Abstract
Accurate prediction of the summer precipitation over the middle and lower reaches of the Yangtze River (MLYR) is of urgent demand for the local economic and societal development. This study assesses the seasonal forecast skill in predicting summer precipitation over the MLYR region based on the global Climate Forecast System of Nanjing University of Information Science and Technology (NUIST-CFS1.0, previously SINTEX-F). The results show that the model can provide moderate skill in predicting the interannual variations of the MLYR rainbands, initialized from 1 March. In addition, the nine-member ensemble mean can realistically reproduce the links between the MLYR precipitation and tropical sea surface temperature (SST) anomalies, but the individual members show great discrepancies, indicating large uncertainty in the forecasts. Furthermore, the NUIST-CFS1.0 can predict five of the seven extreme summer precipitation anomalies over the MLYR during 1982–2020, albeit with underestimated magnitudes. The Weather Forecast and Research (WRF) downscaling hindcast experiments with a finer resolution of 30 km, which are forced by the large-scale information of the NUIST-CFS1.0 predictions with a spectral nudging method, display improved predictions of the extreme summer precipitation anomalies to some extent. However, the performance of the downscaling predictions is highly dependent on the global model forecast skill, suggesting that further improvements on both the global and regional climate models are needed.
Electronic supplementary material
Supplementary material is available in the online version of this article at 10.1007/s00376-022-1389-7.
Key words: seasonal forecast, summer precipitation, global climate model, WRF downscaling
摘 要
长江中下游夏季降水的准确预测对当地社会的经济与发展有着重要意义。本研究基于南京信息工程大学全球气候预报系统(NUIST-CFS1.0,原SINTEX-F),评估模式每年3月1日起报的长江中下游地区夏季(6-8月)降水的预报性能。结果表明,该模式对长江中下游地区夏季降水的年际变化具有中等水平的预测技巧。此外,该模式九成员集合平均的结果可以真实再现长江中下游降水,及其对应的大尺度环流与热带海表温度(SST)异常之间的遥相关关系,但模式不同个体成员之间的差异很大,说明目前动力模式对大气内部动力过程预测存在较大的不确定性。尽管模拟结果低估了降雨强度,但是NUIST-CFS1.0预测出了1982-2020年间长江中下游夏季七个极端异常降水中的五个。随后采用 NUIST-CFS1.0预测的大尺度信息驱动区域模式WRF进行动力降尺度后报实验,得到具有更精细水平分辨率(30公里)的区域气候预测结果。结果显示区域气候模式在一定程度上改进了全球模式对长江中下游地区夏季极端降水异常的预测技巧。进一步分析发现,区域气候模式的预测技巧高度依赖于全球模式的预测技能,这表明若要进一步提高长江中下游夏季降水的预测水平,需要继续改进气候模式,尤其是全球气候模式。
关键词: 季节预测, 夏季降水, 全球模式, 动力降尺度
Electronic Supplementary Material to
Seasonal Predictions of Summer Precipitation in the Middle-lower Reaches of the Yangtze River with Global and Regional Models Based on NUIST-CFS1.0
Acknowledgements
This work is supported by National Natural Science Foundation of China (Grant Nos. 42030605 and 42088101) and National Key R&D Program of China (Grant No. 2020YFA0608004). The model simulation is conducted in the High Performance Computing Center of Nanjing University of Information Science & Technology. The Hadley monthly mean SST data is downloaded from https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html. CMAP precipitation data and NCEP-NCAR Reanalysis-II data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, are downloaded from the website at https://psl.noaa.gov/.
Footnotes
Article Highlights
• Seasonal prediction of summer precipitation in the middle and lower reaches of the Yangtze River (MLYR) at a four-month lead is assessed based on NUIST-CFS1.0.
• The model ensemble mean can successfully reproduce the teleconnection between the MLYR precipitation and tropical sea surface temperature anomalies.
• WRF downscaling can improve the prediction of extreme precipitation over the MLYR region, especially for their magnitudes.
References
- Bolton T, Zanna L. Applications of deep learning to ocean data inference and subgrid parameterization. Journal of Advances in Modeling Earth Systems. 2019;11:376–399. doi: 10.1029/2018MS001472. [DOI] [Google Scholar]
- Cai, W. J., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, 10.1126/science.aav4236. [DOI] [PubMed]
- Chen L J, Gu W, Li W J. Why is the East Asian summer monsoon extremely strong in 2018?—Collaborative effects of SST and snow cover anomalies. Journal of Meteorological Research. 2019;33:593–608. doi: 10.1007/s13351-019-8200-4. [DOI] [Google Scholar]
- Chen, X. D., A. G. Dai, Z. P. Wen, and Y. Y. Song, 2021: Contributions of Arctic Sea-Ice loss and East Siberian atmospheric blocking to 2020 record-breaking Meiyu-Baiu rainfall. Geophys. Res. Lett., 48, e2021GL092748, 10.1029/2021GL092748.
- Chen Y, Zhai P M. Two types of typical circulation pattern for persistent extreme precipitation in Central-Eastern China. Quart. J. Roy. Meteor. Soc. 2014;140:1467–1478. doi: 10.1002/qj.2231. [DOI] [Google Scholar]
- Christensen O B, Christensen J H, Machenhauer B, Botzet M. Very high-resolution regional climate simulations over Scandinavia—present climate. J. Climate. 1998;11:3204–3229. doi: 10.1175/1520-0442(1998)011<3204:VHRRCS>2.0.CO;2. [DOI] [Google Scholar]
- Ding Y H, Chan J C L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005;89:117–142. doi: 10.1007/s00703-005-0125-z. [DOI] [Google Scholar]
- Ding Y H, Liu Y M, Shi X L, Li Q Q, Li Q P, Liu Y. Multi-year simulations and experimental seasonal predictions for rainy seasons in China by using a nested regional climate model (RegCM_NCC) Part II: The experimental seasonal prediction. Adv. Atmos. Sci. 2006;23:487–503. doi: 10.1007/s00376-006-0487-2. [DOI] [Google Scholar]
- Fan K, Wang H J, Choi Y-J. A physical-statistical prediction model for summer rainfall in the middle and lower reaches of the Yangtze River. Chinese Science Bulletin. 2007;52:2900–2905. doi: 10.1360/csb2007-52-24-2900. [DOI] [Google Scholar]
- Gan, N., 2020: China has just contained the coronavirus. Now it’s battling some of the worst floods in decades. [Available from https://edition.cnn.com/2020/07/14/asia/china-flood-coronavirus-intl-hnk/index.html]
- Gao Y H, Xue Y K, Peng W, Kang H S, Waliser D. Assessment of dynamic downscaling of the extreme rainfall over East Asia using a regional climate model. Adv. Atmos. Sci. 2011;28:1077–1098. doi: 10.1007/s00376-010-0039-7. [DOI] [Google Scholar]
- Gentine P, Pritchard M, Rasp S, Reinaudi G, Yacalis G. Could machine learning break the convection parameterization deadlock. Geophys. Res. Lett. 2018;45:5742–5751. doi: 10.1029/2018GL078202. [DOI] [Google Scholar]
- Giorgi, F., and Coauthors, 2001: Regional climate information-Evaluation and projections. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 583–638.
- Golding N, Hewitt C, Zhang P Q, Bett P, Fang X Y, Hu H Z, Nobert S. Improving user engagement and uptake of climate services in China. Climate Services. 2017;5:39–45. doi: 10.1016/j.cliser.2017.03.004. [DOI] [Google Scholar]
- Guo Q, Liu X W, Wu T W, Cheng B Y, Li R, Wei L X. Verification and correction of East China summer rainfall prediction based on BCC_CSM Model. Chinese Journal of Atmospheric Sciences. 2017;41:71–90. [Google Scholar]
- Ham Y-G, Kim J-H, Luo J-J. Deep learning for multi-year ENSO forecasts. Nature. 2019;573:568–572. doi: 10.1038/s41586-019-1559-7. [DOI] [PubMed] [Google Scholar]
- He J Y, Wu J Y, Luo J-J. Introduction to climate forecast system version 1.0 of Nanjing University of information science and technology. Transactions of Atmospheric Sciences. 2020;43:128–143. [Google Scholar]
- Hong S-Y, Kim J-H, Lim J-O, Dudhia J. The WRF single-moment 6-class microphysics scheme (WSM6) Journal of the Korean Meteorological Society. 2006;42:129–151. [Google Scholar]
- Hong S-Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 2006;134:2318–2341. doi: 10.1175/MWR3199.1. [DOI] [Google Scholar]
- Huang R H, Sun F Y. Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan. 1992;70:243–256. doi: 10.2151/jmsj1965.70.1B_243. [DOI] [Google Scholar]
- Iacono M J, Delamere J S, Mlawer E J, Shephard M W, Clough S A, Collins W D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008;113:D13103. doi: 10.1029/2008JD009944. [DOI] [Google Scholar]
- Jin D C, Huo L W. Influence of tropical Atlantic sea surface temperature anomalies on the East Asian summer monsoon. Quart. J. Roy. Meteor. Soc. 2018;144:1490–1500. doi: 10.1002/qj.3296. [DOI] [Google Scholar]
- Johnson S J. The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM. Climate Dyn. 2016;46:807–831. doi: 10.1007/s00382-015-2614-1. [DOI] [Google Scholar]
- Kain J S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. Climatol. 2004;43:170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2. [DOI] [Google Scholar]
- Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo J J, Fiorino M, Potter G L. NCEP-DOE AMIP-II reanalysis (R-2) Bull. Amer. Meteor. Soc. 2002;83:1631–1644. doi: 10.1175/BAMS-83-11-1631. [DOI] [Google Scholar]
- Kim H, Ham Y G, Joo Y S, Son S W. Deep learning for bias correction of MJO prediction. Nature Communications. 2021;12:3087. doi: 10.1038/s41467-021-23406-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosaka Y, Chowdary J S, Xie S-P, Min Y-M, Lee J-Y. Limitations of seasonal predictability for summer climate over East Asia and the northwestern pacific. J. Climate. 2012;25:7574–7589. doi: 10.1175/JCLI-D-12-00009.1. [DOI] [Google Scholar]
- Laprise, R., and Coauthors, 2012: Considerations of domain size and large-scale driving for nested regional climate models: Impact on internal variability and ability at developing small-scale details. Climate Change, A. Berger et al., Eds., Springer, 181–199, 10.1007/978-3-7091-0973-1_14.
- Lee J-Y. How are seasonal prediction skills related to models’ performance on mean state and annual cycle. Climate Dyn. 2010;35:267–283. doi: 10.1007/s00382-010-0857-4. [DOI] [Google Scholar]
- Li C F. Skillful seasonal prediction of Yangtze River valley summer rainfall. Environmental Research Letters. 2016;11:094002. doi: 10.1088/1748-9326/11/9/094002. [DOI] [Google Scholar]
- Li C F, Chen W, Hong X W, Lu R Y. Why was the strengthening of rainfall in summer over the Yangtze River valley in 2016 less pronounced than that in 1998 under similar preceding El Niño events. Role of midlatitude circulation in August. Adv. Atmos. Sci. 2017;34:1290–1300. [Google Scholar]
- Li C F, Lu R Y, Dunstone N, Scaife A A, Bett P E, Zheng F. The seasonal prediction of the exceptional Yangtze River rainfall in summer 2020. Adv. Atmos. Sci. 2021;38:2055–2066. doi: 10.1007/s00376-021-1092-0. [DOI] [Google Scholar]
- Li S L, Ji L R, Lin W T, Ni Y Q. The maintenance of the blocking over the ural mountains during the second Meiyu period in the summer of 1998. Adv. Atmos. Sci. 2001;18:87–105. doi: 10.1007/s00376-001-0006-4. [DOI] [Google Scholar]
- Liu B Q, Yan Y H, Zhu C W, Ma S M, Li J Y. Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the Subseasonal phase transition of the North Atlantic oscillation. Geophys. Res. Lett. 2020;47:e2020GL090342. [Google Scholar]
- Liu X W, Wu T W, Yang S, Jie W H, Nie S P, Li Q P, Cheng Y J, Liang X Y. Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m) Adv. Atmos. Sci. 2015;32:1156–1172. doi: 10.1007/s00376-015-4194-8. [DOI] [Google Scholar]
- Lo, J. C. F., Z.-L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res., 113, D09112, 10.1029/2007JD009216.
- Lu R Y. Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan. 2004;82:155–165. doi: 10.2151/jmsj.82.155. [DOI] [Google Scholar]
- Luo J-J, Masson S, Behera S, Delecluse P, Gualdi S, Navarra A, Yamagata T. South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett. 2003;30:2250. [Google Scholar]
- Luo J-J, Masson S, Behera S, Shingu S, Yamagata T. Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate. 2005;18:4474–4497. doi: 10.1175/JCLI3526.1. [DOI] [Google Scholar]
- Luo J-J, Masson S, Roeckner E, Madec G, Yamagata T. Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J. Climate. 2005;18:2344–2360. doi: 10.1175/JCLI3404.1. [DOI] [Google Scholar]
- Luo J-J, Masson S, Behera S, Yamagata T. Experimental forecasts of the Indian Ocean Dipole using a coupled OAGCM. J. Climate. 2007;20:2178–2190. doi: 10.1175/JCLI4132.1. [DOI] [Google Scholar]
- Luo J-J, Masson S, Behera S K, Yamagata T. Extended ENSO predictions using a fully coupled ocean-atmosphere model. J. Climate. 2008;21:84–93. doi: 10.1175/2007JCLI1412.1. [DOI] [Google Scholar]
- Luo, J.-J., C. X. Yuan, W. Sasaki, S. K. Behera, Y. Masumoto, T. Yamagata, J. Y. Lee, and S. Masson, 2016: Chapter 3: Current status of intraseasonal-seasonal-to-interannual prediction of the Indo-Pacific climate. Indo-Pacific Climate Variability and Predictability, S. K. Behera and T. Yamagata, Eds., World Scientific Publisher, 63–107, 10.1142/9789814696623_0003.
- Ma J H, Wang H J, Fan K. Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4. Adv. Atmos. Sci. 2015;32:577–584. doi: 10.1007/s00376-014-4143-y. [DOI] [Google Scholar]
- MacLachlan C. Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc. 2015;141:1072–1084. doi: 10.1002/qj.2396. [DOI] [Google Scholar]
- Madec, G., P. Delecluse, and C. Levy, 1998: OPA 8.1 Ocean General Circulation Model reference manual. Technical Report, Pole de Modelisation, IPSL.
- Martin G M, Dunstone N J, Scaife A A, Bett P E. Predicting June mean rainfall in the middle/lower Yangtze River Basin. Adv. Atmos. Sci. 2020;37:29–41. doi: 10.1007/s00376-019-9051-8. [DOI] [Google Scholar]
- Miguez-Macho, G., G. L. Stenchikov, and A. Robock, 2004: Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J. Geophys. Res., 109, D13104, 10.1029/2003JD004495.
- Nitta T. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan. 1987;65:373–390. doi: 10.2151/jmsj1965.65.3_373. [DOI] [Google Scholar]
- Pan X, Li T, Sun Y, Zhu Z W. Cause of extreme heavy and persistent rainfall over Yangtze River in summer 2020. Adv. Atmos. Sci. 2021;38(12):1994–2009. doi: 10.1007/s00376-021-0433-3. [DOI] [Google Scholar]
- Prodhomme C, Batté L, Massonnet F, Davini P, Bellprat O, Guemas V, Doblas-Reyes F J. Benefits of increasing the model resolution for the seasonal forecast quality in EC-Earth. J. Climate. 2016;29:9141–9162. doi: 10.1175/JCLI-D-16-0117.1. [DOI] [Google Scholar]
- Ratnam J V. Dynamical downscaling of austral summer climate forecasts over Southern Africa using a regional coupled model. J. Climate. 2013;26:6015–6032. doi: 10.1175/JCLI-D-12-00645.1. [DOI] [Google Scholar]
- Ratnam J V, Behera S K, Doi T, Ratna S B, Landman W A. Improvements to the WRF seasonal hindcasts over South Africa by bias correcting the driving SINTEX-F2v CGCM fields. J. Climate. 2016;29:2815–2829. doi: 10.1175/JCLI-D-15-0435.1. [DOI] [Google Scholar]
- Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003;108:4407. doi: 10.1029/2002JD002670. [DOI] [Google Scholar]
- Ren H-L. The China multi-model ensemble prediction system and its application to flood-season prediction in 2018. Journal of Meteorological Research. 2019;33:540–552. doi: 10.1007/s13351-019-8154-6. [DOI] [Google Scholar]
- Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report No. 218, 20 pp.
- Saha S. The NCEP climate forecast system version 2. J. Climate. 2014;27:2185–2208. doi: 10.1175/JCLI-D-12-00823.1. [DOI] [Google Scholar]
- Sanna, A., A. Borrelli, P. Athanasiadis, S. Materia, A. Storto, A. Navarra, S. Tibaldi, S. Gualdi, 2017: CMCC-SPS3: The CMCC seasonal prediction system 3. Centro Euro-Mediterraneo sui Cambiamenti Climatici. CMCC Tech. Note RP0285, 61 pp.
- Scaife A A. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 2014;41:2514–2519. doi: 10.1002/2014GL059637. [DOI] [Google Scholar]
- Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF Version 2. No. NCAR/TN-468+STR.
- Takaya Y. Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2): Atmosphere-land-ocean-sea ice coupled prediction system for operational seasonal forecasting. Climate Dyn. 2018;50:751–765. doi: 10.1007/s00382-017-3638-5. [DOI] [Google Scholar]
- Tang J P, Wang S Y, Niu X R, Hui P H, Zong P S, Wang X Y. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF. Climate Dyn. 2017;48:2339–2357. doi: 10.1007/s00382-016-3208-2. [DOI] [Google Scholar]
- Tang S L, Luo J J, He J Y, Wu J Y, Zhou Y, Ying W S. Toward understanding the extreme floods over Yangtze River valley in June–July 2020: Role of Tropical Oceans. Adv. Atmos. Sci. 2021;38:2023–2039. doi: 10.1007/s00376-021-1036-8. [DOI] [Google Scholar]
- Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land-surface model in the WRF model. Preprints, 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, American Meteorological Society.
- Tiedtke M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 1989;117:1779–1800. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2. [DOI] [Google Scholar]
- Valcke, S., and Coauthors, 2000: The OASIS coupler user guide version 2.4.
- Wang B, Fan Z. Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc. 1999;80:629–638. doi: 10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2. [DOI] [Google Scholar]
- Wang B, Ho L. Rainy season of the Asian-Pacific summer monsoon. J. Climate. 2002;15:386–398. doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2. [DOI] [Google Scholar]
- Wang B. Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004) Climate Dyn. 2009;33:93–117. doi: 10.1007/s00382-008-0460-0. [DOI] [Google Scholar]
- Wang B, Wu R G, Fu X. Pacific-East Asian teleconnection: How Does ENSO affect East Asian Climate. J. Climate. 2000;13:1517–1536. doi: 10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2. [DOI] [Google Scholar]
- Wang H J. A review of seasonal climate prediction research in China. Adv. Atmos. Sci. 2015;32:149–168. doi: 10.1007/s00376-014-0016-7. [DOI] [Google Scholar]
- Wu B, Zhou T J, Li T. Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate. 2009;22:2992–3005. doi: 10.1175/2008JCLI2710.1. [DOI] [Google Scholar]
- Xie P P, Arkin P A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc. 1997;78:2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2. [DOI] [Google Scholar]
- Xie S-P, Hu K M, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T. Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate. 2009;22:730–747. doi: 10.1175/2008JCLI2544.1. [DOI] [Google Scholar]
- Xie S-P, Kosaka Y, Du Y, Hu K M, Chowdary J S, Huang G. Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci. 2016;33:411–432. doi: 10.1007/s00376-015-5192-6. [DOI] [Google Scholar]
- Xu Z F, Yang Z-L. An improved dynamical down-scaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Climate. 2012;25:6271–6286. doi: 10.1175/JCLI-D-12-00005.1. [DOI] [Google Scholar]
- Xu Z F, Yang Z L. A new dynamical downscaling approach with GCM bias corrections and spectral nudging. J. Geophys. Res. 2015;120:3063–3084. doi: 10.1002/2014JD022958. [DOI] [Google Scholar]
- Yang Y M, Park J H, An S I, Wang B, Luo X. Mean sea surface temperature changes influence ENSO-related precipitation changes in the mid-latitudes. Nature Communications. 2021;12:1495. doi: 10.1038/s41467-021-21787-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao S X, Zhang Y C. Simulation of China summer precipitation using a regional air-sea coupled model. Acta Meteorologica Sinica. 2010;24(2):203–214. [Google Scholar]
- Yuan, X., and X.-Z. Liang, 2011: Improving cold season precipitation prediction by the nested CWRF-CFS system. Geophys. Res. Lett., 38, L02706, 10.1029/2010GL046104.
- Yuan X, Liang X-Z, Wood E F. WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982–2008. Climate Dyn. 2012;39:2041–2058. doi: 10.1007/s00382-011-1241-8. [DOI] [Google Scholar]
- Yuan Y, Gao H, Li W J, Liu Y J, Chen L J, Zhou B, Ding Y H. The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998. Journal of Meteorological Research. 2017;31:261–277. doi: 10.1007/s13351-017-6192-5. [DOI] [Google Scholar]
- Zhang R H, Min Q Y, Su J Z. Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Science China Earth Sciences. 2017;60:1124–1132. doi: 10.1007/s11430-016-9026-x. [DOI] [Google Scholar]
- Zhang S L, Tao S Y. The influences of snow cover over the Tibetan Plateau on Asian summer monsoon. Chinese Journal of Atmospheric Sciences. 2001;25:372–390. [Google Scholar]
- Zhao Y F, Zhu J, Xu Y. Establishment and assessment of the grid precipitation datasets in China for recent 50 years. Journal of the Meteorological Sciences. 2014;34:414–420. [Google Scholar]
- Zhou B T. Linkage between winter sea surface temperature east of Australia and summer precipitation in the Yangtze River valley and a possible physical mechanism. Chinese Science Bulletin. 2011;56:1821–1827. doi: 10.1007/s11434-011-4497-9. [DOI] [Google Scholar]
- Zhou, Z. Q., S. P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022255118, 10.1073/pnas.2022255118. [DOI] [PMC free article] [PubMed]
- Zou L W, Zhou T J, Tang J P, Liu H L. Introduction to the regional coupled model WRF4-LICOM: Performance and model intercomparison over the Western North pacific. Adv. Atmos. Sci. 2020;37:800–816. doi: 10.1007/s00376-020-9268-6. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Seasonal Predictions of Summer Precipitation in the Middle-lower Reaches of the Yangtze River with Global and Regional Models Based on NUIST-CFS1.0
