Skip to main content
Arquivos Brasileiros de Cardiologia logoLink to Arquivos Brasileiros de Cardiologia
. 2021 Nov 17;118(1):41–51. [Article in Portuguese] doi: 10.36660/abc.20201325
View full-text in English

Distribuição Espacial de Mortalidade por Insuficiência Cardíaca no Brasil, 1996-2017

Virna Ribeiro Feitosa Cestari 1, Thiago Santos Garces 1, George Jó Bezerra Sousa 1, Thatiana Araújo Maranhão 2, João David Souza Neto 3, Maria Lúcia Duarte Pereira 1, Vera Lúcia Mendes de Paula Pessoa 1, João Tobias Lima Sales 4, Raquel Sampaio Florêncio 1, Lorena Campos de Souza 3, Glauber Gean de Vasconcelos 1,3, Maria Gyslane Vasconcelos Sobral 1,3, Lara Lídia Ventura Damasceno 4, Thereza Maria Magalhães Moreira 1
PMCID: PMC8959057  PMID: 35195207

Resumo

Fundamento

Insuficiência cardíaca (IC) é uma das principais causas de mortalidade e morbidade no mundo, e está associada ao alto uso de recursos e custos com saúde. No Brasil, a prevalência de IC é de aproximadamente 2 milhões de pacientes, e sua incidência é de aproximadamente 240.000 novos casos por ano.

Objetivo

A investigação objetivou analisar a tendência espaço-temporal da mortalidade causada por IC no Brasil, de 1996 a 2017.

Métodos

Este é um estudo ecológico desenvolvido com dados secundários sobre mortalidade por IC no Brasil. Durante o período, 1.242.014 casos de morte causada por IC foram analisados. A existência da autocorrelação espacial de casos foi calculada utilizando o Índice de Moran Global (IMG) e, quando significativo, o Índice de Moran Local, considerando p <0,05. O risco relativo dos grupos foi calculado.

Resultados

A taxa de mortalidade causada por IC foi diversificada em regiões brasileiras, com ênfase no sul, sudeste e nordeste. O IMG indicou autocorrelação espacial positiva (p=0,01) em todos os períodos. Cidades localizadas no sul, sudeste, nordeste e centro-oeste mostraram maior risco relativo para mortalidade causada por IC, e a maioria das cidades do norte foi classificada como um fator protetivo contra esta causa de morte.

Conclusões

O estudo demonstrou declínio nas taxas de mortalidade no território nacional. A maior concentração de taxas de mortalidade está nas regiões norte e nordeste, enfatizando as áreas prioritárias de vulnerabilidade no planejamento e estratégias de controle de serviços de saúde.

Keywords: Insuficiência Cardíaca, Análise espacial, Estudos ecológicos, Epidemiologia

Introdução

A insuficiência cardíaca (IC) é uma das principais causas de mortalidade e morbidade no mundo, e está associada a um alto uso de recursos e despesas com saúde. Nos Estados Unidos, o número estimado de pacientes com IC com ≥ 20 anos aumentou de 5,7 milhões, em 2009-2012, para 6,2 milhões, em 2013-2016,1 , 2 e estima-se que afeta 26 milhões de pessoas no mundo. Sua prevalência tem crescido rapidamente devido ao envelhecimento da população e melhor assistência e tratamento.3 , 4

No Brasil, a prevalência de IC é de aproximadamente 2 milhões de pacientes, e sua incidência é de 240.000 novos casos por ano. Este país tem o maior sistema universal de saúde do mundo; além disso, caracteriza-se pela intensa mistura racial, desigualdades sociais e tradições culturais que podem afetar a história natural da IC.5 Observou-se que as taxas de morbidade e mortalidade relacionadas à IC no Brasil são muito maiores do que aquelas observadas em países desenvolvidos, mesmo quando ajustadas por região, leitos hospitalares e tipo de instituição.6

Diversas regiões do Brasil demonstraram grande variação na qualidade do cuidado relacionado a condições cardiovasculares de alta carga econômica, como a IC. Esses registros são insuficientes, e a falta de terapias melhores é mais crítica em instituições públicas não-acadêmicas nas regiões mais vulneráveis do Brasil.7

A mortalidade causada pela IC está constantemente associada aos indicadores individuais, sociais, econômicos e de serviços de saúde.8 Então, é importante ter um conhecimento aprofundado sobre a distribuição espacial da mortalidade causada pela IC, assim como grande conhecimento sobre as áreas de maior vulnerabilidade. A análise espacial dos casos de mortalidade por IC no território nacional é essencial para a identificação de demandas específicas e localidades prioritárias e, assim, para o planejamento de intervenções que podem reduzir a mortalidade causada por esta doença.

Não há estudos nacionais e internacionais sobre a distribuição e análise espacial de taxas de mortalidade de IC no território nacional, denotando uma lacuna de conhecimento.

Objetivo

Esta investigação objetivou analisar a tendência espaço-temporal da mortalidade causada por IC no Brasil de 1996 a 2017.

Métodos

Desenho

Este é um estudo ecológico que incluiu todas as regiões e cidades do Brasil como unidades de análise. O Brasil tem uma população de 211.389.487 habitantes distribuídos em 5.570 cidades, de acordo com o Instituto Brasileiro de Geografia e Estatística (IBGE) (2020).

O país é dividido em cinco grandes regiões, subdivididas em 26 estados e o Distrito Federal: sete estados no norte – Acre (AC), Amapá (AP), Amazonas (AM), Pará (PA), Rondônia (RO), Roraima (RR) e Tocantins (TO); nove estados no nordeste – Alagoas (AL), Bahia (BA), Ceará (CE), Maranhão (MA), Paraíba (PB), Pernambuco (PE), Piauí (PI), Rio Grande do Norte (RN) e Sergipe (SE); quatro estados no sudeste – Espírito Santo (ES), Minas Gerais (MG), Rio de Janeiro (RJ) e São Paulo (SP); três estados no sul – Paraná (PR), Rio Grande do Sul (RS) e Santa Catarina (SC); três estados no centro-oeste – Goiás (GO), Mato Grosso (MT), Mato Grosso do Sul (MS); e o Distrito Federal (DF) ( Figura 1 ).

Figura 1. – Regiões e estados brasileiros.

Figura 1

Cenário

Os dados foram obtidos do site do Sistema Único de Saúde (DATASUS), nas seções Estatísticas Vitais (mortalidade – 1996 a 2017, pelo CID-10), e Indicadores de Saúde pactuados (www.datasus.com.br). Esses dados foram coletados em julho de 2019. A população usada para calcular a taxa de mortalidade por 100 mil habitantes e a base cartográfica digital foram obtidas do IBGE.

Critérios de inclusão

Todos os dados secundários sobre mortalidade por IC no país foram usados (classificação I50 no CID-10), diagnosticados de janeiro de 1996 a dezembro de 2017, e registrados no Sistema de Informações sobre Mortalidade (SIM).

Análise

Após identificar o número de mortes causadas por IC nas cidades, a taxa de mortalidade foi calculada. Usamos como numerador o número total de mortes identificadas a cada ano pela população residente no mesmo ano, para cada um dos anos observados, de 1996 a 2017. Então, o resultado foi multiplicado pela constante 100 mil.

Analisamos o padrão temporal da mortalidade por IC no Brasil em geral e por região. Os dados organizados em tabelas, no Microsoft Excel, foram transferidos para o software Jointpoint Regression, versão 4.6.0.0. Com este programa, é possível fazer uma análise de série temporal dos mais diversos problemas de saúde. Também realiza análises lineares segmentadas (também conhecidas como pontos de inflexão, ou jointpoints ), calculando a transformação logarítmica dos valores.

O programa trabalha com a hipótese nula de que um segmento de uma linha pode explicar possíveis variações ao longo dos anos, e que a alternativa a este processo seria a inclusão de pontos de inflexão no período, com consequente mudança na curva do segmento linear. O programa calcula a variação percentual anual (VPA), com intervalo de confiança de 95% (IC95%).

A interpretação dada a esses valores é que uma VPA positiva indica tendência crescente, enquanto a negativa indica tendência decrescente. Além disso, ao final do período, é possível calcular como as mudanças durante os períodos se comportam usando a variação percentual anual média (VPAM), cuja interpretação é semelhante à VPA, mas, neste caso, englobando todo o espaço de tempo.

De acordo com este princípio, este estudo trabalhou com a hipótese da nulidade de que uma simples tendência linear poderia expressar a variação da taxa de mortalidade causada por IC no Brasil, e que, como alternativa, pontos deveriam ser incluídos no modelo com mudança nos segmentos lineares. Um nível de significância de 5% foi estabelecido para testar as hipóteses de VPA e VPAM na série. Para ambos os casos, considerou-se significativo quando o modelo tinha p<0,05 ou IC95%, inteiramente positivo ou negativo.

Os anos analisados foram divididos em quatro períodos: A (1996-2001), B (2002-2007), C (2008-2012), e D (2013-2017). Essas taxas brutas foram suavizadas por meio do método Bayesiano empírico para reduzir a instabilidade. Este método considera não só o número de mortes por cidade, mas as pesa com as cidades vizinhas por meio de uma matriz de proximidade espacial. Para calcular esta matriz, o critério de contiguidade foi usado considerando valor 1 para cidades vizinhas, e 0 para as não-vizinhas.9

Após uma análise espacial descritiva, a presença da dependência espacial global foi avaliada utilizando o Índice de Moran Global (IMG) sobre indicadores brutos. O método identifica a autocorrelação espacial e varia de -1 a +1, segundo o qual valores próximos a zero indicam a ausência de dependência espacial, considerando p<0,05 como significante. Adicionalmente, o Indicador Local de Associação Espacial (LISA) foi avaliado pelo Índice de Moran Local, que verifica o valor da cidade e das vizinhas para identificar os padrões espaciais do fenômeno estudado.10

O Índice de Moran Local gera o diagrama de espalhamento de Moran, que consiste de quatro quadrantes: alto-alto (cidades com altas taxas e rodeadas por outras com altas taxas), baixo-baixo (cidades com baixas taxas e rodeadas por outras com baixas taxas), alto-baixo (cidades com altas taxas rodeadas por outras com baixas taxas), e baixo-alto (cidades com baixas taxas rodeadas por outras com altas taxas), considerando p<0,05 como significativo. As categorias alto-alto e baixo-baixo representam áreas de concordância, e as categorias alto-baixo e baixo-alto indicam áreas de transição epidemiológica.10

O risco relativo dos grupos foi calculado por meio da técnica espacial de varredura, chamada de estatística de varredura. Foi utilizado para identificar áreas de risco e proteção para a mortalidade por IC. Para este fim, o risco relativo (RR) de cada cidade para mortalidade foi calculado, e a presença de grupos de morte espacial foi identificada.

A análise estatística foi realizada utilizando o software Stata, versão 12.0. A regressão de pontos de inflexão foi realizada com o software Jointpoint Regression, versão 4.7.0.0. A estatística espacial foi realizada com o TerraView 4.2.2. A análise espacial de varredura foi realizada com a ajuda do software SaTScan 9.6. Todos os mapas foram criados com o QGIS 2.4.17.

Considerações éticas

Este estudo dispensou a aprovação prévia dos Comitês de Ética e Pesquisa, já que a base de dados estava disponível gratuitamente na internet pelo Governo Brasileiro. É importante enfatizar que não há informações de identificação, como nome ou endereço, na base de dados. Apesar de os pesquisadores não precisarem de aprovação prévia, eles declararam seu compromisso ético ao lidar com os dados, análise e publicação, como estabelecido pela resolução 466/12, do Conselho Nacional de Pesquisa. A pesquisa foi reportada no STROBE (Strengthening the Reporting of Observational studies in Epidemiology Statement).

Resultados

Durante o período de 21 anos, 1.242.014 mortes foram notificadas por IC. Os resultados da análise da tendência temporal mostraram redução significativa de 2,3% (IC95%: -2,3 – -2,7) na taxa de mortalidade em todos os territórios brasileiros. Ao considerar as dimensões continentais do país, é necessário investigar essas tendências em áreas regionais. Quatro das cinco regiões mostraram redução significativa nas taxas de mortalidade, destacando uma redução mínima nas taxas no nordeste (VPAM: -0,7; IC95%: -0,9 – -0,4). Por outro lado, o sul aumentou sua taxa de mortalidade em 2,9% (IC95%: 2,0 – 3,9) ( Tabela 1 ).

Tabela 1. – Tendências temporais da mortalidade por insuficiência cardíaca no Brasil e regiões. Fortaleza, CE, Brasil, 2019.

Regiões Do país *VPA1 PI *VPA2 IP *VPA3 PI †VPAM




(§ IC95%) (§ IC95%) (§ IC95%)) (§ IC95%))
Brasil
  • -6,3 //

  • (-7,7; -1,8)

2001
  • -1,1 //

  • (-1,3; -0,7)

2017    
  • -2,3 //

  • (-2,3; -2,7)

Norte
  • -1,3

  • (-11,3; 2,4)

2017        
  • -1,3 //

  • (-1,7; -0,9)

Nordeste
  • - 0,7 //

  • (-7,1; -1,5)

2017
  • 9,4 //

  • (6,6; 12,3)

2011
  • -2,8

  • (-4,2; -1,4)

 
  • -0,7 //

  • (-0,9; -0,4)

Sudeste
  • -7,7

  • (-8,7; -6,7)

2002
  • -0,8

  • (-1,2; -0,3)

2014
  • -2,4 //

  • ( -0,9; -5,8)

2017
  • -4,0 //

  • (-5,5; -2,4)

Centro-oeste
  • -6,2 //

  • (-10,2; -2,1)

2000
  • -2,3 //

  • (-3,0; -1,7)

2015
  • -3,3

  • ( -11,5; 3,8)

2017
  • -4,0 //

  • (-5,5; -2,4)

Sul
  • -7,9 //

  • ( -13,0; -2,5)

1998
  • 37 //

  • (28,9; 45,5)

2001
  • -1,1 //

  • (-1,3; -0,8)

2017
  • 2,9 //

  • (2,0; 3,9)

*VPA: Variação Percentual Anual; VPAM: Variação Percentual Anual Média; PI: Ponto de Inflexão; § IC95%: Intervalo de confiança de 95%; // p = < 0,05.

Em relação à análise espacial dos 5.570 municípios, os mapas das Figuras 2 demonstram que as taxas brutas de mortalidade variaram de 0 a 200 mortes por 100 mil habitantes. Nas áreas em vermelho, é possível identificar, no período A (1996-2001), que altas taxas de mortalidade estavam focadas nas cidades do sul e do sudeste. Os períodos B (2002-2007) e C (2008-2012) demonstraram que, ao longo dos anos, as taxas se espalharam para o nordeste e o centro-oeste, mas mantiveram altas concentrações no sul (resultados semelhantes à análise série temporal). Nos últimos anos, como demonstrado no período D (2013-2017), é possível destacar que as cidades do norte não apresentaram altas taxas de mortalidade.

Figura 2. – Mapas das taxas de mortalidade bruta por insuficiência cardíaca no Brasil, nos períodos A (1996-2001), B (2002-2007), C (2008-2012), D (2013-2017), por cidade e por 100 mil habitantes. Fortaleza, CE, Brasil, 2019.

Figura 2

Na Figura 3 , as taxas foram suavizadas pelo método Bayesiano empírico e demonstraram que, no período A (1996-2001), a mortalidade estava principalmente concentrada nas cidades do sul; porém, variaram ao longo dos anos. O período B (2002-2007) mostrou que o sudeste apresentou altas taxas de mortalidade, principalmente em cidades localizadas nos estados de São Paulo e Minas Gerais. Nos períodos C (2008-2012) e D (2013-2017), foi possível identificar uma concentração alta de mortes no nordeste, principalmente no Piauí, Bahia, Rio Grande do Norte e Ceará.

Figura 3. – Mapas das taxas e mortalidade devido à insuficiência cardíaca no Brasil suavizadas pelo método Bayesiano empírico nos períodos A (1996-2001), B (2002-2007), C (2008-2012) e D (2013-2017), por cidade e por 100 mil habitantes. Fortaleza, CE, Brasil, 2019.

Figura 3

Em relação à análise de autocorrelação espacial, o IMG do período A (1996-2001) foi 0,41 (p=0,01); do período B (2002-2007), 0,28 (p=0,01); do período C (2008-2012), de 0,29 (p=0,01); e o IMG no período D (2013-2017) foi de 0,31 (p=0,01). Esses resultados indicam autocorrelação espacial positiva.

Já que a dependência espacial foi verificada em todas as áreas do estudo pelo IMG, utilizamos o Índice de Moran Local (IML). Os grupos espaciais corroboram os resultados nos mapas locais do método Bayesiano empírico em todos os períodos. Confirmaram que índices alto-alto estão mais concentrados no sul e se espalharam para as cidades do nordeste ao longo dos anos. O índice baixo-baixo esteve concentrado em cidades do norte e centro-oeste ( Figura 4 ).

Figura 4. – Mapas da autocorrelação espacial de Moran sobre a mortalidade por insuficiência cardíaca no Brasil nos períodos A (1996-2001), B (2002-2007), C (2008-2012) e D (2013-2017). Fortaleza, CE, Brasil, 2019.

Figura 4

Na Figura 5 , a estatística espacial de varredura confirmou outras análises e identificou que o maior risco de mortalidade por IC estava no sul no período A (1996-2001). Este padrão avançou em outros períodos, sendo possível encontrar RR alto no centro-oeste.

Figura 5. – Risco relativo de todas as cidades brasileiras para mortalidade por insuficiência cardíaca nos períodos A (1996-2001), B (2002-2007), C (2008-2012) e D (2013-2017). Fortaleza, CE, Brasil, 2019.

Figura 5

Porém, o ultimo período também demonstrou altos riscos no norte e nordeste. No último período (2013-2017), quase todas as cidades do sul, sudeste, nordeste e centro-oeste tinham algum risco de mortalidade causada por IC. No norte, as cidades nos estados do Pará e Amazonas tinham pouco risco de mortalidade, com RR<1 (em azul); somente algumas cidades de Roraima e do Acre tinham grupos com RR >15 (em vermelho).

Discussão

Este é o primeiro estudo que avalia a distribuição espacial de mortalidade por IC no Brasil. Inicialmente, as cidades do sul tinham maior taxa de mortalidade. Este padrão de notificação caracterizava contextos operacionais de “silêncio epidemiológico” em algumas áreas desde 2001. Desde 2002, as taxas de mortalidade aumentaram nas cidades do sudeste, nordeste e centro-oeste. As cidades no norte, por outro lado, mostraram taxas baixas de mortalidade, revelando a subnotificação de casos.

É importante observar que as cidades nas regiões brasileiras com as maiores taxas de mortalidade são as maiores em tamanho da população, e as que têm mais pessoas idosas. Questionários nacionais e internacionais demonstraram que a IC afeta principalmente indivíduos com mais de 65 anos.11 , 12 A prevalência crescente de IC está diretamente relacionada às comorbidades mais comuns do envelhecimento.13 Além disso, a idade avançada é um fator de risco para o autocuidado, pouca aderência ao tratamento e manejo da doença.14 - 16

A doença prevalece entre os mais velhos, mas uma grande porcentagem também é percebida na população adulta.17 Em uma análise de tendências temporais específicas por idade, sexo e raça considerando taxas de morbidade e mortalidade relacionadas à IC entre 1991 e 2015, nos Estados Unidos, Vasan, Zuo e Kalesan18 observaram um aumento nas taxas de hospitalização de pessoas com a doença na faixa etária dos 30 aos 49 anos. Este fato pode estar relacionado a um estilo de vida inadequado, expondo os indivíduos a diversos fatores de risco para a doença, como o ato de fumar, consumo de álcool, falta de atividade física e comorbidades, com ênfase na hipertensão e diabetes.

Poffo et al.19 atribuíram o número de casos de IC em adultos à manifestação precoce da doença cardíaca, tratamentos menos efetivos para doenças que levam à IC, e à não-aderência ao tratamento recomendado. Assim, a prevenção se destaca como arma importante contra a IC.17 , 18 , 20 A alta taxa de mortalidade em cidades na região sudeste pode estar associada à raça/etnia de pessoas afetadas pela IC, com maior prevalência entre os brancos. Enquanto a doença prevalece nesta população, a sobrevivência é maior entre os negros (7,5% vs. 2,2%; p = 0,01),19 hispânicos e asiáticos.21

O motivo para tal disparidade é complexo. O efeito da raça no prognóstico da IC não é claro, porque diferentes estudos trazem resultados divergentes. A raça não demonstrou associação com a ocorrência de complicações e readmissões hospitalares entre os australianos com IC.22 Husaini et al.,23 em estudo comparando raça/etnia e taxas de internação, descobriram que as taxas de internação para indivíduos negros permaneceu mais alta em comparação aos brancos e hispânicos.

Em um estudo norte-americano, em um total de 7.878 pacientes com IC, 35,8% eram negros. Entre eles, condições como hipertensão, diabetes e doenças cerebrovasculares prevaleceram; porém, a taxa de mortalidade foi mais baixa quando comparados a indivíduos brancos.24 Goyal et al.25 analisaram 1.889.608 internações de pacientes com IC e descobriram que outras comorbidades, como anemia e doença renal crônica, foram mais comuns entre os negros, mas este grupo apresentou menor mortalidade hospitalar quando comparado aos brancos.

A divergência na literatura reforça a necessidade de mais pesquisas sobre a associação entre raça/etnia e a taxa de mortalidade devido à IC, assim como as principais causas de readmissão. Alguns achados podem ajudar na implementação de programas preventivos para hipertensão e diabetes entre as minorias, o que pode reduzir a subsequente hospitalização por IC nesses pacientes.

A mudança nos padrões epidemiológicos da doença no país também foi gerada como resultado da cobertura dos serviços de saúde. A saúde no Brasil é guiada por uma clara definição de territórios e das pessoas sob a responsabilidade de cada equipe de saúde. As melhorias no acesso, qualidade e infraestrutura do serviço de saúde e a cobertura de cidades brasileiras são preocupações dos administradores da saúde.

É necessário ter em mente que há diferenças regionais entre as condições de acesso a instituições de saúde e a assistência oferecida no Brasil. As diferenças no fornecimento podem ser observadas até dentro da mesma cidade, entre cidades e entre estados da federação, o que leva à manutenção de uma distribuição desigual de fornecimento e acesso de serviços.26

A complexidade da IC requer conhecimento de diferentes profissionais que trabalham em diferentes níveis da assistência à saúde. Assim, é importante articular esses níveis para promover saúde, qualidade no atendimento e satisfação do usuário. Os fornecedores da saúde e os pacientes devem assumir alguma responsabilidade que vá além do cuidado mecânico e tradicional. É necessário empoderar e capacitar o indivíduo para que ele se proteja de situações de vulnerabilidade, assim reduzindo as disparidades regionais.

O aumento nas taxas de mortalidade devido à IC nas cidades do norte e nordeste pode ser explicado pela baixa qualidade de vida e fatores estressantes, que são os principais agentes para o aumento na hospitalização. As internações ocorrem não só por conta da IC, mas também por outras comorbidades.19 , 27

As regiões brasileiras com o maior número de internações em 2017 foram o sudeste, seguido do sul e nordeste e, em terceiro lugar, o centro-oeste e o norte.28 Iniciativas isoladas sugerem a existência de diferenças regionais significativas em várias características de pacientes hospitalizados com IC no Brasil,17 embora essas comparações sejam metodologicamente limitadas por desenhos e critérios de inclusão normalmente divergentes.

Apesar dos grandes avanços na ciência e na tecnologia da saúde, há uma grande lacuna que separa avanços tecnicamente atingíveis na saúde e o que os indivíduos e as populações de fato conquistam.29 O status financeiro é um fator relevante no manejo da doença, relacionado ao conhecimento funcional da saúde, aderência e autocuidado. Os autores enfatizam que quanto menor o nível socioeconômico, menor a taxa de aderência ao tratamento (com medicamentos ou não).30

Na Europa, estima-se que o custo anual do tratamento da IC seja de 3,7% do Fundo Nacional da Saúde, com a expectativa de dobrar esta quantia nos próximos 20 anos. Os custos com medicamentos compõem menos de 5% dos recursos gastos em tratamento de pessoas com IC, enquanto 79% está relacionado a despesas com internação.31

No Brasil, a IC tem um custo alto. Kaufman et al.32 demonstraram que, entre 2001 e 2012, a duração média da internação de pacientes com IC foi de 5,8 dias, em 2001, e 6,6 dias, em 2012; a taxa de mortalidade estava em crescimento, começando em 6,6%, em 2001, e atingindo 9,5%, em 2012 (aumento de 46,1%). O custo médio da autorização para internação aumentou de R$ 519,54, em 2001, para R$ 1.2019,56, em 2012 (aumento de 132,8%). Uma pesquisa que buscou descrever o número de hospitalizações por IC nas regiões brasileiras em 2017 e o impacto dessas internações nos custos hospitalares mostrou que, só em 2017, a quantia de R$ 339.719.216,50 foi gasta.28

Em um estudo recente, Stevens et al.33 analisaram os custos associados ao tratamento, perda de produtividade devido à redução da empregabilidade, custos de promover cuidado formal e informal e perda de bem-estar relacionada às condições de quatro grandes doenças cardíacas no Brasil. Os autores descobriram que os custos com IC foram de R$22,1 bilhões (6,8 bilhões de dólares) e que os pacientes tinham perda significativa de produtividade.

O alto custo associado à assistência em IC sugere que novos estudos sejam desenvolvidos para entender melhor as escolhas dos pacientes, para que os profissionais possam estar mais preparados para ajudá-los a administrar suas medicações, influenciar comportamentos diários e incentivar a tomada de decisões saudáveis. Conhecer a situação financeira e entender a economia da cidade pode promover abordagens adicionais para melhorar o prognóstico da doença.

Vale a pena mencionar que cidades com baixo risco de mortalidade por conta da doença precisam ser analisadas com cuidado. A área demonstrada como fator protetivo para mortalidade da doença pode ser resultado de subnotificação. Além disso, a migração de pacientes com IC para regiões vizinhas por conta de melhores oportunidades de tratamento pode dificultar a interpretação do estudo.

Algumas limitações do estudo devem ser relatadas. Primeiro, é um estudo ecológico, então a análise do nível agregado dos dados não pode estabelecer relações entre variáveis no nível individual. Além disso, já que nossos dados derivaram de uma base de dados nacional, é possível que haja subnotificação, e a taxa de mortalidade hospitalar pode ser subestimada. Essas limitações podem trazer uma melhor abordagem aos resultados. Porém, a precisão da análise, a quantidade de dados e o período de tempo analisado (longo) promovem segurança à evidência gerada neste estudo.

Conclusões

A mortalidade por IC seguiu um padrão espacial no período analisado. A notificação de casos iniciou-se nas cidades do sul do Brasil e, com o passar dos anos, um padrão crescente de mortalidade foi observado em outras regiões, com ênfase no sudeste e no nordeste.

A análise espacial contribuiu para mostrar o cenário da mortalidade por IC nas cidades brasileiras. As áreas geográficas destacadas estão mais suscetíveis à mortalidade, o que requer ações específicas para prevenir a doença e promover a saúde. Assim, este estudo pode guiar ações com foco em melhorar a qualidade do cuidado clínico oferecido em cidades mais afetadas pela IC.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Fontes de financiamento: O presente estudo não teve fontes de financiamento externas.

Referências

  • 1.Aoyanagi H, Nochioka K, Sakata Y, Miura M, Shiroto T, Abe R, et al. Temporal Changes in Left Ventricular Ejection Fraction and Their Prognostic Impacts in Patients with Stage B Heart Failure. Int J Cardiol. 2020;306:123-32. doi: 10.1016/j.ijcard.2020.02.040. [DOI] [PubMed]
  • 2.Farré N, Vela E, Clèries M, Bustins M, Cainzos-Achirica M, Enjuanes C, et al. Real World Heart Failure Epidemiology and Outcome: A Population-Based Analysis of 88,195 Patients. PLoS One. 2017;12(2):e0172745. doi: 10.1371/journal.pone.0172745. [DOI] [PMC free article] [PubMed]
  • 3.Fernandes ADF, Fernandes GC, Mazza MR, Knijnik LM, Fernandes GS, Vilela AT, et al. A 10-Year Trend Analysis of Heart Failure in the Less Developed Brazil. Arq Bras Cardiol. 2020;114(2):222-31. doi: 10.36660/abc.20180321. [DOI] [PMC free article] [PubMed]
  • 4.Contaifer D Jr, Buckley LF, Wohlford G, Kumar NG, Morriss JM, Ranasinghe AD, et al. Metabolic Modulation Predicts Heart Failure Tests Performance. PLoS One. 2019;14(6):e0218153. doi: 10.1371/journal.pone.0218153. [DOI] [PMC free article] [PubMed]
  • 5.Gioli-Pereira L, Marcondes-Braga FG, Bernardez-Pereira S, Bacal F, Fernandes F, Mansur AJ, et al. Predictors of One-year Outcomes in Chronic Heart Failure: The Portrait of a Middle Income Country. BMC Cardiovasc Disord. 2019;19(1):251. doi: 10.1186/s12872-019-1226-9. [DOI] [PMC free article] [PubMed]
  • 6.Ribeiro ALp, Duncan BB, Brant LC, Lotufo PA, Mill JG, Barreto SM. Cardiovascular Health in Brazil: Trends and Perspectives. Circulation. 2016;133(4):422-33. doi: 10.1161/CIRCULATIONAHA.114.008727. [DOI] [PubMed]
  • 7.Taniguchi FP, Bernardez-Pereira S, Silva SA, Ribeiro ALP, Morgan L, Curtis AB, et al. Implementation of a Best Practice in Cardiology (BPC) Program Adapted from Get with The Guidelines®in Brazilian Public Hospitals: Study Design and Rationale. Arq Bras Cardiol. 2020;115(1):92-9. doi: 10.36660/abc.20190393. [DOI] [PMC free article] [PubMed]
  • 8.Cestari VRF, Moreira TMM, Pessoa VLM, Florêncio RS. Insuficiência Cardíaca: Interface com a Vulnerabilidade em Saúde. Fortaleza: Editora CRV; 2019.
  • 9.Martins-Melo FR, Lima MS, Ramos AN Jr, Alencar CH, Heukelbach J. Mortality and Case Fatality Due to Visceral Leishmaniasis in Brazil: A Nationwide Analysis of Epidemiology, Trends and Spatial Patterns. PLoS One. 2014;9(4):e93770. doi: 10.1371/journal.pone.0093770. [DOI] [PMC free article] [PubMed]
  • 10.Monteiro LD, Martins-Melo FR, Brito AL, Alencar CH, Heukelbach J. Padrões Espaciais da Hanseníase em um Estado Hiperendêmico no Norte do Brasil, 2001-2012. Rev Saúde Pública. 2015; 49(84);1-8. doi: 10.1590/S0034-8910.2015049005866. [DOI] [PubMed]
  • 11.Viana PAS, Neto JDC, Novais CT, Guimarães IF, Lopes YS, Reis BC. Profile of Patients Hospitalized to Treat Decompensated Heart Failure. SANARE. 2018; 17(1):15-23.
  • 12.Mantovani VM, Ruschel KB, Souza EN, Mussi C, Rabelo-Silva ER. Treatment Adherence in Patients with Heart Failure Receiving Nurse-Assisted Home Visits. Acta Paul Enferm 2015; 28(1): 41-7. 10.1590/1982-0194201500008 . [DOI]
  • 13.Cavalcante LM, Lima FET, Custódio IL, Oliveira SKP, Meneses LST, Oliveira ASS, et al. Influence of Socio-Demographic Characteristics in the Self-care of People with Heart Failure. Rev Bras Enferm. 2018;71(suppl 6):2604-11. doi: 10.1590/0034-7167-2017-0480. [DOI] [PubMed]
  • 14.Salvadó-Hernández C, Cosculluela-Torres P, Blanes-Monllor C, Parellada-Esquius N, Méndez-Galeano C, Maroto-Villanova N, et al. Insuficiencia Cardiaca en Atención Primaria: Actitudes, Conocimientos y Autocuidado. Atención Primaria 2018; 50(4):213-21. doi: 10.1016/j.aprim.2017.03.008. [DOI] [PMC free article] [PubMed]
  • 15.Beltrán Troncoso P, Formiga F. Rehabilitation in elderly frail patients with acute heart failure. Training in REHAB-HF Pilot Study. Rev Esp Geriatr Gerontol. 2018;53(2):63-5. doi: 10.1016/j.regg.2017.09.001. [DOI] [PubMed]
  • 16.Nascimento WO, Santos AMR, Ribeiro IP, Oliveira ADS. Profile of Eldery People with Heart Failure in an Emergency Hospital. Cogitare Enferm 2016; 21(4):1-10.
  • 17.Albuquerque DC, Neto JD, Bacal F, Rohde LE, Bernardez-Pereira S, Berwanger O. I Brazilian Registry of Heart Failure - Clinical Aspects, Care Quality and Hospitalization Outcomes. Arq Bras Cardiol. 2015;104(6):433-42. doi: 10.5935/abc.20150031. [DOI] [PMC free article] [PubMed]
  • 18.Vasan RS, Zuo Y, Kalesan B. Divergent Temporal Trends in Morbidity and Mortality Related to Heart Failure and Atrial Fibrillation: Age, Sex, Race, and Geographic Differences in the United States, 1991-2015. J Am Heart Assoc. 2019;8(8):e010756. doi: 10.1161/JAHA.118.010756. [DOI] [PMC free article] [PubMed]
  • 19.Poffo MR, Assis AV, Fracasso M, Lonero Filho OM, Bald AP, Schmitt CB, et al. Perfil dos Pacientes Internados por Insuficiência Cardíaca em Hospital Terciário. Int J Cardiovasc Sci. 2017;30(3):189-98. doi:10.5935/2359-4802.20170044.
  • 20.Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129-200. doi: 10.1093/eurheartj/ehw128. [DOI] [PubMed]
  • 21.Ziaeian B, Heidenreich PA, Xu H, DeVore AD, Matsouaka RA, Hernandez AF, et al. Race/Ethnic Differences in Outcomes Among Hospitalized Medicare Patients with Heart Failure and Preserved Ejection Fraction. JACC Heart Fail. 2017;5(7):483-93. doi: 10.1016/j.jchf.2017.02.012. [DOI] [PMC free article] [PubMed]
  • 22.Saito M, Negishi K, Marwick TH. Meta-Analysis of Risks for Short-Term Readmission in Patients with Heart Failure. Am J Cardiol. 2016;117(4):626-32. doi: 10.1016/j.amjcard.2015.11.048. [DOI] [PubMed]
  • 23.Husaini BA, Levine RS, Norris KC, Cain V, Bazargan M, Moonis M. Heart Failure Hospitalization by Race/Ethnicity, Gender and Age in California: Implications for Prevention. Ethn Dis. 2016;26(3):345-54. doi: 10.18865/ed.26.3.345. [DOI] [PMC free article] [PubMed]
  • 24.Shan J, Zhang L, Holmes AA, Taub CC. The Impact of Race on the Prognosis of Preclinical Diastolic Dysfunction: A Large Multiracial Urban Population Study. Am J Med. 2016;129(2):222.1-10. doi: 10.1016/j.amjmed.2015.08.036. [DOI] [PubMed]
  • 25.Goyal P, Paul T, Almarzooq ZI, Peterson JC, Krishnan U, Swaminathan RV, et al. Sex- and Race-Related Differences in Characteristics and Outcomes of Hospitalizations for Heart Failure with Preserved Ejection Fraction. J Am Heart Assoc. 2017;6(4):e003330. doi: 10.1161/JAHA.116.003330. [DOI] [PMC free article] [PubMed]
  • 26.Abreu DMX, Pinheiro PC, Queiroz BL, Lopes EAS, Machado ATGM, Lima AMLD, et al. Spatial Analysis of the Quality of Primary Health Care in Brazil. Debate 2018; 42 (1): 67-80. doi: 10.1590/0103-11042018S105.
  • 27.Gaui EN, Klein CH, Oliveira GM. Proportional Mortality due to Heart Failure and Ischemic Heart Diseases in the Brazilian Regions from 2004 to 2011. Arq Bras Cardiol. 2016;107(3):230-8. doi: 10.5935/abc.20160119. [DOI] [PMC free article] [PubMed]
  • 28.Souza SC, Silva CMS, Reis HFC, Gomes Neto M. Número de internações hospitalares, custos hospitalares, média de permanência e mortalidade por insuficiência cardíaca nas regiões brasileiras, no ano de 2017. Rev Ciênc Med Biol 2018; 17(3):376-80. doi: 10.9771/cmbio.v17i3.28626.
  • 29.Mehta SJ, Volpp KG, Asch DA, Goldberg LR, Russell LB, Norton LA, et al. Rationale and Design of EMPOWER, a Pragmatic Randomized Trial of Automated Hovering in Patients with Congestive Heart Failure. Circ Cardiovasc Qual Outcomes. 2019;12(4):e005126. doi: 10.1161/CIRCOUTCOMES.118.005126. [DOI] [PMC free article] [PubMed]
  • 30.Chang LL, DeVore AD, Granger BB, Eapen ZJ, Ariely D, Hernandez AF. Leveraging Behavioral Economics to Improve Heart Failure Care and Outcomes. Circulation. 2017;136(8):765-72. doi: 10.1161/CIRCULATIONAHA. [DOI] [PubMed]
  • 31.Fedyk-Łukasik M, Wizner B, Opolski G, Zdrojewski T, Czech M, Dubiel JS, et al. Quality of Care of Hospitalised Patients with Heart Failure in Poland in 2013: Results of the Second Nationwide Survey. Kardiol Pol. 2017;75(6):527-34. doi: 10.5603/KP.a2017.0040. [DOI] [PubMed]
  • 32.Kaufman R, Azevedo VMP, Xavier RMA, Geller M, Chaves RBM, Castier MB. Evaluation of Heart Failure-Related Hospital Admissions and Mortality Rates: A 12-year Analysis. Int J Cardiovasc Sci 2015;28(4):276-81. doi:10.5935/2359-4802.20150040.
  • 33.Stevens B, Pezzullo L, Verdian L, Tomlinson J, George A, Bacal F. The Economic Burden of Heart Conditions in Brazil. Arq Bras Cardiol. 2018;111(1):29-36. doi: 10.5935/abc.20180104. [DOI] [PMC free article] [PubMed]
Arq Bras Cardiol. 2021 Nov 17;118(1):41–51. [Article in English]

Spatial Distribution of Mortality for Heart Failure in Brazil, 1996 – 2017

Virna Ribeiro Feitosa Cestari 1, Thiago Santos Garces 1, George Jó Bezerra Sousa 1, Thatiana Araújo Maranhão 2, João David Souza Neto 3, Maria Lúcia Duarte Pereira 1, Vera Lúcia Mendes de Paula Pessoa 1, João Tobias Lima Sales 4, Raquel Sampaio Florêncio 1, Lorena Campos de Souza 3, Glauber Gean de Vasconcelos 1,3, Maria Gyslane Vasconcelos Sobral 1,3, Lara Lídia Ventura Damasceno 4, Thereza Maria Magalhães Moreira 1

Abstract

Background

Heart failure (HF) is a leading cause of mortality and morbidity worldwide, and is associated with the high use of resources and healthcare costs. In Brazil, the HF prevalence is around 2 million patients, and its incidence is of approximately 240,000 new cases per year.

Objective

The present investigation aimed to analyze the spatiotemporal trend of mortality caused by HF in Brazil, from 1996 to 2017.

Methods

This is an ecological study developed with secondary data on HF mortality in Brazil. During the period, 1,242,014 cases of death caused by heart failure were analyzed. The existence of spatial autocorrelation of cases was calculated using the Global Moran Index (GMI) and, when significant, the Local Moran Index, considering p<0.05. The relative risk of the clusters was calculated.

Results

The mortality rate due to HF was diversified in all Brazilian regions, with an emphasis in the South, Southeast, and Northeast. The GMI indicated positive spatial autocorrelation (p=0.01) in all periods. Municipalities located in the South, Southeast, Northeast, and Midwest showed a higher Relative Risk for mortality from HF, and most municipalities in the North were classified as a protective factor against this cause of death.

Conclusions

The study showed a decline in mortality rates across the national territory. The highest concentration of mortality rates is in the North and Northeast regions, highlighting priority vulnerable areas in the planning and controlling strategies of health services.

Keywords: Heart Failure, Spatial Analysis, Ecological Studies, Epidemiology

Introduction

Heart Failure (HF) is a leading cause of mortality and morbidity worldwide, and is associated with the high use of resources and healthcare costs. In the United States, the estimated number of HF patients aged ≥ 20 years increased from 5.7 million, in 2009-2012, to 6.2 million in 2013-2016,1 , 2 and is estimated to affect 26 million people around the world. Its prevalence has been increasing fast due to the aging of the population and better care and treatment.3 , 4

In Brazil, the prevalence of HF is of around 2 million patients, and its incidence is of approximately 240,000 new cases per year. This country has the largest universal health system in the world; besides, it is characterized by intense racial admixture, social inequalities, and cultural traditions that may affect the natural history of HF.5 It was observed that morbidity and mortality rates related to HF in Brazil are much higher than those observed in developed countries, even when adjusting for region, several hospital beds, and type of institution.6

Multiple regions of Brazil have shown a high variation in the quality of care addressed to cardiovascular conditions of high economic burden, such as HF. These registries remain suboptimal, and the lack of optimal therapies is more critical in the public non-academic institutions of the poorest regions of Brazil.7

Mortality due to HF is constantly associated with individual, social, economic, and health service indicators.8 In this regard, it is relevant to have an in-depth understanding of the spatial distribution of mortality caused by HF to increased knowledge about the areas of greatest vulnerability. The spatial analysis of HF mortality cases throughout the national territory is fundamental for the identification of specific demands and priority locations and, thus, for the planning of interventions that can reduce mortality caused by this disease.

There are no national and international studies about the distribution and spatial analysis of HF mortality rates in the Brazilian territory, denoting an existing knowledge gap.

Objective

The present investigation aimed to analyze the spatiotemporal trend of mortality from HF in Brazil, from 1996 to 2017.

Methods

Design

It is an ecological study that included all regions and municipalities of Brazil as units of analysis. Brazil has a population of 211,389,487 inhabitants distributed in 5,570 municipalities, according to the Brazilian Institute of Geography and Statistics (IBGE) (2020).

The country is divided in five major regions, subdivided into 26 states and the Federal District: Seven states in the North – Acre (AC), Amapá (AP), Amazonas (AM), Pará (PA), Rondônia (RO), Roraima (RR), and Tocantins (TO); nine states in the Northeast – Alagoas (AL), Bahia (BA), Ceará (CE), Maranhão (MA), Paraíba (PB), Pernambuco (PE), Piauí (PI), Rio Grande do Norte (RN), and Sergipe (SE); four states in the Southeast – Espírito Santo (ES), Minas Gerais (MG), Rio de Janeiro (RJ), and São Paulo (SP); three states in the South – Paraná (PR), Rio Grande do Sul (RS), and Santa Catarina (SC); three states in the Midwest – Goiás (GO), Mato Grosso (MT), Mato Grosso do Sul (MS); and the Federal District (DF) ( Figure 1 ).

Figure 1. – Brazilian Regions and States.

Figure 1

Setting

The data were obtained from the website of the Unified Health System (DATASUS), in the sections Vital Statistics (mortality – 1996 to 2017, by ICD-10) and Health Indicators and Pactuation (www.datasus.com.br). These data were collected in July 2019. The population used to calculate the mortality rate per 100 thousand inhabitants and the digital cartographic base were obtained from IBGE.

Inclusion criteria

All secondary HF mortality data across the country were used (classification I50 in the ICD-10), diagnosed from January 1996 to December 2017, and recorded in the Mortality Information System (MIS).

Analysis

After identifying the number of deaths from HF in the municipalities, the mortality rate was calculated. We used, as numerator, the total number of deaths identified each year by the resident population of the same year, for each of the observed years, from 1996 to 2017. Then, the resulting value was multiplied by the constant 100 thousand.

We analyzed the temporal pattern of HF mortality in Brazil in general and by regions. The data organized in tables, in Microsoft Excel, were transferred to the Joinpoint Regression software, version 4.6.0.0. With this software, it is possible to make a time series analysis of the most diverse health problems. It also performs segmented linear analysis (also known as analysis by inflection points, or joinpoints), calculating the logarithmic transformation of the values.

The software works with the null hypothesis that a segment of one line can explain possible variations over the years, and that the alternative to this process would be the inclusion of inflection points in the period, with a consequent change in the slope of the line segment. The program calculates the annual percentage change (APC) with a 95% confidence interval (95%CI).

The interpretation given to these values is that a positive APC indicates an increasing trend, and a negative one indicates a decreasing trend. Furthermore, at the end of the period, it is possible to calculate how the changes during the periods behaved using the average annual percentage change (AAPC), which has an interpretation similar to APC, but, in this case, aimed at the entire period.

Following this principle, this study worked with the nullity hypothesis that the simple linear trend could express the variation in the mortality rate due to HF in Brazil and that, as an alternative, points should be included in the model with the change in line segments. A significance level of 5% was established to test the hypotheses of APC and AAPC of the series. For both cases, it was considered as significant when the model had p<0.05 or 95%CI, entirely positive or negative.

The analyzed years were divided in four periods: A (1996-2001), B (2002-2007), C (2008-2012), and D (2013-2017). These crude rates were smoothed through the local empirical Bayesian method to reduce the instability caused by the crude rates. This method considers not only the number of deaths by municipality, but weighs it with the neighboring municipalities through a spatial proximity matrix. To calculate this matrix, the contiguity criterion was used, considering value 1 to the neighboring municipalities and 0 to the non-neighbors.9

After a descriptive spatial analysis, the presence of global spatial dependence was evaluated using the Global Moran Index (GMI) on crude indicators. The method identifies spatial autocorrelation and ranges from -1 to +1, in which values close to zero indicate the absence of spatial dependence, considering p<0.05 as significant. Additionally, the Local Index of Spatial Association (LISA) was assessed by the Local Moran Index, which checks the value of the municipality and its neighbors for the identification of spatial patterns of the studied phenomenon.10

The Local Moran Index generates the Moran’s scattering diagram, which consists of four quadrants: high-high (municipalities with high rates and surrounded by those with high rates), low-low (municipalities with low rates surrounded by those with low rates), high-low (municipalities with high rates surrounded by those with low rates) and low-high (municipalities with low rates surrounded by those with high rates), considering p<0.05 as significant. The high-high and low-low categories represent areas of agreement, and the high-low and low-high categories indicate epidemiological transition areas.10

The relative risk of clusters was calculated using the spatial scanning technique, called the Scan statistic. It was used to identify risk and protection areas for HF mortality. For that end, the relative risk (RR) of each municipality for mortality was calculated, and the presence of purely spatial death clusters was identified.

Statistical analysis was performed by using Stata software, version 12.0. Joinpoint regressions were performed by the Joinpoint Regression software, version 4.7.0.0. Spatial statistics were performed with TerraView 4.2.2. The purely spatial scan analysis was performed with the aid of SaTScan 9.6 software. All maps were created using QGIS 2.4.17.

Ethical considerations

This study dismissed previous approval from Ethics Research Committees since the database was freely available on the internet by the Brazilian Government. It is important to emphasize that no identification information, such as name or address, was present in the database. Even though the researchers did not need previous approval, they declared their ethical commitment in handling data, analysis, and publication, as established by the National Research Council Resolution 466/12. The research was reported via strengthening the reporting of observational studies in epidemiology (STROBE).

Results

During the 21 year-period, 1,242,014 deaths by HF were notified. The temporal trend analysis results showed a significant decrease of 2.3% (95%CI: -2.3 – -2.7) in the mortality rate in all Brazilian territories. By considering the continental dimensions of Brazil, it is necessary to investigate such trends in regional areas. Four of the five national Regions showed a significant reduction in mortality rates, highlighting a minimal reduction in mortality rates in the Northeast (AAPC: -0.7; 95%CI: -0.9 – -0.4). On the other hand, the South increased its mortality rate by 2.9% (95%CI: 2.0 – 3.9) ( Table 1 ).

Table 1. – Temporal trends of heart failure mortality rates in Brazil and its regions. Fortaleza, CE, Brazil, 2019.

Country Regions *APC1 IP *APC2 IP *APC3 IP †AAPC




(§ 95% CI) (§ 95% CI) (§ 95% CI) (§ 95% CI)
Brazil
  • -6.3 //

  • (-7.7; -1.8)

2001
  • -1.1 //

  • (-1.3; -0.7)

2017    
  • -2.3 //

  • (-2.3; -2.7)

North
  • -1.3

  • (-11.3; 2.4)

2017        
  • -1.3 //

  • (-1.7; -0.9)

Northeast
  • - 0.7 //

  • (-7.1; -1.5)

2017
  • 9.4 //

  • (6.6; 12.3)

2011
  • -2.8

  • (-4.2; -1.4)

 
  • -0.7 //

  • (-0.9; -0.4)

Southeast
  • -7.7

  • (-8.7; -6.7)

2002
  • -0.8

  • (-1.2; -0.3)

2014
  • -2.4 //

  • ( -0.9; -5.8)

2017
  • -4.0 //

  • (-5.5; -2.4)

Midwest
  • -6.2 //

  • (-10.2; -2.1)

2000
  • -2.3 //

  • (-3.0; -1.7)

2015
  • -3.3

  • ( -11.5; 3.8)

2017
  • -4.0 //

  • (-5.5; -2.4)

South
  • -7.9 //

  • ( -13.0; -2.5)

1998
  • 37 //

  • (28.9; 45.5)

2001
  • -1.1 //

  • (-1.3; -0.8)

2017
  • 2.9 //

  • (2.0; 3.9)

*APC: Annual Percentage Change; AAPC: Average Annual Percent Change; IP: Inflection Point; § 95%CI: 95% Confidence Interval; // p = < 0.05

Regarding the spatial analysis of the 5,570 municipalities, the maps in Figure 2 demonstrate that crude mortality rates varied from 0 to 200 deaths by 100 thousand inhabitants. In the red areas, it is possible to identify, in period A (1996-2001), that high mortality rates were focused on municipalities of the South and the Southeast. Periods B (2002-2007) and C (2008-2012) demonstrate that, throughout the years, rates spread to the Northeast and the Midwest, but kept high concentrations in the South (similar results to the time series analysis). In the last years, as demonstrated in period D (2013-2017), it is possible to highlight that the municipalities in the North did not present high mortality rates.

Figure 2. – Maps of crude mortality rates by heart failure in Brazil, in periods A (1996-2001), B (2002-2007), C (2008-2012), D (2013-2017), per municipality and per 100 thousand inhabitants. Fortaleza, CE, Brazil, 2019.

Figure 2

In Figure 3 , the rates were smoothed by the empirical Bayesian method and demonstrated that, in period A (1996-2001), mortality was mostly concentrated in municipalities in the South; however, they varied throughout the years. Period B (2002-2007) showed that the Southeast presented high mortality rates, particularly in municipalities located in the states of São Paulo and Minas Gerais. In periods C (2008-2012) and D (2013-2017), it was possible to identify a high death concentration in the Northeast, predominately in Piauí, Bahia, Rio Grande do Norte, and Ceará.

Figure 3. – Maps of mortality rates due to heart failure in Brazil smoothed by the empirical Bayesian method in periods A (1996-2001), B (2002-2007), C (2008-2012), and D (2013-2017), per municipality and per 100 thousand inhabitants. Fortaleza, CE, Brazil, 2019.

Figure 3

Regarding autocorrelation spatial analysis, the GMI of period A (1996-2001) was 0.41 (p=0.01); in period B (2002-2007), it was 0.28 (p=0.01); period C (2008-2012) it was 0.29 (p=0.01); and GMI in period D (2013-2017) was 0. 31 (p=0.01). These results indicate positive spatial autocorrelation.

Since spatial dependency was verified in all study areas by GMI, we used the Local Moran Index (LMI). The spatial clusters corroborate the results in the empirical Bayesian local maps in all periods. They confirmed that high-highs are more concentrated in the South and spread to Northeast municipalities over the years. The low-low was concentrated in cities of the North and Midwest regions ( Figure 4 ).

Figure 4. – Maps of Moran’s spatial autocorrelation of mortality by heart failure in Brazil in periods A (1996-2001), B (2002-2007), C (2008-2012), and D (2013-2017). Fortaleza, CE, Brazil, 2019.

Figure 4

In Figure 5 , scan spatial statistics confirmed other analyses and identified that the greater risk of CI mortality was in the South in period A (1996-2001). This pattern advanced in other periods, being also possible to find high RR in the Midwest.

Figure 5. – Relative risk of all Brazilian municipalities to heart failure mortality in periods A (1996-2001), B (2002-2007), C (2008-2012), and D (2013-2017). Fortaleza, CE, Brazil, 2019.

Figure 5

Nevertheless, the last period also demonstrated higher risks in the North and the Northeast. In the last period (2013-2017), almost all cities in the South, Southeast, Northeast, and Midwest had some risk of mortality from heart failure. In the North, the cities in the states of Pará and Amazonas had little risk of mortality, with RR<1 (in blue); only a few cities of Roraima and Acre had clusters with RR>15 (in red).

Discussion

This is the first study to assess the spatial distribution of HF mortality in Brazil. Initially, the municipalities in the South had a higher mortality rate. This notification pattern characterized operational contexts of “epidemiological silence” in some areas until 2001. Since 2002, mortality rates have increased in municipalities in the Southeast, Northeast, and the Midwest. Municipalities in the North, on the other hand, have shown low mortality rates, revealing the underreporting of cases.

It is important to observe that the municipalities in Brazilian regions with the highest mortality rates are the largest in population size and have more elderly people. National and international surveys have shown that HF mainly affects individuals aged more than 65 years.11 , 12 The increasing prevalence of HF is directly related to the most common comorbidities in aging.13 Besides, advanced age is a risk factor for self-care, poor treatment adherence, and disease management.14 - 16

The disease is prevalent among the elderly, but a high percentage of the disease is also perceived among adults.17 In an analysis of specific time trends for age, sex, and race in HF-related morbidity and mortality rates between the years of 1991 and 2015, in the United States, Vasan, Zuo & Kalesan18 observed an increase in hospitalization rates in people with the disease in the age group of 30 to 49 years. This fact may be related to an inadequate lifestyle, exposing individuals to numerous risk factors for the disease, such as smoking, alcohol consumption, physical inactivity, and comorbidities, with emphasis on hypertension and diabetes.

Poffo et al.19 attributed the number of HF cases in adults to the earlier manifestation of heart disease, less effective treatment of diseases that lead to HF, and non-adherence to the recommended treatment. Thus, prevention stands out as an important weapon to fight against HF.17 , 18 , 20 The high mortality rate in municipalities in the southern region may be associated with the race/ethnicity of people affected by HF, with a higher prevalence of white individuals. While the disease prevails in this population, survival is higher among black people (7.5% vs. 2.2%; p = 0.01),19 Hispanics, and Asians.21

The reason for such a health disparity is complex. The effect of race on the prognosis of HF is uncertain because different studies have revealed divergent results. Race showed no association with the occurrence of complications and hospital readmissions among Australians with HF.22 Husaini et al.,23 in a study comparing race/ethnicity to hospitalization rates, found that hospitalization rates for black individuals remained higher compared to whites and Hispanics.

In a North American study, in a total of 7,878 patients with HF, 35.8% were black. Among them, diseases such as hypertension, diabetes, and cerebrovascular diseases were prevalent; however, the mortality rate was lower when compared to white individuals.24 Goyal et al.25 analyzed 1,889,608 hospitalizations of patients with HF and found out that other comorbidities, such as anemia and chronic kidney disease, were more common among blacks, but this group presented lower in-hospital mortality when compared to whites.

The divergence in the literature reinforces the need for further research on the association between race/ethnicity and mortality rate due to HF, as well as the main causes of readmission. Such findings may assist in the implementation of preventive programs for hypertension and diabetes among minorities, which can reduce subsequent hospitalization for HF in these patients.

The change in the epidemiological patterns of the disease in the country has also been generated as a result of coverage by health services. Health care in Brazil is guided by a clear definition of territories and the people under the responsibility of each health team. The improvement of access, quality, and infrastructure of health care and coverage of Brazilian municipalities is a concern of health managers.

It is necessary to keep in mind that there are regional differences between the conditions of access to health institutions and the care provided by Brazil. Differences in supply can be observed within the same municipality, between municipalities and between states of the federation, which results in the maintenance of an uneven distribution pattern of supply and access to services.26

The complexity of HF requires knowledge from different professionals who work at different levels of health care. Therefore, it is important to articulate these levels to promote health, quality of care, and user satisfaction. Health providers and patients must take on some responsibility that extends beyond mechanistic or traditional care. It is necessary to empower and enable the individual to protect oneself from situations of vulnerability, thus reducing regional disparities.

The increase in mortality rates due to HF in the municipalities of the North and Northeast can be explained by the low quality of life and stressors, which are the main agents for higher increase in hospitalization. Hospitalizations occur not only due to HF, but also other comorbidities.19 , 27

The Brazilian regions with the highest number of hospitalizations in 2017 were the Southeast, followed by the South and Northeast, and, in the third place, the Midwest and the North.28 Isolated initiatives suggest the existence of significant regional differences in several characteristics of patients hospitalized with HF in Brazil,17 although these comparisons are methodologically limited by often divergent designs and inclusion criteria.

Despite major advances in health care science and technology, a large gap separates technically achievable advances in health from what individuals and populations actually achieve.29 Financial status is a relevant factor in the management of the disease, related to functional health literacy, adherence, and self-care behaviors. The authors emphasize that the lower the socioeconomic level, the lower the rate of treatment adherence (medicated or non-medicated).30

In Europe, it is estimated that the annual cost of HF treatment is 3.7% of the National Health Fund, with the expectation of doubling the amount in the next 20 years. Medication costs make up for less than 5% of the resources spent on treating people with HF, whereas 79% is related to expenses with hospitalization.31

In Brazil, HF has a high financial cost. Kaufman et al.32 revealed that, in the period from 2001 to 2012, the average length of stay for patients with HF was 5.8 days, in 2001, to 6.6 days in 2012; the mortality rate was on the rise, starting from 6.6%, in 2001, and reaching 9.5% in 2012 (a 46.1% increase). The average cost of authorization for hospitalization increased from R$ 519.54, in 2001, to R$ 1,209.56 in 2012 (an increase of 132.8%). Research that sought to describe the number of hospitalizations for HF in Brazilian regions in 2017 and the impact of these hospitalizations on hospital costs showed that, in 2017 alone, the amount of R$ 339,719,216.50 was spent.28

In a recent study, Stevens et al.33 analyzed the costs associated with treatment, lost productivity due to reduced employment, the costs of providing formal and informal care, and loss of well-being related to the conditions of four major heart diseases in Brazil. The authors found that the costs with HF were R$22.1 billion (USD 6.8 billion) and patients had significant loss in productivity.

The high cost associated with care in HF suggests that new studies are developed to better understand the patients’ choices, so that professionals can be more prepared to help them administer their medications, influence daily behaviors, and encourage taking healthy decisions. Knowing the financial situation and understanding the municipality’s economy can provide additional approaches to improve the prognosis of the disease.

It is worth mentioning that cities at low risk of mortality from the disease need to be analyzed with caution. The area demonstrated as a protective factor for mortality from the disease may be the result of underreporting. Moreover, the migration of patients with HF to neighboring regions due to better opportunities for treatment may make it difficult to interpret the study.

Some limitations regarding this study should be reported. First, it is an ecological study, so the analysis of aggregated level patient data cannot establish relationships between individual-level variables. Furthermore, since our data derived from a national database, it is possible that there is underreporting, and the hospital mortality rate may be underestimated. These limitations may better address the results. On the other hand, the curacy of the analysis, the amount of data and the long analyzed time period provide safety to the evidence generated in this study.

Conclusions

HF mortality followed a spatial pattern in the analyzed period. The notification of cases was initiated in the municipalities of the South of Brazil and, over the years, an increasing pattern in mortality was observed in other regions, with emphasis on the Southeast and the Northeast.

Spatial analysis contributed to show the HF mortality scenario in Brazilian municipalities. The highlighted geographic areas are most susceptible to mortality, requiring specific actions to prevent the disease and promote heath. Therefore, this study may guide actions aimed at improving the quality of clinical care provided in the cities most affected by HF.

Study Association

This study is not associated with any thesis or dissertation work.

Sources of Funding: There were no external funding sources for this study.


Articles from Arquivos Brasileiros de Cardiologia are provided here courtesy of Sociedade Brasileira de Cardiologia

RESOURCES