Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Mar 25;2022(3):176. doi: 10.1007/JHEP03(2022)176

LHC lifetime frontier and visible decay searches in composite asymmetric dark matter models

Ayuki Kamada 1,2,3, Takumi Kuwahara 4,3,
PMCID: PMC8959273  PMID: 35370396

Abstract

The LHC lifetime frontier will probe dark sector in near future, and the visible decay searches at fixed-target experiments have been exploring dark sector. Composite asymmetric dark matter with dark photon portal is a promising framework explaining the coincidence problem between dark matter and visible matter. Dark strong dynamics provides rich structure in the dark sector: the lightest dark nucleon is the dark matter, while strong annihilation into dark pions depletes the symmetric components of the dark matter. Dark photons alleviate cosmological problems. Meanwhile, dark photons make dark hadrons long-lived in terrestrial experiments. Moreover, the dark hadrons are produced through the very same dark photon. In this study, we discuss the visible decay searches for composite asymmetric dark matter models. For a few GeV dark nucleons, the LHC lifetime frontier, MATHUSLA and FASER, has a potential to discover their decay when kinetic mixing angle of dark photon is ϵ ≳ 104. On the other hand, fixed-target experiments, in particular SeaQuest, will have a great sensitivity to dark pions with a mass below GeV and with kinetic mixing ϵ ≳ 104 in addition to the LHC lifetime frontier. These projected sensitivities to dark hadrons in dark photon parameter space are comparable with the future sensitivities of dark photon searches, such as Belle-II and LHCb.

Keywords: Beyond Standard Model, Technicolor and Composite Models

Footnotes

ArXiv ePrint: 2112.01202

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Ayuki Kamada, Email: akamada@fuw.edu.pl.

Takumi Kuwahara, Email: kuwahara@pku.edu.cn.

References

  • [1].Essig R, Schuster P, Toro N. Probing dark forces and light hidden sectors at low-energy e+e- colliders . Phys. Rev. D. 2009;80:015003. doi: 10.1103/PhysRevD.80.015003. [DOI] [Google Scholar]
  • [2].Reece M, Wang L-T. Searching for the light dark gauge boson in GeV-scale experiments . JHEP. 2009;07:051. doi: 10.1088/1126-6708/2009/07/051. [DOI] [Google Scholar]
  • [3].BaBar collaboration, Search for dimuon decays of a light scalar boson in radiative transitions ϒ → γA0, Phys. Rev. Lett.103 (2009) 081803 [arXiv:0905.4539] [INSPIRE]. [DOI] [PubMed]
  • [4].Bjorken JD, Essig R, Schuster P, Toro N. New fixed-target experiments to search for dark gauge forces . Phys. Rev. D. 2009;80:075018. doi: 10.1103/PhysRevD.80.075018. [DOI] [Google Scholar]
  • [5].Batell B, Pospelov M, Ritz A. Exploring portals to a hidden sector through fixed targets . Phys. Rev. D. 2009;80:095024. doi: 10.1103/PhysRevD.80.095024. [DOI] [Google Scholar]
  • [6].Essig R, Harnik R, Kaplan J, Toro N. Discovering new light states at neutrino experiments . Phys. Rev. D. 2010;82:113008. doi: 10.1103/PhysRevD.82.113008. [DOI] [Google Scholar]
  • [7].Andreas S, Niebuhr C, Ringwald A. New limits on hidden photons from past electron beam dumps . Phys. Rev. D. 2012;86:095019. doi: 10.1103/PhysRevD.86.095019. [DOI] [Google Scholar]
  • [8].BaBar collaboration, Search for a dark photon in e+ecollisions at BaBar, Phys. Rev. Lett.113 (2014) 201801 [arXiv:1406.2980] [INSPIRE]. [DOI] [PubMed]
  • [9].Anastasi A, et al. Limit on the production of a low-mass vector boson in e+ e− → Uγ, U → e+ e− with the KLOE experiment. Phys. Lett. B. 2015;750:633. doi: 10.1016/j.physletb.2015.10.003. [DOI] [Google Scholar]
  • [10].LSND collaboration, Measurement of electron-neutrino electron elastic scattering, Phys. Rev. D63 (2001) 112001 [hep-ex/0101039] [INSPIRE].
  • [11].deNiverville P, Pospelov M, Ritz A. Observing a light dark matter beam with neutrino experiments . Phys. Rev. D. 2011;84:075020. doi: 10.1103/PhysRevD.84.075020. [DOI] [Google Scholar]
  • [12].Bjorken JD, et al. Search for neutral metastable penetrating particles produced in the SLAC beam dump . Phys. Rev. D. 1988;38:3375. doi: 10.1103/PhysRevD.38.3375. [DOI] [PubMed] [Google Scholar]
  • [13].Batell B, Essig R, Surujon Z. Strong constraints on sub-GeV dark sectors from SLAC beam dump E137. Phys. Rev. Lett. 2014;113:171802. doi: 10.1103/PhysRevLett.113.171802. [DOI] [PubMed] [Google Scholar]
  • [14].MiniBooNE-DM collaboration, Dark matter search in a proton beam dump with MiniBooNE, Phys. Rev. Lett.118 (2017) 221803 [arXiv:1702.02688] [INSPIRE]. [DOI] [PubMed]
  • [15].BaBar collaboration, Search for invisible decays of a dark photon produced in e+ecollisions at BaBar, Phys. Rev. Lett.119 (2017) 131804 [arXiv:1702.03327] [INSPIRE]. [DOI] [PubMed]
  • [16].HPS collaboration, The heavy photon search experiment at Jefferson laboratory, J. Phys. Conf. Ser.556 (2014) 012064 [arXiv:1505.02025] [INSPIRE].
  • [17].Alekhin S, et al. A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case . Rept. Prog. Phys. 2016;79:124201. doi: 10.1088/0034-4885/79/12/124201. [DOI] [PubMed] [Google Scholar]
  • [18].SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE]. [DOI] [PubMed]
  • [19].Gardner S, Holt RJ, Tadepalli AS. New prospects in fixed target searches for dark forces with the SeaQuest experiment at Fermilab . Phys. Rev. D. 2016;93:115015. doi: 10.1103/PhysRevD.93.115015. [DOI] [Google Scholar]
  • [20].SeaQuest collaboration, The SeaQuest spectrometer at Fermilab, Nucl. Instrum. Meth. A930 (2019) 49 [arXiv:1706.09990] [INSPIRE].
  • [21].Berlin A, Gori S, Schuster P, Toro N. Dark sectors at the Fermilab SeaQuest experiment . Phys. Rev. D. 2018;98:035011. doi: 10.1103/PhysRevD.98.035011. [DOI] [Google Scholar]
  • [22].Izaguirre E, Krnjaic G, Schuster P, Toro N. Testing GeV-scale dark matter with fixed-target missing momentum experiments . Phys. Rev. D. 2015;91:094026. doi: 10.1103/PhysRevD.91.094026. [DOI] [Google Scholar]
  • [23].T. Åkesson et al., Light Dark Matter eXperiment (LDMX), arXiv:1808.05219 [INSPIRE].
  • [24].Essig R, Mardon J, Papucci M, Volansky T, Zhong Y-M. Constraining light dark matter with low-energy e+ e− colliders. JHEP. 2013;11:167. doi: 10.1007/JHEP11(2013)167. [DOI] [Google Scholar]
  • [25].E. Kou et al., The Belle II physics book, PTEP2019 (2019) 123C01 [Erratum ibid.2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].
  • [26].Izaguirre E, Krnjaic G, Shuve B. Discovering inelastic thermal-relic dark matter at colliders . Phys. Rev. D. 2016;93:063523. doi: 10.1103/PhysRevD.93.063523. [DOI] [Google Scholar]
  • [27].Ilten P, Soreq Y, Thaler J, Williams M, Xue W. Proposed inclusive dark photon search at LHCb . Phys. Rev. Lett. 2016;116:251803. doi: 10.1103/PhysRevLett.116.251803. [DOI] [PubMed] [Google Scholar]
  • [28].Liu J, Liu Z, Wang L-T. Enhancing long-lived particles searches at the LHC with precision timing information . Phys. Rev. Lett. 2019;122:131801. doi: 10.1103/PhysRevLett.122.131801. [DOI] [PubMed] [Google Scholar]
  • [29].Chou JP, Curtin D, Lubatti HJ. New detectors to explore the lifetime frontier . Phys. Lett. B. 2017;767:29. doi: 10.1016/j.physletb.2017.01.043. [DOI] [Google Scholar]
  • [30].Feng JL, Galon I, Kling F, Trojanowski S. ForwArd Search ExpeRiment at the LHC . Phys. Rev. D. 2018;97:035001. doi: 10.1103/PhysRevD.97.035001. [DOI] [Google Scholar]
  • [31].Gligorov VV, Knapen S, Papucci M, Robinson DJ. Searching for long-lived particles: a compact detector for exotics at LHCb . Phys. Rev. D. 2018;97:015023. doi: 10.1103/PhysRevD.97.015023. [DOI] [Google Scholar]
  • [32].Gudnason SB, Kouvaris C, Sannino F. Dark matter from new technicolor theories . Phys. Rev. D. 2006;74:095008. doi: 10.1103/PhysRevD.74.095008. [DOI] [Google Scholar]
  • [33].Dietrich DD, Sannino F. Conformal window of SU(N) gauge theories with fermions in higher dimensional representations. Phys. Rev. D. 2007;75:085018. doi: 10.1103/PhysRevD.75.085018. [DOI] [Google Scholar]
  • [34].Khlopov MY, Kouvaris C. Strong interactive massive particles from a strong coupled theory . Phys. Rev. D. 2008;77:065002. doi: 10.1103/PhysRevD.77.065002. [DOI] [Google Scholar]
  • [35].Khlopov MY, Kouvaris C. Composite dark matter from a model with composite Higgs boson . Phys. Rev. D. 2008;78:065040. doi: 10.1103/PhysRevD.78.065040. [DOI] [Google Scholar]
  • [36].Foadi R, Frandsen MT, Sannino F. Technicolor dark matter . Phys. Rev. D. 2009;80:037702. doi: 10.1103/PhysRevD.80.037702. [DOI] [Google Scholar]
  • [37].Mardon J, Nomura Y, Thaler J. Cosmic signals from the hidden sector . Phys. Rev. D. 2009;80:035013. doi: 10.1103/PhysRevD.80.035013. [DOI] [Google Scholar]
  • [38].Kribs GD, Roy TS, Terning J, Zurek KM. Quirky composite dark matter . Phys. Rev. D. 2010;81:095001. doi: 10.1103/PhysRevD.81.095001. [DOI] [Google Scholar]
  • [39].Barbieri R, Rychkov S, Torre R. Signals of composite electroweak-neutral dark matter: LHC/direct detection interplay . Phys. Lett. B. 2010;688:212. doi: 10.1016/j.physletb.2010.04.010. [DOI] [Google Scholar]
  • [40].Blennow M, Dasgupta B, Fernandez-Martinez E, Rius N. Aidnogenesis via leptogenesis and dark sphalerons . JHEP. 2011;03:014. doi: 10.1007/JHEP03(2011)014. [DOI] [Google Scholar]
  • [41].Lewis R, Pica C, Sannino F. Light asymmetric dark matter on the lattice: SU(2) technicolor with two fundamental flavors. Phys. Rev. D. 2012;85:014504. doi: 10.1103/PhysRevD.85.014504. [DOI] [Google Scholar]
  • [42].Lattice Strong Dynamics (LSD) collaboration, Lattice calculation of composite dark matter form factors, Phys. Rev. D88 (2013) 014502 [arXiv:1301.1693] [INSPIRE].
  • [43].Hietanen A, Lewis R, Pica C, Sannino F. Composite Goldstone dark matter: experimental predictions from the lattice . JHEP. 2014;12:130. doi: 10.1007/JHEP12(2014)130. [DOI] [Google Scholar]
  • [44].Cline JM, Liu Z, Moore GD, Xue W. Composite strongly interacting dark matter . Phys. Rev. D. 2014;90:015023. doi: 10.1103/PhysRevD.90.015023. [DOI] [Google Scholar]
  • [45].Lattice Strong Dynamics (LSD) collaboration, Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction, Phys. Rev. D89 (2014) 094508 [arXiv:1402.6656] [INSPIRE].
  • [46].Hietanen A, Lewis R, Pica C, Sannino F. Fundamental composite Higgs dynamics on the lattice: SU(2) with two flavors. JHEP. 2014;07:116. doi: 10.1007/JHEP07(2014)116. [DOI] [Google Scholar]
  • [47].Krnjaic G, Sigurdson K. Big bang darkleosynthesis . Phys. Lett. B. 2015;751:464. doi: 10.1016/j.physletb.2015.11.001. [DOI] [Google Scholar]
  • [48].Detmold W, McCullough M, Pochinsky A. Dark nuclei. I. Cosmology and indirect detection . Phys. Rev. D. 2014;90:115013. doi: 10.1103/PhysRevD.90.115013. [DOI] [Google Scholar]
  • [49].Detmold W, McCullough M, Pochinsky A. Dark nuclei. II. Nuclear spectroscopy in two-color QCD . Phys. Rev. D. 2014;90:114506. doi: 10.1103/PhysRevD.90.114506. [DOI] [Google Scholar]
  • [50].Asano M, Kitano R. Partially composite dark matter . JHEP. 2014;09:171. doi: 10.1007/JHEP09(2014)171. [DOI] [Google Scholar]
  • [51].Brod J, Drobnak J, Kagan AL, Stamou E, Zupan J. Stealth QCD-like strong interactions and the tt¯ asymmetry. Phys. Rev. D. 2015;91:095009. doi: 10.1103/PhysRevD.91.095009. [DOI] [Google Scholar]
  • [52].Antipin O, Redi M, Strumia A. Dynamical generation of the weak and dark matter scales from strong interactions . JHEP. 2015;01:157. doi: 10.1007/JHEP01(2015)157. [DOI] [Google Scholar]
  • [53].Hardy E, Lasenby R, March-Russell J, West SM. Big bang synthesis of nuclear dark matter . JHEP. 2015;06:011. doi: 10.1007/JHEP06(2015)011. [DOI] [Google Scholar]
  • [54].Lattice Strong Dynamics (LSD) collaboration, Stealth dark matter: dark scalar baryons through the Higgs portal, Phys. Rev. D92 (2015) 075030 [arXiv:1503.04203] [INSPIRE].
  • [55].Lattice Strong Dynamics (LSD) collaboration, Detecting stealth dark matter directly through electromagnetic polarizability, Phys. Rev. Lett.115 (2015) 171803 [arXiv:1503.04205] [INSPIRE]. [DOI] [PubMed]
  • [56].Antipin O, Redi M, Strumia A, Vigiani E. Accidental composite dark matter . JHEP. 2015;07:039. doi: 10.1007/JHEP07(2015)039. [DOI] [Google Scholar]
  • [57].Hardy E, Lasenby R, March-Russell J, West SM. Signatures of large composite dark matter states . JHEP. 2015;07:133. doi: 10.1007/JHEP07(2015)133. [DOI] [Google Scholar]
  • [58].Co RT, Harigaya K, Nomura Y. Chiral dark sector . Phys. Rev. Lett. 2017;118:101801. doi: 10.1103/PhysRevLett.118.101801. [DOI] [PubMed] [Google Scholar]
  • [59].Dienes KR, Huang F, Su S, Thomas B. Dynamical dark matter from strongly-coupled dark sectors . Phys. Rev. D. 2017;95:043526. doi: 10.1103/PhysRevD.95.043526. [DOI] [Google Scholar]
  • [60].Ishida H, Matsuzaki S, Yamaguchi Y. Bosonic-seesaw portal dark matter . PTEP. 2017;2017:103B01. [Google Scholar]
  • [61].Lonsdale SJ, Schroor M, Volkas RR. Asymmetric dark matter and the hadronic spectra of hidden QCD . Phys. Rev. D. 2017;96:055027. doi: 10.1103/PhysRevD.96.055027. [DOI] [Google Scholar]
  • [62].Berryman JM, de Gouvêa A, Kelly KJ, Zhang Y. Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector . Phys. Rev. D. 2017;96:075010. doi: 10.1103/PhysRevD.96.075010. [DOI] [Google Scholar]
  • [63].Gresham MI, Lou HK, Zurek KM. Nuclear structure of bound states of asymmetric dark matter . Phys. Rev. D. 2017;96:096012. doi: 10.1103/PhysRevD.96.096012. [DOI] [Google Scholar]
  • [64].Gresham MI, Lou HK, Zurek KM. Early universe synthesis of asymmetric dark matter nuggets . Phys. Rev. D. 2018;97:036003. doi: 10.1103/PhysRevD.97.036003. [DOI] [Google Scholar]
  • [65].Mitridate A, Redi M, Smirnov J, Strumia A. Dark matter as a weakly coupled dark baryon . JHEP. 2017;10:210. doi: 10.1007/JHEP10(2017)210. [DOI] [Google Scholar]
  • [66].Gresham MI, Lou HK, Zurek KM. Astrophysical signatures of asymmetric dark matter bound states . Phys. Rev. D. 2018;98:096001. doi: 10.1103/PhysRevD.98.096001. [DOI] [Google Scholar]
  • [67].Ibe M, Kamada A, Kobayashi S, Nakano W. Composite asymmetric dark matter with a dark photon portal . JHEP. 2018;11:203. doi: 10.1007/JHEP11(2018)203. [DOI] [Google Scholar]
  • [68].Braaten E, Kang D, Laha R. Production of dark-matter bound states in the early universe by three-body recombination . JHEP. 2018;11:084. doi: 10.1007/JHEP11(2018)084. [DOI] [Google Scholar]
  • [69].Francis A, Hudspith RJ, Lewis R, Tulin S. Dark matter from strong dynamics: the minimal theory of dark baryons . JHEP. 2018;12:118. doi: 10.1007/JHEP12(2018)118. [DOI] [Google Scholar]
  • [70].Bai Y, Long AJ, Lu S. Dark quark nuggets . Phys. Rev. D. 2019;99:055047. doi: 10.1103/PhysRevD.99.055047. [DOI] [Google Scholar]
  • [71].Chu X, Garcia-Cely C, Murayama H. Finite-size dark matter and its effect on small-scale structure . Phys. Rev. Lett. 2020;124:041101. doi: 10.1103/PhysRevLett.124.041101. [DOI] [PubMed] [Google Scholar]
  • [72].E. Hall, T. Konstandin, R. McGehee and H. Murayama, Asymmetric matters from a dark first-order phase transition, arXiv:1911.12342 [INSPIRE].
  • [73].Y.-D. Tsai, R. McGehee and H. Murayama, Resonant self-interacting dark matter from dark QCD, arXiv:2008.08608 [INSPIRE]. [DOI] [PubMed]
  • [74].Asadi P, Kramer ED, Kuflik E, Ridgway GW, Slatyer TR, Smirnov J. Accidentally asymmetric dark matter . Phys. Rev. Lett. 2021;127:211101. doi: 10.1103/PhysRevLett.127.211101. [DOI] [PubMed] [Google Scholar]
  • [75].Zhang M. Leptophilic composite asymmetric dark matter and its detection . Phys. Rev. D. 2021;104:055008. doi: 10.1103/PhysRevD.104.055008. [DOI] [Google Scholar]
  • [76].Bottaro S, Costa M, Popov O. Asymmetric accidental composite dark matter . JHEP. 2021;11:055. doi: 10.1007/JHEP11(2021)055. [DOI] [Google Scholar]
  • [77].E. Hall, R. McGehee, H. Murayama and B. Suter, Asymmetric dark matter may not be light, arXiv:2107.03398 [INSPIRE].
  • [78].Kribs GD, Neil ET. Review of strongly-coupled composite dark matter models and lattice simulations . Int. J. Mod. Phys. A. 2016;31:1643004. doi: 10.1142/S0217751X16430041. [DOI] [Google Scholar]
  • [79].Holdom B. Two U(1)’s and E charge shifts. Phys. Lett. B. 1986;166:196. doi: 10.1016/0370-2693(86)91377-8. [DOI] [Google Scholar]
  • [80].KLOE-2 collaboration, Search for a vector gauge boson in φ meson decays with the KLOE detector, Phys. Lett. B706 (2012) 251 [arXiv:1110.0411] [INSPIRE].
  • [81].KLOE-2 collaboration, Limit on the production of a light vector gauge boson in φ meson decays with the KLOE detector, Phys. Lett. B720 (2013) 111 [arXiv:1210.3927] [INSPIRE].
  • [82].KLOE-2 collaboration, Limit on the production of a new vector boson in e+e→ Uγ, U → π+πwith the KLOE experiment, Phys. Lett. B757 (2016) 356 [arXiv:1603.06086] [INSPIRE].
  • [83].Bauer M, Foldenauer P, Jaeckel J. Hunting all the hidden photons . JHEP. 2018;07:094. doi: 10.1007/JHEP07(2018)094. [DOI] [Google Scholar]
  • [84].Ibe M, Kamada A, Kobayashi S, Kuwahara T, Nakano W. Ultraviolet completion of a composite asymmetric dark matter model with a dark photon portal . JHEP. 2019;03:173. doi: 10.1007/JHEP03(2019)173. [DOI] [Google Scholar]
  • [85].Fukuda H, Matsumoto S, Mukhopadhyay S. Asymmetric dark matter in early universe chemical equilibrium always leads to an antineutrino signal . Phys. Rev. D. 2015;92:013008. doi: 10.1103/PhysRevD.92.013008. [DOI] [Google Scholar]
  • [86].Super-Kamiokande collaboration, Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D70 (2004) 083523 [Erratum ibid.70 (2004) 109901] [hep-ex/0404025] [INSPIRE].
  • [87].Covi L, Grefe M, Ibarra A, Tran D. Neutrino signals from dark matter decay . JCAP. 2010;04:017. doi: 10.1088/1475-7516/2010/04/017. [DOI] [Google Scholar]
  • [88].Ibe M, Kobayashi S, Nagai R, Nakano W. Oscillating composite asymmetric dark matter . JHEP. 2020;01:027. doi: 10.1007/JHEP01(2020)027. [DOI] [Google Scholar]
  • [89].Ilten P, Soreq Y, Williams M, Xue W. Serendipity in dark photon searches . JHEP. 2018;06:004. doi: 10.1007/JHEP06(2018)004. [DOI] [Google Scholar]
  • [90].Particle Data Group collaboration, Review of particle physics, PTEP2020 (2020) 083C01 [INSPIRE].
  • [91].Manohar A, Georgi H. Chiral quarks and the nonrelativistic quark model . Nucl. Phys. B. 1984;234:189. doi: 10.1016/0550-3213(84)90231-1. [DOI] [Google Scholar]
  • [92].Georgi H. Generalized dimensional analysis . Phys. Lett. B. 1993;298:187. doi: 10.1016/0370-2693(93)91728-6. [DOI] [Google Scholar]
  • [93].G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B72 (1974) 461 [INSPIRE].
  • [94].G. ’t Hooft, A two-dimensional model for mesons, Nucl. Phys. B75 (1974) 461 [INSPIRE].
  • [95].Witten E. Current algebra theorems for the U(1) Goldstone boson. Nucl. Phys. B. 1979;156:269. doi: 10.1016/0550-3213(79)90031-2. [DOI] [Google Scholar]
  • [96].Witten E. Baryons in the 1/n expansion. Nucl. Phys. B. 1979;160:57. doi: 10.1016/0550-3213(79)90232-3. [DOI] [Google Scholar]
  • [97].Coleman S, Witten E. Chiral symmetry breakdown in large N chromodynamics . Phys. Rev. Lett. 1980;45:100. doi: 10.1103/PhysRevLett.45.100. [DOI] [Google Scholar]
  • [98].Witten E. Large N chiral dynamics . Annals Phys. 1980;128:363. doi: 10.1016/0003-4916(80)90325-5. [DOI] [Google Scholar]
  • [99].Kobayashi M, Maskawa T. Chiral symmetry and η-X mixing . Prog. Theor. Phys. 1970;44:1422. doi: 10.1143/PTP.44.1422. [DOI] [Google Scholar]
  • [100].G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett.37 (1976) 8 [INSPIRE].
  • [101].Gasser J, Leutwyler H. Quark masses . Phys. Rept. 1982;87:77. doi: 10.1016/0370-1573(82)90035-7. [DOI] [Google Scholar]
  • [102].Donoghue JF, Pérez AF. Electromagnetic mass differences of pions and kaons . Phys. Rev. D. 1997;55:7075. doi: 10.1103/PhysRevD.55.7075. [DOI] [Google Scholar]
  • [103].FLAG collaboration, Review of lattice results concerning low energy particle physics, Eur. Phys. J. C71 (2011) 1695 [arXiv:1011.4408] [INSPIRE]. [DOI] [PMC free article] [PubMed]
  • [104].Ibe M, Matsumoto S, Yanagida TT. The GeV-scale dark matter with B-L asymmetry . Phys. Lett. B. 2012;708:112. doi: 10.1016/j.physletb.2012.01.032. [DOI] [Google Scholar]
  • [105].Ibe M, Kamada A, Kobayashi S, Kuwahara T, Nakano W. Baryon-dark matter coincidence in mirrored unification . Phys. Rev. D. 2019;100:075022. doi: 10.1103/PhysRevD.100.075022. [DOI] [Google Scholar]
  • [106].Harigaya K, Nomura Y. Light chiral dark sector . Phys. Rev. D. 2016;94:035013. doi: 10.1103/PhysRevD.94.035013. [DOI] [PubMed] [Google Scholar]
  • [107].Ibe M, Kobayashi S, Watanabe K. Chiral composite asymmetric dark matter . JHEP. 2021;07:220. doi: 10.1007/JHEP07(2021)220. [DOI] [Google Scholar]
  • [108].Izaguirre E, Krnjaic G, Schuster P, Toro N. New electron beam-dump experiments to search for MeV to few-GeV dark matter . Phys. Rev. D. 2013;88:114015. doi: 10.1103/PhysRevD.88.114015. [DOI] [Google Scholar]
  • [109].NA64 collaboration, Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett.118 (2017) 011802 [arXiv:1610.02988] [INSPIRE]. [DOI] [PubMed]
  • [110].NA64 collaboration, Search for vector mediator of dark matter production in invisible decay mode, Phys. Rev. D97 (2018) 072002 [arXiv:1710.00971] [INSPIRE].
  • [111].Poulin V, Lesgourgues J, Serpico PD. Cosmological constraints on exotic injection of electromagnetic energy . JCAP. 2017;03:043. doi: 10.1088/1475-7516/2017/03/043. [DOI] [Google Scholar]
  • [112].Katz A, Salvioni E, Shakya B. Split SIMPs with decays . JHEP. 2020;10:049. doi: 10.1007/JHEP10(2020)049. [DOI] [Google Scholar]
  • [113].PandaX-II collaboration, Constraining dark matter models with a light mediator at the PandaX-II experiment, Phys. Rev. Lett.121 (2018) 021304 [arXiv:1802.06912] [INSPIRE]. [DOI] [PubMed]
  • [114].PandaX-II collaboration, Constraining self-interacting dark matter with the full dataset of PandaX-II, Sci. China Phys. Mech. Astron.64 (2021) 111062 [arXiv:2104.14724] [INSPIRE].
  • [115].XENON collaboration, Light dark matter search with ionization signals in XENON1T, Phys. Rev. Lett.123 (2019) 251801 [arXiv:1907.11485] [INSPIRE]. [DOI] [PubMed]
  • [116].LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett.118 (2017) 021303 [arXiv:1608.07648] [INSPIRE]. [DOI] [PubMed]
  • [117].XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE]. [DOI] [PubMed]
  • [118].DarkSide collaboration, Low-mass dark matter search with the DarkSide-50 experiment, Phys. Rev. Lett.121 (2018) 081307 [arXiv:1802.06994] [INSPIRE]. [DOI] [PubMed]
  • [119].CRESST collaboration, First results from the CRESST-III low-mass dark matter program, Phys. Rev. D100 (2019) 102002 [arXiv:1904.00498] [INSPIRE].
  • [120].A. Migdal, Ionization of atoms accompanying α- and β-decay, J. Phys. (USSR)4 (1941) 449.
  • [121].G. Baur, F. Rosel and D. Trautmann, Ionisation induced by neutrons, J. Phys. B16 (1983) L419.
  • [122].Ibe M, Nakano W, Shoji Y, Suzuki K. Migdal effect in dark matter direct detection experiments . JHEP. 2018;03:194. doi: 10.1007/JHEP03(2018)194. [DOI] [Google Scholar]
  • [123].XENON collaboration, Search for light dark matter interactions enhanced by the Migdal effect or bremsstrahlung in XENON1T, Phys. Rev. Lett.123 (2019) 241803 [arXiv:1907.12771] [INSPIRE]. [DOI] [PubMed]
  • [124].Kamada A, Kim HJ, Kuwahara T. Maximally self-interacting dark matter: models and predictions . JHEP. 2020;12:202. doi: 10.1007/JHEP12(2020)202. [DOI] [Google Scholar]
  • [125].Ilten P, Thaler J, Williams M, Xue W. Dark photons from charm mesons at LHCb . Phys. Rev. D. 2015;92:115017. doi: 10.1103/PhysRevD.92.115017. [DOI] [Google Scholar]
  • [126].LHCb collaboration, Search for dark photons produced in 13 TeV pp collisions, Phys. Rev. Lett.120 (2018) 061801 [arXiv:1710.02867] [INSPIRE]. [DOI] [PubMed]
  • [127].Rrapaj E, Reddy S. Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints . Phys. Rev. C. 2016;94:045805. doi: 10.1103/PhysRevC.94.045805. [DOI] [Google Scholar]
  • [128].Chang JH, Essig R, McDermott SD. Revisiting supernova 1987A constraints on dark photons. JHEP. 2017;01:107. [Google Scholar]
  • [129].Hardy E, Lasenby R. Stellar cooling bounds on new light particles: plasma mixing effects . JHEP. 2017;02:033. doi: 10.1007/JHEP02(2017)033. [DOI] [Google Scholar]
  • [130].Mahoney C, Leibovich AK, Zentner AR. Updated constraints on self-interacting dark matter from supernova 1987A. Phys. Rev. D. 2017;96:043018. doi: 10.1103/PhysRevD.96.043018. [DOI] [Google Scholar]
  • [131].Chang JH, Essig R, McDermott SD. Supernova 1987A constraints on sub-GeV dark sectors, millicharged particles, the QCD axion, and an axion-like particle. JHEP. 2018;09:051. doi: 10.1007/JHEP09(2018)051. [DOI] [Google Scholar]
  • [132].Riordan EM, et al. Search for short-lived axions in an electron-beam-dump experiment . Phys. Rev. Lett. 1987;59:755. doi: 10.1103/PhysRevLett.59.755. [DOI] [PubMed] [Google Scholar]
  • [133].Bross A, Crisler M, Pordes S, Volk J, Errede S, Wrbanek J. Search for short-lived particles produced in an electron beam dump . Phys. Rev. Lett. 1991;67:2942. doi: 10.1103/PhysRevLett.67.2942. [DOI] [PubMed] [Google Scholar]
  • [134].Davier M, Nguyen Ngoc H. An unambiguous search for a light Higgs boson . Phys. Lett. B. 1989;229:150. doi: 10.1016/0370-2693(89)90174-3. [DOI] [Google Scholar]
  • [135].Konaka A, et al. Search for neutral particles in electron beam dump experiment . Phys. Rev. Lett. 1986;57:659. doi: 10.1103/PhysRevLett.57.659. [DOI] [PubMed] [Google Scholar]
  • [136].A1 collaboration, Search at the Mainz Microtron for light massive gauge bosons relevant for the muon g − 2 anomaly, Phys. Rev. Lett.112 (2014) 221802 [arXiv:1404.5502] [INSPIRE]. [DOI] [PubMed]
  • [137].Essig R, Schuster P, Toro N, Wojtsekhowski B. An electron fixed target experiment to search for a new vector boson A′ decaying to e+ e−. JHEP. 2011;02:009. doi: 10.1007/JHEP02(2011)009. [DOI] [Google Scholar]
  • [138].Abrahamyan S, et al. Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment . Phys. Rev. Lett. 2011;107:191804. doi: 10.1103/PhysRevLett.107.191804. [DOI] [PubMed] [Google Scholar]
  • [139].Battaglieri M, et al. The heavy photon search test detector . Nucl. Instrum. Meth. A. 2015;777:91. doi: 10.1016/j.nima.2014.12.017. [DOI] [Google Scholar]
  • [140].HPS collaboration, Search for a dark photon in electroproduced e+epairs with the heavy photon search experiment at JLab, Phys. Rev. D98 (2018) 091101 [arXiv:1807.11530] [INSPIRE].
  • [141].CHARM collaboration, A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. B166 (1986) 473 [INSPIRE].
  • [142].Gninenko SN. Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays . Phys. Lett. B. 2012;713:244. doi: 10.1016/j.physletb.2012.06.002. [DOI] [Google Scholar]
  • [143].LSND collaboration, Results for νμ→ νeoscillations from pion decay in flight neutrinos, Phys. Rev. C58 (1998) 2489 [nucl-ex/9706006] [INSPIRE].
  • [144].Blümlein J, Brunner J. New exclusion limits for dark gauge forces from beam-dump data . Phys. Lett. B. 2011;701:155. doi: 10.1016/j.physletb.2011.05.046. [DOI] [Google Scholar]
  • [145].Blümlein J, Brunner J. New exclusion limits on dark gauge forces from proton bremsstrahlung in beam-dump data . Phys. Lett. B. 2014;731:320. doi: 10.1016/j.physletb.2014.02.029. [DOI] [Google Scholar]
  • [146].Berlin A, Kling F. Inelastic dark matter at the LHC lifetime frontier: ATLAS, CMS, LHCb, CODEX-b, FASER, and MATHUSLA . Phys. Rev. D. 2019;99:015021. doi: 10.1103/PhysRevD.99.015021. [DOI] [Google Scholar]
  • [147].deNiverville P, Chen C-Y, Pospelov M, Ritz A. Light dark matter in neutrino beams: production modelling and scattering signatures at MiniBooNE, T2K and SHiP. Phys. Rev. D. 2017;95:035006. doi: 10.1103/PhysRevD.95.035006. [DOI] [Google Scholar]
  • [148].S. Foroughi-Abari and A. Ritz, Dark sector production via proton bremsstrahlung, arXiv:2108.05900 [INSPIRE].
  • [149].C. Alpigiani et al., A letter of intent for MATHUSLA: a dedicated displaced vertex detector above ATLAS or CMS, arXiv:1811.00927 [INSPIRE].
  • [150].MATHUSLA collaboration, Explore the lifetime frontier with MATHUSLA, 2020 JINST15 C06026 [arXiv:1901.04040] [INSPIRE].
  • [151].FASER collaboration, Letter of intent for FASER: ForwArd Search ExpeRiment at the LHC, arXiv:1811.10243 [INSPIRE].
  • [152].FASER collaboration, Technical proposal for FASER: ForwArd Search ExpeRiment at the LHC, arXiv:1812.09139 [INSPIRE].
  • [153].FASER collaboration, FASER’s physics reach for long-lived particles, Phys. Rev. D99 (2019) 095011 [arXiv:1811.12522] [INSPIRE].
  • [154].Aielli G, et al. Expression of interest for the CODEX-b detector . Eur. Phys. J. C. 2020;80:1177. doi: 10.1140/epjc/s10052-020-08711-3. [DOI] [Google Scholar]
  • [155].DASP collaboration, Charged pion, kaon and nucleon production by e+eannihilation for c.m. energies between 3.6 and 5.2 GeV, Nucl. Phys. B148 (1979) 189 [INSPIRE].
  • [156].Basso E, Bourrely C, Pasechnik R, Soffer J. The Drell-Yan process as a testing ground for parton distributions up to LHC . Nucl. Phys. A. 2016;948:63. doi: 10.1016/j.nuclphysa.2016.02.001. [DOI] [Google Scholar]
  • [157].Curtin D, et al. Long-lived particles at the energy frontier: the MATHUSLA physics case . Rept. Prog. Phys. 2019;82:116201. doi: 10.1088/1361-6633/ab28d6. [DOI] [PubMed] [Google Scholar]
  • [158].Wess J, Zumino B. Consequences of anomalous Ward identities . Phys. Lett. B. 1971;37:95. doi: 10.1016/0370-2693(71)90582-X. [DOI] [Google Scholar]
  • [159].Witten E. Global aspects of current algebra . Nucl. Phys. B. 1983;223:422. doi: 10.1016/0550-3213(83)90063-9. [DOI] [Google Scholar]
  • [160].Achasov MN, et al. Study of the process e+ e− → π+ π− π0 in the energy region s from 0.98 to 1.38 GeV. Phys. Rev. D. 2002;66:032001. doi: 10.1103/PhysRevD.66.032001. [DOI] [Google Scholar]
  • [161].Achasov MN, et al. Study of the process e+ e− → π+ π− π0 in the energy region s below 0.98 GeV. Phys. Rev. D. 2003;68:052006. doi: 10.1103/PhysRevD.68.052006. [DOI] [Google Scholar]
  • [162].Hochberg Y, Kuflik E, Volansky T, Wacker JG. Mechanism for thermal relic dark matter of strongly interacting massive particles . Phys. Rev. Lett. 2014;113:171301. doi: 10.1103/PhysRevLett.113.171301. [DOI] [PubMed] [Google Scholar]
  • [163].Hochberg Y, Kuflik E, Murayama H, Volansky T, Wacker JG. Model for thermal relic dark matter of strongly interacting massive particles . Phys. Rev. Lett. 2015;115:021301. doi: 10.1103/PhysRevLett.115.021301. [DOI] [PubMed] [Google Scholar]
  • [164].Berlin A, Blinov N, Gori S, Schuster P, Toro N. Cosmology and accelerator tests of strongly interacting dark matter . Phys. Rev. D. 2018;97:055033. doi: 10.1103/PhysRevD.97.055033. [DOI] [Google Scholar]
  • [165].LHCb collaboration, Search for A′ → μ+μdecays, Phys. Rev. Lett.124 (2020) 041801 [arXiv:1910.06926] [INSPIRE]. [DOI] [PubMed]
  • [166].A. Walker-Loud, Nuclear physics review, PoSLATTICE2013 (2014) 013 [arXiv:1401.8259] [INSPIRE].
  • [167].Walker-Loud A, Carlson CE, Miller GA. Electromagnetic self-energy contribution to Mp − Mn and the isovector nucleon magnetic polarizability. Phys. Rev. Lett. 2012;108:232301. doi: 10.1103/PhysRevLett.108.232301. [DOI] [PubMed] [Google Scholar]

Articles from Journal of High Energy Physics are provided here courtesy of Nature Publishing Group

RESOURCES