Abstract
Objectives
To develop and evaluate machine learning models to detect patients with suspected undiagnosed non-alcoholic steatohepatitis (NASH) for diagnostic screening and clinical management.
Methods
In this retrospective observational non-interventional study using administrative medical claims data from 1 463 089 patients, gradient-boosted decision trees were trained to detect patients with likely NASH from an at-risk patient population with a history of obesity, type 2 diabetes mellitus, metabolic disorder or non-alcoholic fatty liver (NAFL). Models were trained to detect likely NASH in all at-risk patients or in the subset without a prior NAFL diagnosis (at-risk non-NAFL patients). Models were trained and validated using retrospective medical claims data and assessed using area under precision recall curves and receiver operating characteristic curves (AUPRCs and AUROCs).
Results
The 6-month incidences of NASH in claims data were 1 per 1437 at-risk patients and 1 per 2127 at-risk non-NAFL patients. The model trained to detect NASH in all at-risk patients had an AUPRC of 0.0107 (95% CI 0.0104 to 0.0110) and an AUROC of 0.84. At 10% recall, model precision was 4.3%, which is 60× above NASH incidence. The model trained to detect NASH in the non-NAFL cohort had an AUPRC of 0.0030 (95% CI 0.0029 to 0.0031) and an AUROC of 0.78. At 10% recall, model precision was 1%, which is 20× above NASH incidence.
Conclusion
The low incidence of NASH in medical claims data corroborates the pattern of NASH underdiagnosis in clinical practice. Claims-based machine learning could facilitate the detection of patients with probable NASH for diagnostic testing and disease management.
Keywords: machine learning, artificial intelligence, BMJ Health Informatics, data science, medical records
Summary.
What is already known?
Non-alcoholic steatohepatitis (NASH) is difficult to detect without an invasive liver biopsy and is underdiagnosed despite the risk of progression to cirrhosis.
Machine learning (ML) models trained on real-world data have shown promise in detecting rare or underdiagnosed diseases such as NASH.
What does this paper add?
This study extends the existing literature on ML applications in healthcare by incorporating high coverage medical claims data as a scalable strategy for detecting patients with likely NASH.
How this study might affect research, practice or policy?
This study may increase awareness of NASH underdiagnosis and under-reporting in clinical practice.
This study may serve as a basis for future research aimed at validating ML models to support NASH diagnosis in the clinical setting.
Background
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term that describes two subtypes of liver disease: non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH).1 2 NAFL is characterised by fat accumulation (steatosis) in the liver without significant inflammation. NASH is a more severe form of NAFLD and is characterised by steatosis with inflammation and fibrosis, which can progress to cirrhosis.1 The prevalence of NAFLD in the USA is estimated to be 24%–26% of adults, of whom an estimated 20%–30% have NASH.3
The transition from simple hepatic steatosis to NASH is a crucial point in the development of severe liver disease, putting patients at higher risk for fibrosis and progression to chronic liver disease.4 Nevertheless, NASH is often underdiagnosed in clinical practice.5–7 This may be due to several factors. First, there is a lack of clear patient symptoms and reliable biomarkers to help identify NASH,8 9 and there are no universal routine screening standards.10 Second, liver biopsy is the gold standard for NASH diagnosis but is costly, invasive, complicated by sampling errors and requires a specialist to perform.4 11 Finally, despite ongoing clinical trials, there are currently no approved pharmacological treatments for NASH outside of India.12 Thus, detection of NASH remains a challenge and reliable diagnostic tools, including minimal or even non-invasive techniques, are warranted.
Machine learning (ML) with real-world data may help address the underdiagnosis of common and rare diseases. We recently demonstrated the application of ML in a retrospective case–control cohort study based on a US claims database to identify patients with undiagnosed hepatitis C virus.13 For the detection of NASH, studies have yielded encouraging results using metabolomics,14–17 electronic health records18–20 or combined clinical-claims data.21 The use case of each approach may be influenced by the chosen data type, characteristics of the model training population or the targeted application to patients with documented NAFL. Continuing to build on these efforts will further enable ML approaches to facilitate NASH detection.
This study examined supervised ML using medical claims as a non-invasive strategy to identify patients with likely NASH who might benefit from appropriate clinical follow-up such as monitoring or diagnostic screening. We used a retrospective rolling cross-sectional study design22 by taking multiple snapshots of patient prescription and medical claim histories to emulate patient data during real-world deployment while providing examples of patients with NASH for model training at different points in the patient journey prior to diagnosis. We also evaluated both knowledge-driven (‘hypothesis-driven’) and automated data-driven strategies in developing clinical predictors for NASH detection.
Methods
Data sources
Data were extracted from IQVIA’s proprietary US longitudinal prescription (LRx) and non-adjudicated medical claims (Dx) databases.13 LRx receives nearly 4 billion US prescription claims annually with coverage of 70%–90% of dispensed prescriptions from retail, mail order and long-term care channels. Dx receives over 1.35 billion US medical claims annually and covers approximately 70% of American Medical Association physicians. Dx data are derived from office-based individual professionals, ambulatory, general healthcare sites, hospitals, skilled nursing facilities and home health sites and includes patient-level diagnostic and procedural information.
All data were de-identified using an automated de-identification engine prior to being accessed by IQVIA. Both LRx and Dx data sets (hereafter referred to as LRxDx) are linked using anonymous patient tokens that support IQVIA data set interoperability and permits longitudinal linkage across patient histories. This anonymisation process is certified as Health Insurance Portability and Accountability Act compliant and Institutional Review Board exempt. IQVIA holds all requisite titles, licenses and/or rights to license this Protected Health Information for use in accordance with applicable agreements. LRxDx data spanning the study period from 1 October 2015 to 30 June 2020 were used for cohort selection and predictive feature engineering. Dx data between 1 January 2010 and 1 October 2015 were used only to exclude patients with an existing International Classification of Disease-9 (ICD-9) NASH diagnosis before study initiation. This study was conducted using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis reporting guidelines.
Patient selection
An overview of the patient populations used for cohort identification is shown in figure 1A. Patients with a history of obesity, type 2 diabetes mellitus (T2DM), metabolic disorder or NAFL were selected to include individuals who also had precursors and risk factors for NASH.23 This has the effect of enriching the patient population to ensure that an algorithm learns a prediagnosis footprint specific to NASH rather than simply distinguishing between healthy and sick patients or between patients with highly dissimilar symptomologies. This cohort was stratified to remove patients with claims for liver cancer, liver failure or alcohol-related liver disease and other liver complications that might disqualify patients from clinical intervention for NASH. Additional eligibility criteria were presence in both LRxDx for at least 24 months, recorded sex and age from 18 to 85 years at the time of model prediction. See online supplemental table 1 for cohort stratification criteria.
bmjhci-2021-100510supp001.pdf (6.2MB, pdf)
Rolling cross-section study design
To develop algorithms to detect NASH at different points of the prediagnosis patient journey (e.g., 1 month prediagnosis, 3 months prediagnosis), we divided patient claims history into a rolling series of time-bounded cross-sections (i.e., rolling cross-sections (RCS)). The application of this approach to disease detection is discussed in more detail elsewhere.22 Briefly, we divided longitudinal patient claims data over the study period into 24-month lookback periods followed by a 6-month outcome window, each shifted by 3-month increments (figure 1B). The lookback period was used to apply stratification criteria and extract data for feature engineering. The most recent date in the lookback period (the index date) represents the starting time point of model prediction.
Patients with probable NASH were labelled using the earliest occurrence of two criteria:
A NASH diagnosis in the outcome window.
A diagnosis for non-alcohol-related liver fibrosis, sclerosis or cirrhosis during the outcome window with a NAFL diagnosis within the preceding 24 or subsequent 6 months. These patients were presumed undiagnosed or unrecorded NASH patients as this clustering of diagnoses is indicative of NASH1 and are therefore referred to as NASH proxy patients. These patients had no other liver diagnosis for their cirrhosis.
See online supplemental table 2 for NASH labelling criteria.
A total of 152 476 patients met the selection criteria for patient with NASH labelling. Patients who met the selection criteria during the lookback period without evidence of NASH during or before the cross-section outcome window formed an at-risk control patient pool. A total of 54 976 837 at-risk control patients were initially identified and then randomly downsampled to a ratio of one patient with NASH per five at-risk control patients per cross-section to facilitate model training resulting in 1 312 351 at-risk patients for adversarial training.
Two modelling strategies were undertaken for NASH detection. The first (figure 1C, NAFL inclusive modelling) sought to detect NASH among all at-risk patients to maximise clinical impact. We also hypothesised that patients with documented NAFL might already be suspected of NASH and that this might limit the clinical utility of algorithm-based NASH screening. We therefore investigated a second modelling approach (figure 1C, non-NAFL modelling) by excluding patient cross-sections with a NAFL diagnosis claim during the lookback period.
Feature engineering
We used two methods for feature engineering. The first, a knowledge-driven (KD) approach, applied domain expertise to curate clinical codes into medical concepts associated with NASH risk such as relevant comorbidities, symptoms, procedures and treatments. The second, a data-driven (DD) approach, extracted clinical codes that were present in the NASH or at-risk control patient cross-section lookbacks. Codes of each type, for example, diagnoses or procedures, were then selected based on the largest absolute difference in prevalence between NASH and at-risk control patients with the motivation that these codes should be discriminatory predictors. DD feature identification was performed only with training cross-sections 1–6 to avoid data leakage from future cross-sections used for model validation. Patient demographics (age and sex) were included as model predictors to complement KD/DD feature sets and were included in all modelling scenarios.
Date differences and frequencies for claim and specialty visits were calculated over each patient lookback period. Date differences were calculated as the number of days between the first and last claim for a given feature relative to the index date and the number of days between the first and last claim. Missing data were represented as zero for frequency features and as null for date difference features since null values are handled inherently by the ensemble algorithm used. See online supplemental tables 3-5 for clinical concepts used to derive model predictors.
Model selection
Gradient boosted trees24 using the XGBoost package25 were trained to discriminate between NASH and at-risk control patients. XGBoost was selected based on its previous success in benchmarking against other disease detection algorithms using claims data,13 26 its suitability over deep learning for tabular data27 and its compatibility with sparse claims data sets and scalability.25 Training cross-sections 1–6 were used for recursive feature elimination for feature selection (online supplemental figure 1) and for hyperparameter optimisation using grid search (online supplemental table 6).
Model evaluation
Models were evaluated using the area under the precision recall curve (AUPRC).28 To compensate for random downsampling of the at-risk control cohort, precision was scaled to the 6-month incidence of NASH in the at-risk patient population before downsampling, which was 1 per 1437 and 1 per 2127 patients for the NAFL inclusive and non-NAFL cohorts, respectively. Such scaling ensures that the number of false positives used to calculate precision is not underestimated and accurately reflects the incidence of NASH captured in claims data. Model precision using 95% CIs were approximated by treating each recall decile as a binomial distribution with n patients and a Bernoulli trial success probability of p. We then determined the uncertainty of p using a beta distribution with true and false positive predictions. The receiver operating characteristic curve and the corresponding area under the curve (AUROC) are given for reference. Feature importance was examined using SHAP (SHapley Additive exPlanations).29
Algorithms were compared with screenings for NASH using evidence of NAFL or T2DM in the last 2 years of a patient’s claims history (see online supplemental table 7 for qualifying clinical codes). Precision and recall of NAFL or T2DM screening were measured in NAFL inclusive and non-NAFL holdout sets. Model precision was then measured at the corresponding recall of each screening. The non-NAFL model was compared only to screening with T2DM.
Results
Study cohort
The NAFL inclusive and non-NAFL modelling cohorts displayed similar clinical profiles. T2DM was more common in patients with NASH (67.1% NASH and 56.3% at-risk and 70.4% NASH and 56.4% at-risk patients in the NAFL inclusive and non-NAFL cohorts, respectively). Obesity was common in patients with NASH and in at-risk controls regardless of NAFL history (59.8% vs 59.3%). NAFL was 10-fold more common in patients with NASH compared with at-risk controls (table 1).
Table 1.
NAFL inclusive modelling | Non-NAFL modelling | |||
NASH | At-risk controls | NASH | At-risk controls | |
Patients (n) | 152 476 | 1 312 351 | 104 219 | 1 265 649 |
Patient cross-sections (n) | 265 785 | 1 328 897 | 172 423 | 1 281 376 |
Demographics | ||||
Age in years, mean (SD) | 57.3 (13.4) | 55.8 (15.7) | 57.6 (13.4) | 55.8 (15.9) |
Sex (female) (%) | 59.8 | 59.4 | 59.0 | 58.0 |
NASH identification criteria (%) | ||||
NASH ICD-10 | 70.3 | 0 | 76.7 | 0 |
NASH proxy | 29.7 | 0 | 23.3 | 0 |
Inclusion criteria (%) | ||||
Type 2 diabetes | 67.1 | 56.3 | 70.4 | 56.4 |
Obesity | 58.9 | 59.3 | 58.9 | 59.3 |
Metabolic syndrome | 2.5 | 1.3 | 2.4 | 1.3 |
NAFL | 35.1 | 3.6 | 0 | 0 |
Comorbidities (%) | ||||
Hypertension | 64.0 | 49.4 | 62.6 | 49.0 |
Morbid (severe) obesity | 17.4 | 10.0 | 17.0 | 9.7 |
Abnormal results of liver function studies | 14.0 | 1.5 | 9.2 | 1.2 |
Abnormal levels of other serum enzymes | 12.3 | 1.8 | 8.2 | 1.5 |
Procedures (%) | ||||
Liver biopsy | 1.0 | <1.0 | <1.0 | <1.0 |
Liver panel | 14.7 | 5.2 | 10.5 | 4.9 |
Abdominal ultrasound | 29.1 | 5.7 | 14.6 | 4.1 |
Comprehensive metabolic panel | 9.9 | 7.3 | 9.2 | 7.2 |
Specialty visits (%) | ||||
Gastroenterology | 30.9 | 12.7 | 22.4 | 12.0 |
Endocrinology | 10.9 | 6.1 | 10.0 | 6.0 |
Cardiology | 30.4 | 20.6 | 28.2 | 20.2 |
Diagnoses, procedures and physician specialty visit information is derived from medical and prescription claims data captured during each patient cross-section lookback period.
ICD-10, International Classiication of Disease-10; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis.
Model performance
NAFL inclusive modelling detected patients with probable NASH in the at-risk holdout population with 0.0107 AUPRC (95% CI 0.0104 to 0.0110) and 0.84 AUROC (figure 2A, B). At 10% recall, the model detected patients with probable NASH with 4.3% precision (figure 2A). This represents a 60-fold improvement over the 6-month incidence of NASH, that is, if at-risk patients were randomly screened for NASH (figure 3A). Patients labelled using a NASH diagnosis or NASH proxy criteria were detected with an AUPRC of 0.0059 and 0.0051, respectively (online supplemental figure 3).
NAFL is a precursor of NASH; however, only 35% of patients with NASH received a NAFL diagnosis claim during their 24-month lookback period (table 1). Therefore, we developed a second model to detect patients with NASH in the non-NAFL cohort. The non-NAFL model identified patients with probable NASH with 0.0030 AUPRC (95% CI 0.0029 to 0.0031) and 0.78 AUROC (figure 2C, D). At 10% recall, this model detected patients with probable NASH with 1% precision, a 20-fold improvement over the incidence of NASH in this cohort (figure 3B). A comparable number of patients with NASH without NAFL were detected at approximately 30% recall by the NAFL inclusive model.
For both NAFL inclusive and non-NAFL cohorts, model precision and recall in the holdout set (i.e., train on cross-sections 1–6, test on 8) were comparable to that of the prospective validation set (i.e., train on cross-sections 1–8, test on 10) (figure 2A). In addition, models trained on cross-sections 1–6 and then tested on either the holdout or prospective validation set showed comparable performance (online supplemental figure 2), indicating model stability over a 6-month period.
ML surpassed the precision of NASH detection when screening at-risk patients with NAFL or T2DM claims and is presented as a fold improvement over the baseline incidence of NASH in claims data. In the NAFL inclusive cohort, NAFL screening detected 36% of likely patients with NASH with 9.9-fold precision (figure 3C), whereas the NAFL inclusive model detected the same number of patients with NASH (i.e, equivalent recall) with 16.1-fold precision (figure 3C). Screening with T2DM detected 66% of patients with likely NASH with 1.2-fold precision versus 4.5-fold precision with the NAFL inclusive model (figure 3D). In the non-NAFL cohort, T2DM screening detected 70% of patients with likely NASH with 1.3-fold precision, whereas the non-NAFL model improved precision by 2.3-fold for the same recall (figure 3E).
To evaluate the relative effectiveness of each feature engineering strategy, we compared the performance of models optimised with a mixture of KD and DD features to those optimised with one of the two feature types. Models developed with DD features performed slightly better than models developed with KD features. However, detection of NASH was maximised using the combination of KD and DD features (figure 2).
Model interpretation
To gain insight into which clinical factors drive algorithmic detection of NASH, we examined feature importance using SHAP (figure 4). As attributes (e.g., claim frequency and claim recency) may be correlated within a single feature, we ranked the top features by taking the cumulative sum of the absolute SHAP values for attributes within each feature. For the NAFL inclusive model, a prior NAFL diagnosis was the dominant clinical predictor accounting for 13% of the total contribution (figure 4A). In contrast, the top features were more evenly distributed in the non-NAFL model (figure 4B). Although trained independently, KD and DD models relied on similar clinical event types including comorbidities (T2DM), laboratory findings (abnormal liver function studies and abnormal serum enzyme levels) and diagnostic procedures (abdominal ultrasonography) (figure 4C–F).
Discussion
This study provides encouraging results for the use of medical claims data and ML to detect patients with likely NASH from large at-risk patient populations. Although there are no universally accepted routine screening standards for NASH,10 both NAFL and T2DM are well-recognised risk factors.2 Nonetheless, claims-based algorithms outperformed NASH screening using NAFL or T2DM history alone. In addition, algorithms detected probable NASH in at-risk patients without documented NAFL, potentially representing an overlooked NASH risk group. Approaches such as this may support more targeted screening of prevalent and underdiagnosed diseases and may be particularly valuable when diagnosis requires invasive or costly procedures or when clinical risk factors that could be used to screen patients are imprecise.
We investigated two methods that may broadly inform ML healthcare applications. First, we evaluated an automated DD approach to feature engineering for algorithmic disease detection. Model performance was greatest when KD and DD features were combined, suggesting that the two feature engineering methods make complementary contributions by integrating clinical and epidemiological knowledge with an empirically oriented process of scientific inquiry. Such automated approaches may improve knowledge discovery in real-world data while reducing the burden on clinical domain experts. Second, our RCS method can facilitate the creation of cohorts using longitudinal health data and provide opportunities to monitor healthcare market dynamics that may impact model performance.
These models represent claims-based screening tools to facilitate the identification of patients with likely NASH who may benefit from clinical follow-up (e.g., via FibroScan) and as proof of concepts for further clinical validation. Potential users of these models include providers or payers who wish to implement high volume screening for suspected NASH in an at-risk patient population. While the NAFL inclusive model is suited for broad NASH detection, the non-NAFL model may be appropriate for screening patients for NASH for whom NAFL status is not well documented or a reliable cause of medical care.
There are several limitations in this study. First, model precision is likely underestimated due to NASH underdiagnosis and under-reporting,5–7 which may inflate the false positive rate in model evaluation. Changes in clinical practice that facilitate NASH diagnosis should close the gap between observed incidence in claims and epidemiological estimates while also enabling the development of more powerful claims-based models. Second, our NASH labelling criteria do not guarantee NASH, which requires histological confirmation with a liver biopsy. The low percentage of patient cross-sections with a liver biopsy claim in this study may be due in part to limited coverage of this procedure in this data set. In addition, liver biopsy may not be performed in all cases, as a 2014 survey found that less than 25% of gastroenterologists and hepatologists routinely perform a biopsy to confirm NASH diagnosis.6 Clinical validation of these models would need to be performed on patients with liver biopsy-confirmed NASH and ideally assessed using multiple distinct medical claims data sets. Third, models were trained to detect patients with probable NASH regardless of NASH stage. Additional data types may enable stage specific NASH labelling for more targeted clinical interventions. Fourth, this study used a 6-month outcome window for NASH detection, which was chosen to allow indexing on more recent claims data. However, progressive diseases such as NASH may also benefit from longer prediction horizons to enable earlier detection. Finally, the robustness of our feature engineering strategy should be determined in subsequent sensitivity analyses using a broader range of techniques such as cost-sensitive or semi-supervised learning to address class imbalances30 as well as alternative ML algorithms and clinical targets.
Conclusions
In this study, we investigated claims-based ML as a non-invasive and scalable approach to stratify patients with probable NASH from an at-risk population for clinical follow-up. We also demonstrated automated DD feature engineering and an RCS study design in the development of disease detection algorithms. Models from this study or derivatives thereof could support more precise screening for NASH and help connect patients with available and emerging therapies.
Acknowledgments
We are very grateful to Paranjoy Saharia, HEOR Scientific Services, IQVIA, and Rehan Ali, PhD and Benjamin North, PhD, Real World Solutions, IQVIA, for manuscript support.
Footnotes
OY and PL contributed equally.
Contributors: Conception and design of the study and interpretation of the results: all authors. Data collection and analysis: OY, PL and BH. Original draft of the manuscript: PL. Critical revision and final review of the manuscript: all authors. PL acts as the guarantor.
Funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.
Competing interests: All authors are employees of IQVIA.
Provenance and peer review: Not commissioned; externally peer reviewed.
Supplemental material: This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.
Data availability statement
No data are available. All data belongs to IQVIA.
Ethics statements
Patient consent for publication
Not applicable.
Ethics approval
The claims data used in this study were previously collected and statistically deidentified and are compliant with the deidentification conditions set forth in Sections 164.514 (a)-(b)1ii of the Health Insurance Portability and Accountability Act of 1996 Privacy Rule. No direct patient contact or primary collection of individual human patient data occurred. Study results were in tabular form and aggregate analyses, which omitted patient identification information. As such, the study did not require institutional review board review and approval or patient informed consent.
References
- 1.Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases. Hepatology 2018;67:328–57. 10.1002/hep.29367 [DOI] [PubMed] [Google Scholar]
- 2.Younossi ZM, Koenig AB, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64:73–84. 10.1002/hep.28431 [DOI] [PubMed] [Google Scholar]
- 3.Shetty A, Syn W-K. Health and economic burden of nonalcoholic fatty liver disease in the United States and its impact on veterans. Fed Pract 2019;36:14–19. [PMC free article] [PubMed] [Google Scholar]
- 4.Drescher H, Weiskirchen S, Weiskirchen R. Current status in testing for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Cells 2019;8:845. 10.3390/cells8080845 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Alexander M, Loomis AK, Fairburn-Beech J, et al. Real-World data reveal a diagnostic gap in non-alcoholic fatty liver disease. BMC Med 2018;16:130. 10.1186/s12916-018-1103-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Rinella ME, Lominadze Z, Loomba R, et al. Practice patterns in NAFLD and NASH: real life differs from published guidelines. Therap Adv Gastroenterol 2016;9:4–12. 10.1177/1756283X15611581 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Loomba R, Wong R, Fraysse J, et al. Nonalcoholic fatty liver disease progression rates to cirrhosis and progression of cirrhosis to decompensation and mortality: a real world analysis of Medicare data. Aliment Pharmacol Ther 2020;51:1149–59. 10.1111/apt.15679 [DOI] [PubMed] [Google Scholar]
- 8.Atabaki-Pasdar N, Ohlsson M, Viñuela A, et al. Predicting and elucidating the etiology of fatty liver disease: a machine learning modeling and validation study in the ImI direct cohorts. PLoS Med 2020;17:e1003149. 10.1371/journal.pmed.1003149 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Chan T-T, Wong VW-S. In search of new biomarkers for nonalcoholic fatty liver disease. Clin Liver Dis 2016;8:19–23. 10.1002/cld.563 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Pandyarajan V, Gish RG, Alkhouri N, et al. Screening for nonalcoholic fatty liver disease in the primary care clinic. Gastroenterol Hepatol 2019;15:357–65. [PMC free article] [PubMed] [Google Scholar]
- 11.Nalbantoglu ILK, Brunt EM. Role of liver biopsy in nonalcoholic fatty liver disease. World J Gastroenterol 2014;20:9026–37. 10.3748/wjg.v20.i27.9026 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Sharma M, Premkumar M, Kulkarni AV, et al. Drugs for non-alcoholic steatohepatitis (NASH): quest for the Holy Grail. J Clin Transl Hepatol 2021;9:40–50. 10.14218/JCTH.2020.00055 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Doyle OM, Leavitt N, Rigg JA. Finding undiagnosed patients with hepatitis C infection: an application of artificial intelligence to patient claims data. Sci Rep 2020;10:10521. 10.1038/s41598-020-67013-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Canbay A, Kälsch J, Neumann U, et al. Non-Invasive assessment of NAFLD as systemic disease-A machine learning perspective. PLoS One 2019;14:e0214436. 10.1371/journal.pone.0214436 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Perakakis N, Polyzos SA, Yazdani A, et al. Non-Invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: a proof of concept study. Metabolism 2019;101:154005. 10.1016/j.metabol.2019.154005 [DOI] [PubMed] [Google Scholar]
- 16.Goldman O, Ben-Assuli O, Rogowski O, et al. Non-Alcoholic fatty liver and liver fibrosis predictive analytics: risk prediction and machine learning techniques for improved preventive medicine. J Med Syst 2021;45:22. 10.1007/s10916-020-01693-5 [DOI] [PubMed] [Google Scholar]
- 17.Perveen S, Shahbaz M, Keshavjee K, et al. A systematic machine learning based approach for the diagnosis of non-alcoholic fatty liver disease risk and progression. Sci Rep 2018;8:2112. 10.1038/s41598-018-20166-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.WY SPB, Xiao C, Glass L, et al. Clifford g.d. a deep learning approach for classifying nonalcoholic steatohepatitis patients from nonalcoholic fatty liver disease patients using electronic medical records. Explainable AI in healthcare and medicine studies in computational intelligence. Cham: Springer, 2021. [Google Scholar]
- 19.Danford CJ, Lee JY, Strohbehn IA, et al. Development of an algorithm to identify cases of nonalcoholic steatohepatitis cirrhosis in the electronic health record. Dig Dis Sci 2021;66:1452–60. 10.1007/s10620-020-06388-y [DOI] [PubMed] [Google Scholar]
- 20.Docherty M, Regnier SA, Capkun G, et al. Development of a novel machine learning model to predict presence of nonalcoholic steatohepatitis. J Am Med Inform Assoc 2021;28:1235–41. 10.1093/jamia/ocab003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Fialoke S, Malarstig A, Miller MR, et al. Application of machine learning methods to predict non-alcoholic steatohepatitis (NASH) in non-alcoholic fatty liver (NAFL) patients. AMIA Annu Symp Proc 2018;2018:430–9. [PMC free article] [PubMed] [Google Scholar]
- 22.Malpede B, Roy S, Long P, et al. AI plus real-world data for early prediction of disease progression and Operationalized precision targeting. PMSA 2020;8. [Google Scholar]
- 23.Angulo P. Obesity and nonalcoholic fatty liver disease. Nutr Rev 2007;65:57–63. 10.1301/nr.2007.jun.S57-S63 [DOI] [PubMed] [Google Scholar]
- 24.Friedman JH. Greedy function approximation: a gradient boosting machine. Ann. Statist. 2001;29:1189–232. 10.1214/aos/1013203451 [DOI] [Google Scholar]
- 25.Association for Computing Machinery . Xgboost: a scalable tree boosting system. knowledge discovery and data mining; 2016 August. San Francisco, CA, USA, 2016. [Google Scholar]
- 26.Morel D, Yu KC, Liu-Ferrara A, et al. Predicting Hospital readmission in patients with mental or substance use disorders: a machine learning approach. Int J Med Inform 2020;139:104136. 10.1016/j.ijmedinf.2020.104136 [DOI] [PubMed] [Google Scholar]
- 27.Shwartz-Ziv R, Armon A, Ravid Shwartz-Ziv AA. Tabular data: deep learning is not all you need. Information Fusion 2022;81:84–90. 10.1016/j.inffus.2021.11.011 [DOI] [Google Scholar]
- 28.Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One 2015;10:e0118432. 10.1371/journal.pone.0118432 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.ACM Digital Library . A unified approach to interpreting model predictions. 31st conference on neural information processing systems (NIPS 2017), Long Beach, CA, USA, 2017. [Google Scholar]
- 30.Krawczyk B. Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence 2016;5:221–32. 10.1007/s13748-016-0094-0 [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
bmjhci-2021-100510supp001.pdf (6.2MB, pdf)
Data Availability Statement
No data are available. All data belongs to IQVIA.