang clade has affinity with other Butyriboletus. Our phylogram accords with the findings of Chai [28] and Biketova et al. [37] that B. subsplendidus is a sister to the Exsudoporus clade. We agree with Biketova et al. [37] that Exsudoporus should be elevated to genus status, and B. subsplendidus and B. hainanensis N.K. Zeng, Zhi Q. Liang, & S. Jiang should separate from Butyriboletus and represent two distinct genera, as their apparently different characteristics from other species of Butyriboletus.

Tengioboletus is a small genus, with only three species previously reported in southern China. Tengioboletus reticulatus was the first species of the genus collected at Liaoning province in northeastern China [81]. In our study, one new species, T. subglutinosus, was also collected at Jilin province in northeastern China. This means a geographical extension of Tengioboletus into temperate zones, which may also indicate a potentially wide distribution, given that their previously known main distribution was subtropical and tropical China. Our study showed that sequences of Tengioboletus formed an independent clade, which corresponded to the findings of Wu et al. [5] and supported Tengioboletus as a separate genus. As found by Wu et al. [5], Porphyrellus E.-J. Gilbert is a polyphyletic genus in the phylogram (Figure 1); it formed two clades; one clade named “Porphyrellus?” is a sister to Strobilomyces Berk., as was implied by Han et al. [82]. Clarification of the relationships among the genera will require additional specimens and future studies.

Recently, many genera were merged or erected in boletes as part of the development of molecular technology. Wu et al. [5] treated Neoboletus Gelardi, Simonini, & Vizzini as synonymized with Sutorius Halling, Nuhn, & N.A. Fechner, based on molecular data. However, Chai et al. [28] studied the morphological characteristics and reconstructed phylogenetic trees of Neoboletus, Sutorius, Costatisporus T.W. Henkel & M.E. Sm., and Caloboletus Vizzini. They considered that Neoboletus do not belong to Sutorius. Our phylogenetic analyses (Figure 3) confirmed their results.

Rubroboletus Kuan Zhao & Zhu L. Yang, Neoboletus, Sutorius, and Lanmaoa G. Wu & Zhu L. Yang shares some characteristics with Suillellus, such as the orange-red surface of the hymenophore and the bluing color change. Nevertheless, none of them has the amyloid hyphae of the context [5,25,83,84,85]. In contrast, Rubroboletus species have a vivid or dark red pileus with rose-to-red reticulation, and the stipes of species of Neoboletus usually have fine dots but never reticulation. The basidiomata of Sutorius always have a dull color and a reddish color change [28,86]; the hymenophore of Lanmaoa is thin, with a thickness about 1/3–1/5 times that of the pileal context at the position halfway to the pileus center.

Acknowledgments

We sincerely thank Zheng-Xiang Qi, Xin-Ya Yang, and Ya-Jie Liu of the Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University for their help in the experiment.

Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/jof8030218/s1, File S1: Tengioboletus matrix, File S2: Butyriboletus matrix, File S3: Suillellus multigene matrix, File S4: Suillellus ITS matrix.

Author Contributions

Conceptualization, B.Z. and Y.L.; Methodology, Y.W.; Software, X.-M.W. and J.W.; Investigation, Y.W., Y.-L.T., and G.R.; Resources, Y.W., Y.-L.T., G.R., Z.-H.Z., D.-M.W. and N.G.; Data Curation, B.Z. and Y.L.; Writing—Original Draft Preparation, Y.W.; Writing—Review & Editing, B.Z. and D.D.; Visualization, Y.W.; Supervision, B.Z.; Project Administration, B.Z. and Y.L.; Funding Acquisition, B.Z. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the Scientific Production and Construction Corps (No.2021AB004), the National Natural Science Foundation of China (No. 31970020), the Research of the Degradation Mechanism of Macrofungi Metabolites on Wetland Water Pollutants (20190201256JC), and Key Projects of Jiangxi Province Key R&D Plan (20212BBF61002).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data relevant to this research can be found here: https://www.ncbi.nlm.nih.gov/; https://www.mycobank.org/; https://www.treebase.org/treebase-web/home.html, accessed on 15 January 2022.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Chevallier F.F. Flore Générale des Environs de Paris. [(accessed on 20 December 2021)]. Available online: https://bibdigital.rjb.csic.es/idurl/1/11834.
  • 2.Zhang M. Ph.D. Thesis. South China University of Technology; Guangzhou, China: 2016. Molecular Phylogenetic Studies on the Family Boletaceae in Southern China, and Taxonomic Study on the Genus Aureoboletus in China. [Google Scholar]
  • 3.Li Y., Li T.H., Yang Z.L., Bau T., Dai Y.C. Atlas of Chinese Macrofungal Resources. Central Plains Farmers Press; Zhengzhou, China: 2016. pp. 1068–1148. [Google Scholar]
  • 4.Roman M.D., Claveria V., Miguel A.M. A revision of the descriptions of ectomycorrhizas published since 1961. Mycol. Res. 2005;109:1063–1104. doi: 10.1017/S0953756205003564. [DOI] [PubMed] [Google Scholar]
  • 5.Wu G., Li Y.C., Zhu X.T., Zhao K., Han L.H., Cui Y.Y., Li F., Xu J.P., Yang Z.L. One hundred noteworthy boletes from China. Fungal Divers. 2016;81:25–188. doi: 10.1007/s13225-016-0375-8. [DOI] [Google Scholar]
  • 6.Yang Z.L., Wu G., Li Y.C., Wang X.H., Cai Q. Common Edible and Poisonous Mushrooms of Southwestern China. Science Press; Beijing, China: 2021. [Google Scholar]
  • 7.Murrill W.A. The Boletaceae of North America—I. Mycologia. 1909;1:4–18. doi: 10.1080/00275514.1909.12020569. [DOI] [Google Scholar]
  • 8.Smith A.H., Thiers H.D. Boletes of Michigan. The University of Michigan Press; Ann Arbor, MI, USA: 1971. [Google Scholar]
  • 9.Singer R., Williams R. Some boletes from Florida. Mycologia. 1992;84:724–728. doi: 10.2307/3760382. [DOI] [Google Scholar]
  • 10.Baroni T.J. Boletus aurantiosplendens sp. nov. from the southern Appalachian Mountains with notes on Pulveroboletus auriflammeus, Pulveroboletus melleouluteus and Boletus auripes. Bull. Buffalo Soc. Nat. Sci. 1998;36:245–255. [Google Scholar]
  • 11.Baroni T.J., Bessette A.E., Roody W.C. Boletus patrioticus—A new species from the eastern United States. Bull. Buffalo Soc. Nat. Sci. 1998;36:265–268. [Google Scholar]
  • 12.Farid A., Gelardi M., Angelini C., Franck A., Costanzo F., Kaminsky L., Ercole E., Baroni T., White A., Garey J. Phylloporus and Phylloboletellus are no longer alone: Phylloporopsis gen. nov. (Boletaceae), a new smooth-spored lamellate genus to accommodate the American species Phylloporus Boletinoides. Fungal Syst. Evol. 2018;2:341. doi: 10.3114/fuse.2018.02.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Vizzini A., Simonini G., Ercole E., Voyron S. Boletus mendax, a new species of Boletus sect. Luridi from Italy and insights on the B. luridus complex. Mycol. Prog. 2014;13:95–109. doi: 10.1007/s11557-013-0896-4. [DOI] [Google Scholar]
  • 14.Ortiz-Santana B., Roody W.C., Both E.E. A new arenicolous Boletus from the Gulf Coast of northern Florida. Mycotaxon. 2009;107:243–247. doi: 10.5248/107.243. [DOI] [Google Scholar]
  • 15.Ortiz-Santana B., Bessette A.E., McConnell O.L. Boletus durhamensis sp. nov. from North Carolina. Mycotaxon. 2016;131:703–715. doi: 10.5248/131.703. [DOI] [Google Scholar]
  • 16.Frank J., Siegel N., Schwarz C., Araki B., Vellinga E. Xerocomellus (Boletaceae) in western North America. Fungal Syst. Evol. 2020;6:265. doi: 10.3114/fuse.2020.06.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Crous P., Wingfield M., Lombard L., Roets F., Swart W., Alvarado P., Carnegie A., Moreno G., Luangsaard J., Thangavel R. Fungal Planet description sheets: 951–1041. Persoonia. 2019;43:223. doi: 10.3767/persoonia.2019.43.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Farid A., Franck A.R., Bolin J., Garey J.R. Expansion of the genus Imleria in North America to include Imleria floridana, sp. nov., and Imleria pallida, comb. nov. Mycologia. 2020;112:423–437. doi: 10.1080/00275514.2019.1685359. [DOI] [PubMed] [Google Scholar]
  • 19.Farid A., Bessette A.R., Bolin J.A., Kudzma L.V., Franck A.R., Garey J.R. Investigations in the boletes (Boletaceae) of southeastern USA: Four novel species and three novel combinations. Mycosphere. 2021;12:1038–1076. doi: 10.5943/mycosphere/12/1/12. [DOI] [Google Scholar]
  • 20.Taylor J.W., Jacobson D.J., Kroken S., Kasuga T., Geiser D.M., Hibbett D.S., Fisher M.C. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 2000;31:21–32. doi: 10.1006/fgbi.2000.1228. [DOI] [PubMed] [Google Scholar]
  • 21.Nuhn M.E., Binder M., Taylor A.F., Halling R.E., Hibbett D.S. Phylogenetic overview of the Boletineae. Fungal Biol. 2013;117:479–511. doi: 10.1016/j.funbio.2013.04.008. [DOI] [PubMed] [Google Scholar]
  • 22.Wu G., Feng B., Xu J.P., Zhu X.T., Li Y.C., Zeng N.K., Hosen M.I., Yang Z.L. Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Divers. 2014;69:93–115. doi: 10.1007/s13225-014-0283-8. [DOI] [Google Scholar]
  • 23.Wilson A.W., Binder M., Hibbett D.S. Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota) New Phytol. 2012;194:1079–1095. doi: 10.1111/j.1469-8137.2012.04109.x. [DOI] [PubMed] [Google Scholar]
  • 24.Wu G., Miyauchi S., Morin E., Kuo A., Drula E., Varga T., Kohler A., Feng B., Cao Y., Lipzen A. Evolutionary innovations through gain and loss of genes in the ectomycorrhizal Boletales. New Phytol. 2022;233:1383–1400. doi: 10.1111/nph.17858. [DOI] [PubMed] [Google Scholar]
  • 25.Zhao K., Wu G., Yang Z.L. A new genus, Rubroboletus, to accommodate Boletus sinicus and its allies. Phytotaxa. 2014;188:61–77. doi: 10.11646/phytotaxa.188.2.1. [DOI] [Google Scholar]
  • 26.Zhu X.T., Wu G., Zhao K., Halling R.E., Yang Z.L. Hourangia, a new genus of Boletaceae to accommodate Xerocomus cheoi and its allied species. Mycol. Prog. 2015;14:1–10. doi: 10.1007/s11557-015-1060-0. [DOI] [Google Scholar]
  • 27.Wu G., Zhao K., Li Y.C., Zeng N.K., Feng B., Halling R.E., Yang Z.L. Four new genera of the fungal family Boletaceae. Fungal Divers. 2016;81:1–24. doi: 10.1007/s13225-015-0322-0. [DOI] [Google Scholar]
  • 28.Chai H., Liang Z.Q., Xue R., Jiang S., Luo S.H., Wang Y., Wu L.L., Tang L.P., Chen Y., Hong D. New and noteworthy boletes from subtropical and tropical China. MycoKeys. 2019;46:55. doi: 10.3897/mycokeys.46.31470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Li M.X., Wu G., Yang Z.L. Four New Species of Hemileccinum (Xerocomoideae, Boletaceae) from Southwestern China. J. Fungi. 2021;7:823. doi: 10.3390/jof7100823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Gelardi M., Vizzini A., Ercole E., Horak E., Ming Z., Li T.H. Circumscription and taxonomic arrangement of Nigroboletus roseonigrescens gen. et sp. nov., a new member of Boletaceae from tropical South–Eastern China. PLoS ONE. 2015;10:e0134295. doi: 10.1371/journal.pone.0134295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Cui Y.Y., Feng B., Wu G., Xu J.P., Yang Z.L. Porcini mushrooms (Boletus sect. Boletus) from China. Fungal Divers. 2016;81:189–212. doi: 10.1007/s13225-015-0336-7. [DOI] [Google Scholar]
  • 32.Liang Z.Q., An D.Y., Juang S., Su M.S., Zeng N.K. Butyriboletus hainanensis (Boletaceae, Boletales), a new species from tropical China. Phytotaxa. 2016;267:256–262. doi: 10.11646/phytotaxa.267.4.2. [DOI] [Google Scholar]
  • 33.Arora D., Frank J.L. Clarifying the butter Boletes: A new genus, Butyriboletus, is established to accommodate Boletus sect. Appendiculati, and six new species are described. Mycologia. 2014;106:464–480. doi: 10.3852/13-052. [DOI] [PubMed] [Google Scholar]
  • 34.Zeng N.K., Chai H., Jiang S., Xue R., Wang Y., Hong D., Liang Z.Q. Retiboletus nigrogriseus and Tengioboletus fujianensis, two new boletes from the south of China. Phytotaxa. 2018;367:45–54. doi: 10.11646/phytotaxa.367.1.5. [DOI] [Google Scholar]
  • 35.Kornerup A., Wanscher J.H. In: Methuen Handbook of Colour. 3rd ed. Pavey D., editor. Eyre Methuen; London, UK: 1978. [Google Scholar]
  • 36.Imler L. Recherches sur les bolets. Bull. Soc. Mycol. Fr. 1950;66:177–203. [Google Scholar]
  • 37.Biketova A.Y., Gelardi M., Smith M.E., Simonini G., Healy R.A., Taneyama Y., Vasquez G., Kovács A., Nagy L.G., Wasser S.P., et al. Reappraisal of the Genus Exsudoporus (Boletaceae) Worldwide Based on Multi-Gene Phylogeny, Morphology and Biogeography, and Insights on Amoenoboletus. J. Fungi. 2022;8:101. doi: 10.3390/jof8020101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Zhu X.T., Li Y.C., Wu G., Feng B., Zhao K., Gelardi M., Kost G.W., Yang Z.L. The genus Imleria (Boletaceae) in East Asia. Phytotaxa. 2014;191:81–98. doi: 10.11646/phytotaxa.191.1.5. [DOI] [Google Scholar]
  • 39.White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990;18:315–322. [Google Scholar]
  • 40.Cubeta M., Echandi E., Abernethy T., Vilgalys R. Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology. 1991;81:1395–1400. doi: 10.1094/Phyto-81-1395. [DOI] [Google Scholar]
  • 41.Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990;172:4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Rehner S.A., Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97:84–98. doi: 10.3852/mycologia.97.1.84. [DOI] [PubMed] [Google Scholar]
  • 43.Zhang M., Li T.H., Song B. Two new species of Chalciporus (Boletaceae) from southern China revealed by morphological characters and molecular data. Phytotaxa. 2017;327:47–56. doi: 10.11646/phytotaxa.327.1.2. [DOI] [Google Scholar]
  • 44.Kuo M., Ortiz-Santana B. Revision of leccinoid fungi, with emphasis on North American taxa, based on molecular and morphological data. Mycologia. 2020;112:197–211. doi: 10.1080/00275514.2019.1685351. [DOI] [PubMed] [Google Scholar]
  • 45.Hall T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98. doi: 10.14601/PHYTOPATHOL_MEDITERR-14998U1.29. [DOI] [Google Scholar]
  • 46.Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017;34:772–773. doi: 10.1093/molbev/msw260. [DOI] [PubMed] [Google Scholar]
  • 47.Kalyaanamoorthy S., Minh B.Q., Wong T.K., Von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Binder M., Hibbett D.S. Molecular systematics and biological diversification of Boletales. Mycologia. 2006;98:971–981. doi: 10.1080/15572536.2006.11832626. [DOI] [PubMed] [Google Scholar]
  • 51.Feng B., Xu J.P., Wu G., Zeng N.K., Li Y.C., Tolgor B., Kost G.W., Yang Z.L. DNA sequence analyses reveal abundant diversity, endemism and evidence for Asian origin of the porcini mushrooms. PLoS ONE. 2012;7:e37567. doi: 10.1371/journal.pone.0037567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Binder M., Bresinsky A. Retiboletus, a new genus for a species-complex in the Boletaceae producing retipolides. Feddes Repert. Z. Bot. Taxon. Geobot. 2002;113:30–40. doi: 10.1002/1522-239X(200205)113:1/2<30::AID-FEDR30>3.0.CO;2-D. [DOI] [Google Scholar]
  • 53.Zhao K., Wu G., Halling R.E., Yang Z.L. Three new combinations of Butyriboletus (Boletaceae) Phytotaxa. 2015;234:51–62. doi: 10.11646/phytotaxa.234.1.3. [DOI] [Google Scholar]
  • 54.Zhao K., Wu G., Feng B., Yang Z.L. Molecular phylogeny of Caloboletus (Boletaceae) and a new species in East Asia. Mycol. Prog. 2014;13:1127–1136. doi: 10.1007/s11557-014-1001-3. [DOI] [Google Scholar]
  • 55.Halling R.E., Nuhn M., Fechner N.A., Osmundson T.W., Soytong K., Arora D., Hibbett D.S., Binder M. Sutorius: A new genus for Boletus eximius. Mycologia. 2012;104:951–961. doi: 10.3852/11-376. [DOI] [PubMed] [Google Scholar]
  • 56.Šutara J., Janda V., Kříž M., Graca M., Kolařík M. Contribution to the study of genus Boletus, section Appendiculati: Boletus roseogriseus sp. nov. and neotypification of Boletus fuscoroseus Smotl. Czech Mycol. 2014;66:1–37. doi: 10.33585/cmy.66101. [DOI] [Google Scholar]
  • 57.Li Y.C., Ortiz-Santana B., Zeng N.K., Feng B., Yang Z.L. Molecular phylogeny and taxonomy of the genus Veloporphyrellus. Mycologia. 2014;106:291–306. doi: 10.3852/106.2.291. [DOI] [PubMed] [Google Scholar]
  • 58.Li Y.C., Feng B., Yang Z.L. Zangia, a new genus of Boletaceae supported by molecular and morphological evidence. Fungal Divers. 2011;49:125–143. doi: 10.1007/s13225-011-0096-y. [DOI] [Google Scholar]
  • 59.Krpata D., Peintner U., Langer I., Fitz W.J., Schweiger P. Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycol. Res. 2008;112:1069–1079. doi: 10.1016/j.mycres.2008.02.004. [DOI] [PubMed] [Google Scholar]
  • 60.Osmundson T.W., Robert V.A., Schoch C.L., Baker L.J., Smith A., Robich G., Mizzan L., Garbelotto M.M. Filling gaps in biodiversity knowledge for macrofungi: Contributions and assessment of an herbarium collection DNA barcode sequencing project. PLoS ONE. 2013;8:e62419. doi: 10.1371/journal.pone.0062419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Iotti M., Barbieri E., Stocchi V., Zambonelli A. Morphological and molecular characterisation of mycelia of ectomycorrhizal fungi in pure culture. Fungal Divers. 2005;19:51–68. [Google Scholar]
  • 62.Nygren C.M., Edqvist J., Elfstrand M., Heller G., Taylor A.F. Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza. 2007;17:241–248. doi: 10.1007/s00572-006-0100-7. [DOI] [PubMed] [Google Scholar]
  • 63.Martin M.P., Raidl S. The taxonomic position of Rhizopogon melanogastroides (Boletales) Mycotaxon. 2002;84:221–228. [Google Scholar]
  • 64.Smith M.E., Douhan G.W., Rizzo D.M. Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol. 2007;174:847–863. doi: 10.1111/j.1469-8137.2007.02040.x. [DOI] [PubMed] [Google Scholar]
  • 65.Mello A., Ghignone S., Vizzini A., Sechi C., Ruiu P., Bonfante P. ITS primers for the identification of marketable boletes. J. Biotechnol. 2006;121:318–329. doi: 10.1016/j.jbiotec.2005.08.022. [DOI] [PubMed] [Google Scholar]
  • 66.Palmer J.M., Lindner D.L., Volk T.J. Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in Western Wisconsin. Mycorrhiza. 2008;19:27–36. doi: 10.1007/s00572-008-0200-7. [DOI] [PubMed] [Google Scholar]
  • 67.Li H., Wei H., Peng H., Ding H., Wang L., He L., Fu L. Boletus roseoflavus, a new species of Boletus in section Appendiculati from China. Mycol. Prog. 2014;13:21–31. doi: 10.1007/s11557-013-0888-4. [DOI] [Google Scholar]
  • 68.Takahashi H., Taneyama Y., Degawa Y. Notes on the boletes of Japan 1. Four new species of the genus Boletus from central Honshu, Japan. Mycoscience. 2013;54:458–468. doi: 10.1016/j.myc.2013.02.005. [DOI] [Google Scholar]
  • 69.Janda V., Kříž M., Kolařík M. Butyriboletus regius and Butyriboletus fechtneri: Typification of two well-known species. Czech Mycol. 2019;71:1–32. doi: 10.33585/cmy.71101. [DOI] [Google Scholar]
  • 70.Thiers H.D. California Mushrooms—A Field Guide to the Boletes. Hafner Press; New York, NY, USA: 1975. p. 261. [Google Scholar]
  • 71.Muñoz J.A. Fungi Europaei 2. Candusso Editrice; Bardolino, Italy: 2005. Boletus s.l. (excl. Xerocomus) pp. 428–432. [Google Scholar]
  • 72.Heykoop M. Morphology and taxonomy of Boletus queletii var. discolor, a rare bolete resembling Boletus erythropus. Mycotaxon. 1995;56:115–123. [Google Scholar]
  • 73.Marsico O., Musumeci E. Boletus adalgisae sp. nov. Boll. Assoc. Micol. Ecol. Romana. 2011;27:3–15. [Google Scholar]
  • 74.Seaver F.J., John N.C., Murrill W.A., George L.Z., Fred W., Singer R. Notes and Brief Articles. Mycologia. 1945;37:792–799. doi: 10.1080/00275514.1945.12024031. [DOI] [Google Scholar]
  • 75.Pilát A. Boletus gabretae sp. nov. bohemica ex affinitate Boleti junguillei (Quél.) Boud. Czech Mycol. 1968;22:167–170. [Google Scholar]
  • 76.Murill W.A. More Florida fungi. Lloydia. 1946;8:263–290. [Google Scholar]
  • 77.New York State Museum . Bulletin of the New York State Museum. Volume 2. University of the State of New York; New York, NY, USA: 1889. pp. 142–143. [Google Scholar]
  • 78.De Queiroz K. Species concepts and species delimitation. Syst. Biol. 2007;56:879–886. doi: 10.1080/10635150701701083. [DOI] [PubMed] [Google Scholar]
  • 79.Truong C., Mujic A.B., Healy R., Kuhar F., Furci G., Torres D., Niskanen T., Sandoval-Leiva P.A., Fernández N., Escobar J.M. How to know the fungi: Combining field inventories and DNA-barcoding to document fungal diversity. New Phytol. 2017;214:913–919. doi: 10.1111/nph.14509. [DOI] [PubMed] [Google Scholar]
  • 80.Bozok F., Assyov B., Taşkin H. First records of Exsudoporus permagnificus and Pulchroboletus roseoalbidus (Boletales) in association with non-native Fagaceae, with taxonomic remarks. Phytol. Balc. 2019;25:13–27. [Google Scholar]
  • 81.Liu H.Y. Master’s Thesis. Jilin Agricultural University; Changchun, China: 2020. Taxonomy and Resource Evaluation of Boletes in Northeastern China. [Google Scholar]
  • 82.Muñoz J., Boletus S.L. Fungi Europaei 2. Edizioni Candusso; Alassio, Italy: 2005. (Excl. Xerocomus): Strobilomycetaceae, Gyroporaceae, Gyrodontaceae, Suillaceae, Boletaceae. [Google Scholar]
  • 83.Han L.H., Wu G., Horak E., Halling R., Xu J.P., Ndolo E., Sato H., Fechner N., Sharma Y., Yang Z.L. Phylogeny and species delimitation of Strobilomyces (Boletaceae), with an emphasis on the Asian species. Persoonia. 2020;44:113–139. doi: 10.3767/persoonia.2020.44.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Klofac W. Schlüssel zur Bestimmung von Frischfunden der europäischen Arten der Boletales mit röhrigem Hymenophor. Osterr. Z. Pilzkd. 2007;16:187–279. [Google Scholar]
  • 85.Vesterholt J. Funga Nordica, Agaricoid, Boletoid, Cyphelloid and Gasteroid Genera. Nordsvamp; Copenhagen, Denmark: 2012. p. 9811021. [Google Scholar]
  • 86.Gelardi M. Contribution to the knowledge of Chinese boletes. II: Aureoboletus thibetanus sl, Neoboletus brunneissimus, Pulveroboletus macrosporus and Retiboletus kauffmanii (Part I) Riv. Micol. Romana. 2017;102:13–30. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

Data relevant to this research can be found here: https://www.ncbi.nlm.nih.gov/; https://www.mycobank.org/; https://www.treebase.org/treebase-web/home.html, accessed on 15 January 2022.


Articles from Journal of Fungi are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES