Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2022 Mar 31;12:5443. doi: 10.1038/s41598-022-09323-5

A wind power plant site selection algorithm based on q-rung orthopair hesitant fuzzy rough Einstein aggregation information

Attaullah 1, Shahzaib Ashraf 2, Noor Rehman 3, Asghar Khan 1, Muhammad Naeem 4, Choonkil Park 5,
PMCID: PMC8971469  PMID: 35361827

Abstract

Wind power is often recognized as one of the best clean energy solutions due to its widespread availability, low environmental impact, and great cost-effectiveness. The successful design of optimal wind power sites to create power is one of the most vital concerns in the exploitation of wind farms. Wind energy site selection is determined by the rules and standards of environmentally sustainable development, leading to a low, renewable energy source that is cost effective and contributes to global advancement. The major contribution of this research is a comprehensive analysis of information for the multi-attribute decision-making (MADM) approach and evaluation of ideal site selection for wind power plants employing q-rung orthopair hesitant fuzzy rough Einstein aggregation operators. A MADM technique is then developed using q-rung orthopair hesitant fuzzy rough aggregation operators. For further validation of the potential of the suggested method, a real case study on wind power plant site has been given. A comparison analysis based on the unique extended TOPSIS approach is presented to illustrate the offered method’s capability. The results show that this method has a larger space for presenting information, is more flexible in its use, and produces more consistent evaluation results. This research is a comprehensive collection of information that should be considered when choosing the optimum site for wind projects.

Subject terms: Environmental social sciences, Energy science and technology, Mathematics and computing

Introduction

Providing sustainable and widely accessible energy to human populations became one of the most challenging problems over the last several decades. Between 2000 and 2030 AD, global energy consumption is expected to expand by an average of 8% each year1. Fossil fuels supply the majority of the energy needed and have the largest effect. To reduce their reliance on fossil fuels, several developed nations have enacted laws promoting the use of renewable energy sources such as wind and solar power. Wind power is one of the most reliable and long-term renewable energy sources accessible. Wind energy has developed into a large, environmentally beneficial, and financially feasible resource. It has become more desirable as a renewable resource attributable to technological improvements and productivity improvements. Wind energy has grown in popularity, and governments have implemented several successful policies that encourage its installation. The expense of wind energy generation has become comparable with the cost of fossil fuel generation. As a result, wind energy is a surprisingly safe and risk-free source of renewable energy that is economically feasible, ecologically safe, and contributed substantially to the reduction of hazardous substances. The main goal of the study is to assess the requirement for excess power resources as a consequence of growing populations. Prior to initiating the technical project, it is essential to choose the suitable location for the wind power plant. The enhancement of facility location provides relevant information of analyzing challenges associated with installations in specific locations based on specified criteria2,3. Wind farm site selection is complicated, with many factors to consider, including the finance, environment, infrastructure, ecological, geographical features, hydrogeological engineering conditions, ground hydrological conditions, industry, and practicality of wind power4,5.

Owing to the overwhelming ambiguity and complexity of local and global surroundings, as well as the capacity of human intelligence to apprehend reality, it is not always possible for decision makers to express assessment values or ideas in simple quantitative measures. To alleviate this challenge, Zadeh83 established the fuzzy set theory, which is characterized by a membership function with a degree of membership of [0,1]. In recent decades, fuzzy set theories have significantly been incorporated with MCDM as a beneficial tool for resolving imprecision and ambiguity, resulting in a profusion of fuzzy MCDM techniques. However, in dealing with erroneous information caused by several sources of uncertainty in reality, the traditional fuzzy set has certain limitations. Therefore, various expansions of fuzzy sets have already been suggested over the last few decades. Torra6,7 introduced hesitant fuzzy sets (HFS) in 2009, which enables the membership degree to have more than one value, known as the hesitant fuzzy element (HFE), to indicate epistemic uncertainty. The HFS better captures various ambiguity in decision processes, and it may effectively express decision makers’ reticence in achieving the final consensus for one thing. Therefore, HFS is a more useful tool for representing unpredictability in MCDM. Many researchers contribute to the advancement of HFS theory and applications. For example, Xu et al.48 established a TOPSIS approach for MCDM problems using hesitant fuzzy information and the maximising deviation method. Liao et al.49 suggested various weight-determination strategies in MCDM based on HF preference information. Mahmoudi et al.50 expanded the PROMETHEE to an HF environment that was irrelevant to aggregation and distance operators. Alcantud et al.51 established HFS decomposition theorems employing newly specified families of cuts and also presented two HFS extension principles that broadened crisp maps. Following that, several innovative generalised versions of HFS are presented to effectively address ambiguity in real problems. Qian et al.52 developed the generalise HFS, explored its arithmetic operations and relationships with the HFS, and eventually implemented it to practical MCDM. Zhu et al.53 introduced dual HFS (DHFS) and analysed the basic operations and features while proposing a DHFS expansion concept. Rodriguez et al.54,55 addressed the HF linguistic term set (HFLT) and its applicability in group decision challenges. Chen et al.56 initiated internal-valued HFS (IVHFS) and provided the composite operators the IVHFS information and established a group decision framework based on the IVHF preference relations. The strategies outlined above may solve the uncertainty and vagueness in MCDM challenges. These approaches are appropriate in cases wherein decision makers may express their preferences on an alternative or a candidate using just a few possible values. However, the assessments that might be provided have equal weights or significance. Obviously, in real-world MCDM challenges, it may not be appropriate for decision makers’ hesitant judgments and assessments. In the context of the foregoing, hesitant fuzzy sets and their expansions may be able to more effectively handle unpredictable circumstances and portray expert thoughts more exhaustively and dynamically. As a consequence, a range of HFSs have been effectively used in the execution of a number of MCDM problems5761. Rough set theory, introduced by Pawlak47, is a key mathematical tool for dealing with ambiguous, inconsistent, and incomplete data and information by recurring to the lower (higher) approximations. In MCDM, RS can better describe hidden information, which has several benefits in attribute selection, rule learning, and information interpretation. In recent years, rough set has garnered a lot of attention in both theories and applications for MCDM. Presently, RS has been broadened in a variety of different ways. A significant generalisation is to include various uncertain information processing frameworks into RS, such as fuzzy set, intuitionistic fuzzy set, and interval-valued fuzzy set, allowing for the performance of several extended models in intricate MCDM. Yang et al.63 made a crucial contribution to the fusion of HFSs and RSs. They established the notion of HFRSs by using an HFR. However, in Yang’s model, the ordering relationship of the HF subsets is not always antisymmetric. Zhang et al.64 demonstrated another HFRS approach that used a specified HF subset to address this problem. Nonetheless, many researchers developed a variety of beneficial generalized hesitant fuzzy rough set models from various perspectives, such as the HFL rough set method65, the IVHF RS method66, the dual hesitant fuzzy rough model62 the HF rough set model on two domains67, the multi granulation HF rough set model68,69, and so on. These approaches provide their own characteristics in many ways, such as converting one domain to two domains and relation from single to multiple70,71. Hussain et al.30 introduced a covering-based q-ROF rough set model hybrid with TOPSIS technique for MADM. In reality, these q-ROF rough set extensions have been proved to be effective in managing DM’s evaluation values in MAGDM difficulties.

Considering the limited resources accessible on planet earth, particularly in light of its numerous uses, it becomes crucial to find the most optimal location for wind power plant installation. In terms of wind energy utilisation, Bozorg et al.88 assessed the application of Geographical Information System (GIS) in site selection for the establishment of wind power plants in Khuzestan province, Iran. Kamau et al.89 estimated the Weibull parameter values using wind data from the Kenya Meteorological Department from 2001 to 2006. The findings suggested that the location was appropriate for grid-connected electricity production as well as other applications like as water pumping and battery charging. In Poland, Szkliniarz and Vogt90 assessed wind energy potential using a GIS-based technique. They developed a technique for employing GIS to assist in the decision-making process for wind energy project site selection. Yahyai et al.91 developed a wind farm site suitability index and classification in an Oman GIS environment by combining MCDM with an analytical hierarchy process (AHP) aggregation function and an Ordered Weigh Averaging (OWA) aggregation function. Rediske et al.92 evaluated the suitable location for wind farms and addressed the factors that restrict the choice of location. Azizi et al.93 explored land suitability evaluation for wind power plant site selection in the Ardabil province of Iran using analytic network process DEMATEL in a GIS environment.

Like mentioned previously, energy supply is regarded as the primary cause of discomfort in modern societies owing to the scarcity of fossil energy supplies. Thus, the deployment of renewable energy sources, particularly wind energy, is considered one of the greatest most effective administrative approaches for reducing this challenge. In recent decades, various types of approaches for the fuzzy generalizations of RS theory have been suggested and developed. Despite an abundance of achievement, the extension of FRS theory to suggest a novel information representation, which is the inspiration for this study. q-ROHFRS is a hybrid intelligent structure for responding with ambiguous and unclear data. Aggregation operators are critical in DM since they take data from several sources and combine it into a single value. q-ROHFS and rough set hybridization is not discovered in the q-ROF information, according to current understanding. As a consequence, we specify a collection of operators based on rough data, such as q-rung orthopair hesitant fuzzy rough Einstein weighted geometric, ordered weighted geometric, and hybrid weighted geometric aggregation operators.

This manuscript contributes to the literature of FRSs theory by introducing some innovative ideas, which are as follows:

(1)

To compile a list of Aops based on Einstein’s t-norm and t-conorm, namely q-ROHFR weighted geometric, q-ROHFR ordered weighted geometric, and q-ROHFR hybrid weighted geometric operators, and explore their essential operational laws. Also, discuss the related properties thoroughly.

(2)

To develop a DM approach for synthesising uncertain information utilising suggested aggregation operators.

(3)

A numerical case study of a real-world problem concerning wind power project site selection evaluation is developed using the established operators.

(4)

Furthermore, the findings are interpreted through comparisons to the q-ROHFR-TOPSIS technique. The acquired outcomes are displayed graphically.

The outliving section of the article is described as follows: “Fundamental concepts” summarises key concepts in q-ROFSs, HFSs, rough set theory and q-rung orthopair hesitant fuzzy sets. “The q-rung orthopair hesitant fuzzy rough aggregation operators” summarises a list of Einstein aggregation operators that are used to aggregate uncertain data based on Einstein operational laws. “The multi-attribute decision making methodology” explains a decision-making approach based on developed AOps. “The application of proposed decision-making approach” illustrates how to formulate a strategy for wind farm site selection numerically. Additionally, this section explores the application of the technique. “Comparison analysis” details the proposed q-ROHFR-TOPSIS technique for analysing the MADM method based on AOps. “Conclusion” concludes the manuscript.

Fundamental concepts

This section introduces some fundamental concepts, particularly q-ROFS, RS, and q-ROFRS.

Definition 2.1

(Ref.15) Let be a universal. A q-ROFS F over is define as follows:

F=ν,ðF(ν),ψF(ν)|ν

for each ν the functions ðF:[0,1] and ψF:[0,1] denotes the positive and negative membership functions respectively with constrain that (ψF(ν))q+(ðF(ν))q1,(q>2Z).

Definition 2.2

(Ref.9) Let be the universal set and Yq-ROFS(×) be an IF relation. Then

(1)

Y is reflexive if ϑY(μ,μ)=1 and δY(μ,μ)=0,μ;

(2)

Y is symmetric if (μ,a)×, ϑY(μ,a)=ϑY(a,μ) and δY(μ,a)=δY(a,μ);

(3)

Y is transitive if (μ,b)×,

ϑY(μ,b)aϑY(μ,a)ϑY(a,b);

and

δY(μ,b)=aδY(μ,a)δY(a,b).

Definition 2.3

Let be the universal set. Then any Yq-RFS(×) is called q-rung relation. The pair ,Y is said to be a q-rung approximation space. Now for any Bq-RFS(), the upper and lower approximations of B with respect to q-rung fuzzy approximation space ,Y are two q-RFSs, which are denoted by Y¯(B) and Y_(B) and is defined as:

Y¯(B)=μ,ϑY¯(B)(μ),δY¯(B)(μ)|μ;Y_(B)=μ,ϑY_(B)(μ),δY_(B)(μ)|μ;

where

ϑY¯(B)(μ)=g[ϑY(μ,g)ϑB(g)];δY¯(B)(μ)=g[δY(μ,c)δB(g)];ϑY_(B)(μ)=g[ϑY(μ,c)ϑB(g)];δY_(B)(μ)=g[δY(μ,c)δB(g)];

such that 0((ϑY¯(B)(μ))q+(δY¯(B)(μ))q)1, and 0ϑY_(B)(μ)q+δY_(B)(μ)q1. As Y_(B),Y¯(B) are q-RFSs, so Y_(B), Y¯(B):q-RFS()q-RFS() are upper and lower approximation operators. The pair Y(B)=(Y_(B),Y¯(B))={μ,(ϑY_(B)(μ),δY_(B)(μ),(ϑY¯(B)(μ),δY¯(B)(μ))|μB} is known as q-rung rough set. For simplicity Y(B)={μ,ϑY_(B)(μ),δY_(B)(μ),(ϑY¯(B)(μ),δY¯(B)(μ))|μ} is represented as Y(B)=((ϑ_,δ_),(ϑ¯,δ¯)) and is known as q-RFRV.

Definition 2.4

34 Let be a nonempty finite set and for any subset Yq-ROHFS(×) is said to be a q-rung hesitant fuzzy relation. The pair ,Y is said to be q-ROHF approximation space. If for any Bq-ROHFS(), then the upper and lower approximations of B with respect to q-ROHF approximation space ,Y are two q-ROHFSs, which are denoted by Y¯(B) and Y_(B) and defined as:

Y¯(B)=μ,ðhY¯(B)(μ),ψhY¯(B)(μ)|μ;Y_(B)=μ,ðhY_(B)(μ),ψhY_(B)(μ)|μ;

where

ðhY¯(B)(μ)=kðhY(μ,k)ðhB(k);ψhY¯(B)(μ)=kψhY(μ,k)ψhB(k);ðhY_(B)(μ)=kðhY(μ,k)ðhB(k);ψhY_(B)(μ)=kψhY(μ,k)ψhB(k);

such that 0max(ðhY¯(B)(μ))q+min(ψhY¯(B)(μ))q1 and 0min(ðhY_(B)(μ)q+max(ψhY_(B)(μ))q1. As Y¯(B),Y_(B) are q-ROHFSs, so Y¯(B),Y_(B):q-ROHFS()q-RFS() are upper and lower approximation operators. The pair

Y(B)=Y_(B),Y¯(B)=μ,ðhY_(B)(μ),ψhY_(B)(μ),ðhY¯(B)(μ),ψhY¯(B)(μ)|μB

will be called q-ROHFRSs. For simplicity

Y(B)=μ,ðhY_(B)(μ),ψhY_(B)(μ),ðhY¯(B)(μ),ψhY¯(B)(μ)|μB

is represented as Y(B)=(ð_,ψ_),(ð¯,ψ¯) and is known as q-ROHFR value. We provide the following example to demonstrate the above notion of q-ROHFRS.

Example 2.5

(Ref.35) Suppose =μ1,μ2,μ3,μ4 be any arbitrary set and ,Y is q-ROHF approximation space with Yq-ROHFRS(×) be the q -ROHFR relation as given in Table 1. Now an expert in decision-making presents the ideal normal decision object mathcalR, which is a q-ROHFS.

Table 1.

The q-ROHF relation in .

c1 c2 c3 c4
μ1 0.1,0.3,0.4,0.2,0.5,0.7 0.2,0.3,0.7,0.9 0.2,0.5,0.7,0.2,0.3 0.3,0.5,0.8
μ2 0.2,0.3,0.5,0.2,0.7 0.2,0.3,,0.5,0.3,0.4 0.1,0.4,0.6,0.7,0.9 0.2,0.4,0.7
μ3 0.5,0.6,0.7,0.9 0.5,0.8,0.9,0.1,0.9 0.2,0.3,0.5,0.9 0.7,0.9,0.1,0.2,0.3
μ4 0.2,0.5,0.9,0.6,0.7,0.9 0.3,0.8,0.9,0.4,0.8 0.2,0.5,0.6,0.9 0.5,0.7,0.1,0.8

and

B=μ1,0.2,0.3,0.4,0.5,0.7,μ2,0.2,0.3,0.7,0.1,0.7,0.8,μ3,0.5,0.7,0.8,0.1,0.5,0.7,μ4,0.6,0.8,0.9,0.2,0.6,0.7.

Afterwards, it follows that

ðhY¯(B)(μ1)=kðhY(μ,c)ðhB(k)=0.10.2,0.30.3,0.40.40.20.2,0.30.3,00.70.20.5,0.50.7,0.70.80.30.6,0.50.8,00.9=0.2,0.3,0.40.2,0.3,0.70.5,0.7,0.80.6,0.8,0.9=0.6,0.8,0.9.

In a similar way, we obtain the other values:

ðhY¯(B)(μ2)=0.6,0.8,0.9,ðhY¯(B)(μ3)=0.7,0.9,ðhY¯(B)(μ4)=0.6,0.8,0.9.

Similarly,

ψhY¯(B)(μ1)=kψhY(μ,c)ψhB(k)=0.20.5,0.50.7,00.70.70.1,0.90.7,00.80.20.1,0.30.5,00.70.80.2,00.6,00.7=0.2,0.50.1,0.70.2,0.30.2,=0.2.

By routine calculations, we get

ψhY¯(B)(μ2)=0.1,ψhY¯(B)(μ3)=0.1,0.2,ψhY¯(B)(μ4)=0.1,0.5.

Further

ðhY_(B)(μ1)=kðhY(μ,c)ðhB(k)=0.10.2,0.30.3,0.40.40.20.2,0.30.3,00.70.20.5,0.50.7,0.70.80.30.6,0.50.8,00.9=0.1,0.3,0.40.2,0.30.2,0.5,0.70.3,0.5=0.1,0.3.

By routine calculations, we get

ðhY_(B)(μ2)=0.1,0.3,ðhY_(B)(μ3)=0.2,0.3,ðhY_(B)(μ4)=0.2,0.3.

Now,

ψhY_(B)(μ1)=kψhY(μ,c)ψhB(k)=0.20.5,0.50.7,0.700.70.2,0.90.3,00.70.20.1,0.30.5,00.70.80.2,00.6,00.7=0.5,0.7,0.70.7,0.9,0.70.2,0.5,0.70.8,0.6,0.7=0.8,0.9,0.7.

Continuing in the same way, we find the other values,

ψhY_(B)(μ2)=0.7,0.9,ψhY_(B)(μ3)=0.7,0.9,0.8,ψhY_(B)(μ4)=0.6,0.9,0.9.

Thus the lower and upper q-ROHFR approximation operators are

Y_(B)=μ1,0.1,0.3,0.8,0.9,0.7,μ2,0.1,0.3,0.7,0.9,μ3,0.2,0.3,0.7,0.9,0.8,μ4,0.2,0.3,0.6,0.9,0.9,Y¯(B)=μ1,0.6,0.8,0.9,0.2,μ2,0.6,0.8,0.9,0.1,μ3,0.7,0.9,0.1,0.2,μ4,0.6,0.8,0.9,0.1,0.5.

Hence

Y(B)=(Y_(B),Y¯(B))=μ1,0.1,0.3,0.8,0.9,0.7,0.6,0.8,0.9,0.2,μ2,0.1,0.3,0.7,0.9,0.6,0.8,0.9,0.1,μ3,0.2,0.3,0.7,0.9,0.8,0.7,0.9,0.1,0.2,μ4,0.2,0.3,0.6,0.9,0.9,0.6,0.8,0.9,0.1,0.5.

Definition 2.6

(Ref.34) Let Y(B1)=(Y_(B1),Y¯(B1)) and Y(B2)=(Y_(B2),Y¯(B2)) be two q-ROHFRSs. Then

(1)

Y(B1) Y(B2)={(Y_(B1)Y_(B2)),(Y¯(B1)Y¯(B2))}

(2)

Y(B1) Y(B2)={(Y_(B1)Y_(B2)),(Y¯(B1)Y¯(B2))}.

Definition 2.7

Let Y(B1)=(Y_(B1),Y¯(B1)) and Y(B2)=(Y_(B2),Y¯(B2)) be two q-ROHFRSs. Then

(1)

Y(B1) Y(B2)={(Y_(B1)Y_(B2)),(Y¯(B1)Y¯(B2))}

(2)

Y(B1) Y(B2)={(Y_(B1)Y_(B2)),(Y¯(B1)Y¯(B2))}

(3)

Y(B1) Y(B2)={(Y_(B1)Y_(B2)) and (Y¯(B1)Y¯(B2))}

(4)

ϖY(B1)=(ϖY_(B1), ϖY¯(B1)) for ϖ1

(5)

(Y(B1))ϖ=((Y_(B1))ϖ, (Y¯(B1))ϖ) for ϖ1

(6)

Y(B1)c=(Y_(B1)c, Y¯(B1)c) where Y_(B1)c and Y¯(B1)c represents the complement of q-RFR approximation operators Y_(B1) and Y¯(B1),that is Y_(B1)c=ψhY_(B),ðhY_(B).

(7)

Y(B1)= Y(B2) iff Y_(B1)=Y_(B2) and Y¯(B1)=Y¯(B2).

The score function will be used to compare/rank two or more q-ROHFR values. The q-ROHFRV with higher score value will be consider greater, and the q-ROHFR values with smaller score will be consider smaller. If the score values are same, we will employ the accuracy function. The q-ROHFRV with higher accuracy will be consider greater, and the q-ROHFR values with smaller accuracy will be consider smaller.

Definition 2.8

(Ref.34) The score function for q-ROHFRV Y(B)=(Y_(B),Y¯(B))=((ð_,ψ_),(ð¯,ψ¯)) is given as:

SR(Y(B))=142+1MFμi_ðhY_(B)ϑi_+1NFϑi¯ðhY¯(B)ϑi¯-1MFδi_ψhY_(B)(δi_)-1MFδi¯ψhY¯(B)(δi¯),

The accuracy function for q-ROHFRV Y(B)=(Y_(B),Y¯(B))=((_,_),(ð¯,ψ¯)) is given as;

ACY(B)=141MFϑiðhY¯(B)(ϑi¯)+1MFϑiðhY¯(B)(ϑi¯)+1MFδi_ψhY_(B)(δi_)+1MFδi¯ψhY¯(B)(δi¯),

where MF and NF represent the number of elements in ðhg and ψhg respectively.

Definition 2.9

(Ref.34) Suppose Y(B1)=(Y_(B1),Y¯(B1)) and Y(B2)=(Y_(B2),Y¯(B2)) are two q-ROHFR values. Then

(1)

If SR(Y(B1))>SR(Y(B2)), then Y(B1)>Y(B2),

(2)

If SR(Y(B1))SR(Y(B2)), then Y(B1)Y(B2),

(3)
If SR(Y(B1))=SR(Y(B2)), then
(a)
If ACY(B1)>ACY(B2) then Y(B1)>Y(B2),
(b)
If ACY(B1)ACY(B2) then Y(B1)Y(B2),
(c)
If ACY(B1)=ACY(B2) then Y(B1)=Y(B2).

The q-rung orthopair hesitant fuzzy rough aggregation operators

In this part, we provide a novel concept of q-ROHF rough AOPs by incorporating RS and q-ROHFR aggregation operators to get aggregation concepts of q-ROHFREWG, q-ROHFREOWG, and q-ROHFREHWG operators. In addition, some of the essential features of the concepts are examined.

q-rung orthopair hesitant fuzzy rough Einstein weighted geometric aggregation operator

This section describes the q-ROHFREWG aggregation operator and highlights its important features.

Definition 3.1

Let Y(ϱt)=(Y_(ϱt),Y¯(ϱt)) (t=1,2,3,4,,n) be the collection of q-ROHFR values. Then q-ROHFREWG operator is follows as:

q-ROHFREWGY(ϱ1),Y(ϱ2),,Y(ϱn)=t=1nY_(ϱt)ϖt,t=1nY¯(ϱt)ϖt.

where ϖ=ϖ1,ϖ2,,ϖnT is the weight vector such that t=1nϖt=1 and 0 ϖt1.

Theorem 3.2

Let Y(ϱt)=(Y_(ϱt),Y¯(ϱt)) (t=1,2,3,,n) be the collection of q-ROHFR values with weight vectors ϖ=ϖ1,ϖ2,,ϖnT such that t=1nϖt=1 and 0 ϖt1. Then q-ROHFREWG operator is described as:

q-ROHFREWGY(ϱ1),Y(ϱ2),Y(ϱn)=t=1nY_(ϱt)ϖt,t=1nY¯(ϱt)ϖt=ϑht_ðhY_(ϱ)2t=1nϑht_qϖtqt=1n2-ϑht_qϖt+t=1nϑht_qϖtq,δht_ψhY_(ϱ)t=1n1+δhtq_ϖt-t=1n1-δhtq_ϖtqt=1n1+δhtq_ϖt+t=1n1-δhtq_ϖtqϑht¯ψhY¯(ϱ)2t=1nϑhtq¯ϖtqt=1n2-ϑhtq¯ϖt+t=1nϑhtq¯ϖtq,δht¯ψhY¯(ϱ)t=1n1+δhtq¯ϖt-t=1n1-δhtq¯ϖtqt=1n1+δhtq¯ϖt+t=1n1-δhtq¯ϖtq,

where ϖ=ϖ1,ϖ2,,ϖnT is weight vector such that t=1nϖt=1 and 0 ϖt1.

Proof

We ¼ induction. If n=2, then

Y(ϱ1)Y(ϱ2)=Y_(ϱ1)Y_(ϱ2),Y¯(ϱ1)Y¯(ϱ2)q-ROHFREWGY(ϱ1),Y(ϱ2)=t=12Y_(ϱt)ϖt,t=12Y¯(ϱt)ϖt=ϑht_ðhY_(ϱ)2t=12ϑht_qϖtqt=122-ϑht_qϖt+t=12ϑht_qϖtq,δht_ψhY_(ϱ)t=121+δhtq_ϖt-t=121-δhtq_ϖtqt=121+δhtq_ϖt+t=121-δhtq_ϖtq,ϑht¯ψhY¯(ϱ)2t=12ϑhtq¯ϖtqt=122-ϑhtq¯ϖt+t=12ϑhtq¯ϖtq,δht¯ψhY¯(ϱ)t=121+δhtq¯ϖt-t=121-δhtq¯ϖtqt=121+δhtq¯ϖt+t=121-δhtq¯ϖtq,

hence the result holds true for n=2. Assume it is valid for n=k:

q-ROHFREWGY(ϱ1),Y(ϱ2)Y(ϱk)=t=1kY_(ϱt)ϖt,t=1kY¯(ϱt)ϖt=ϑht_ðhY_(ϱ)2t=1kϑht_qϖtqt=1k2-ϑht_qϖt+t=1kϑht_qϖtq,δht_ψhY_(ϱ)t=1k1+δhtq_ϖt-t=1k1-δhtq_ϖtqt=1k1+δhtq_ϖt+t=1k1-δhtq_ϖtq,ϑht¯ψhY¯(ϱ)2t=1kϑhtq¯ϖtqt=1k2-ϑhtq¯ϖt+t=1kϑhtq¯ϖtq,δht¯ψhY¯(ϱ)t=1k1+δhtq¯ϖt-t=1k1-δhtq¯ϖtqt=1k1+δhtq¯ϖt+t=1k1-δhtq¯ϖtq.

Further, we show that the result hold for n=k+1. Consider

q-ROHFREWGY(ϱ1),Y(ϱ2),,Y(ϱk),Y(ϱk+1)=t=1kY_(ϱt)ϖtY_(ϱk+1)wk+1,t=1kY¯(ϱt)ϖtY¯(ϱk+1)wk+1=ϑht_ðhY_(ϱ)2t=1k+1ϑht_qϖtqt=1k+12-ϑhtq_ϖt+t=1k+1ϑht_qqϖtq,δht_ψhY_(ϱ)t=1k+11+δhtq_ϖt-t=1k+11-δhtq_ϖtqt=1k+11+δhtq_ϖt+t=1k+11-δhtq_ϖtq,ϑht¯ψhY¯(ϱ)2t=1k+1ϑhtq¯ϖtqt=1k+12-ϑhtq¯ϖt+t=1k+1ϑhtq¯ϖtq,δht¯ψhY¯(ϱ)t=1k1+δhtq¯ϖt-t=1k+11-δhtq¯ϖtqt=1k+11+δhtq¯ϖt+t=1k+11-δhtq¯ϖtq.

Hence the result hold for n=k+1. Therefore, the result is true for all n1.

Theorem 3.3

Let Y(ϱt)=(Y_(ϱt),Y¯(ϱt)) (t=1,2,3,,n) be the collection of q-ROHFRVs and ϖ=ϖ1,ϖ2,,ϖnT is weight vector such that ϖt[0,1] and t=1nϖt=1. Then q-ROHFREWG operator satisfy the following properties:

(1)
Idempotency: If Y(ϱt)=F(ϱ) for t=1,2,3,,n where F(ϱ)=F_(ϱ),F¯(ϱ)=(bh(x)_,dh(x)_),(b¯h(x),dh(x)¯). Then
q-ROHFREWGY(ϱ1),Y(ϱ2),,Y(ϱn)=F(ϱ).
(2)
Boundedness: Let Y(ϱ)min=mintY_ϱt,maxtY¯(ϱt) and Y(ϱ)max= maxtY_ϱt,mintY¯(ϱt). Then
Y(ϱ)minq-ROHFREWGY(ϱ1),Y(ϱ2),,Y(ϱn)Y(ϱ)max.
(3)

Monotonicity: Suppose F(ϱ)=F_(ϱt),F¯(ϱt)(t=1,2,3,,n) is another collection of q-ROHFR values such that F_(ϱt)Y_ϱt and F¯(ϱt)Y¯(ϱt). Then

q-ROHFREWGF(ϱ1),F(ϱ2),,F(ϱn)q-ROHFREWGY(ϱ1),Y(ϱ2),,Y(ϱn).

Proof

(1)
Idempotency: As Y(ϱt)=F(ϱ) (for all t=1,2,3,,n) where F(ϱt)=F_(ϱ),F¯(ϱ)=(bh(x)_,dh(x)_),(bh(x)¯,dh(x)¯). It follows that
q-ROHFREWGY(ϱ1),Y(ϱ2),,Y(ϱn)=t=1nY_(ϱt)ϖt,t=1nY¯(ϱt)ϖt=ϑht_ðhY_(ϱ)2t=1nϑht_qϖtqt=1n2-ϑht_qϖt+t=1nϑht_ϖtq,δht_ψhY_(ϱ)t=1n1+δhtq_ϖt-t=1n1-δhtq_ϖtqt=1n1+δhtq_ϖt+t=1n1-δhtq_ϖtqϑht¯ψhY¯(ϱ)2t=1nϑhtq¯ϖtqt=1n2-ϑhtq¯ϖt+t=1nϑhtq¯ϖtq,δht¯ψhY¯(ϱ)t=1n1+δhtq¯ϖt-t=1n1-δhtq¯ϖtqt=1n1+δhtq¯ϖt+t=1n1-δhtq¯ϖtq,
for all tY(ϱt)=F(ϱ)= F_(ϱ),F¯(ϱ)=(bh(x)_,dh(x)_),(bh(x)¯,dh(x)¯). Therefore,
=bh(x)_ðhY_(ϱ)2t=1nbh(x)_qϖtqt=1n2-bh(x)_qϖt+t=1nbh(x)_qϖtq,dh(x)_ψhY_(ϱ)t=1n1+dh(x)_qϖt-t=1n1-dh(x)_qϖtqt=1n1+dh(x)_qϖt+t=1n1-dh(x)_qϖtqbh(x)¯ðhY¯(ϱ)2t=1nbh(x)¯qϖtqt=1n2-bh(x)¯qϖt+t=1nbh(x)¯qϖtq,bh(x)¯ψhY¯(ϱ)t=1n1+dh(x)¯qϖt-t=1n1-dh(x)¯qϖtqt=1n1+dh(x)¯qϖt+t=1n1-dh(x)¯qϖtq=1-1-bh(x)_,dh(x)_,1-1-b¯h(x),d¯h(x)=F_(ϱ),F¯(ϱ)=F(ϱ).
Hence q-ROHFREWGY(ϱ1),Y(ϱ2),,Y(ϱn)=F(ϱ).
(2)
Boundedness: As
Y_ϱ-=mintϑht_,maxtδht_,mint{ϑht¯},maxtδh¯tY_ϱ+=maxt{ϑht_},mintδht_,maxt{ϑht¯},mintδh¯t
and Y(ϱt)=ðt_,ψ_t,ðt¯,ψ¯t. To prove that
Y(ϱ)-q-ROHFREWGY(ϱ1),Y(ϱ2),,Y(ϱn)Y(ϱ)+.
Let g(ϰ)=2-ϰ3ϰ33,ϰ(0,1], then g(ϰ)=-2ϰ42-ϰ3ϰ3-23<0. So g(ϰ) is decreasing function on (0, 1]. Since {ϑhmin_}{ϑht_}{ϑhmax_} for all t. Then gϑhmax_gϑht_gϑhmin_ (t=1,2,3,,n) i.e.,
2-ϑhmax_3ϑhmax_332-ϑht_3ϑht_332-ϑhmin_3ϑhmin_33
and let ϖ=ϖ1,ϖ2,,ϖnT is weight vectors such that ϖt[0,1] and t=1nϖt=1. We have
t=1n2-ϑhmax_3ϑhmax_3ϖt3t=1n2-ϑht_3ϑht_3ϖt3t=1n2-ϑhmax_3ϑhmax_3ϖt32-ϑhmax_3ϑhmax_3t=1nϖt3t=1n2-ϑht_3ϑht_3ϖt3t=1n2-ϑhmax_3ϑhmax_3t=1nϖt3ϑhmin_t=1n2-ϑht_3ϑht_3ϖt3ϑhmaxϑhmin_t=1n2-ϑht_3ϑht_3ϖt3ϑhmax_ 3.1
Similarly, we can show that
ϑhmin¯t=1n2-ϑht¯3ϑht¯3ϖt3ϑhmax¯ 3.2
Again, let f(y)=1-y31+y33, y[0,1]. Then f(y)=-2y1+y331-y31+y3-23<0. Thus f(y) is a decreasing function over [0, 1]. Since {δhmax_}{δht_}{δhmin_} for all t. Then gδhmin_gδht_gδhmax_ (t=1,2,3,,n) i.e.,
1-δhmin_31+δhmin_331-δht_31+δht_331-δhmax_31+δhmax_33,(t=1,2,3,,n)
and let ϖ=ϖ1,ϖ2,,ϖnT is weight vector such that ϖt[0,1] and t=1nϖt=1, we have
t=1n1-δhmin_31+δhmin_3ϖt3t=1n1-δht_31+δht_3ϖt3t=1n1-δhmax_31+δhmax_3ϖt3,1-δhmin_31+δhmin_3t=1nϖt3t=1n1-δht_31+δht_3ϖt31-δhmax_31+δhmax_3t=1nϖt3, 3.3
δhmaxt=1n1-δht_31+δht_3ϖt3δhmin_,δhmax_t=1n1-δht_31+δht_3ϖt3δhmin_, 3.4
In a similar way, we can show that
δhmax¯t=1n2-δht¯3δht¯3ϖt3δhmin¯ 3.5
By routine calculations, we can show the aforementioned results for q>3. Thus from (3.1), (3.2), (3.4) and (3.5) we have
Y(ϱ)-q-ROHFREWGY(ϱ1),Y(ϱ2),,Y(ϱn)Y(ϱ)+.
(3)

Monotonicity: The proof is similar to the proof of (2).

The q-Rung orthopair hesitant fuzzy rough Einstein ordered weighted geometric aggregation operator

In this subsection, the q-ROHFREOWG aggregation operator is introduced, and the key characteristics of the proposed operator are demonstrated.

Definition 3.4

Let Y(ϱt)=(Y_(ϱt),Y¯(ϱt)) (t=1,2,3,4,,n) be the collection of q-ROHFR values then q-ROHFREOWG operator is determined as:

q-ROHFREOWGY(ϱ1),Y(ϱ2),,Y(ϱn)=t=1nYρ_(ϱt)ϖt,t=1nYρ¯(ϱt)ϖt,

where ϖ=ϖ1,ϖ2,,ϖnT is the weights vector such that t=1nϖt=1 and 0 ϖt1.

Theorem 3.5

Let Y(ϱt)=(Y_(ϱt),Y¯(ϱt)) (t=1,2,3,,n) be the collection of q-ROHFR values with weights vector ϖ=ϖ1,ϖ2,,ϖnT such that t=1nϖt=1 and 0 ϖt1. Then q-ROHFREOWG operator is described as:

q-ROHFREOWGY(ϱ1),Y(ϱ2),,Y(ϱn)=t=1nYρ_(ϱt)ϖt,t=1nYρ¯(ϱt)ϖt=ϑht_ðhYρ_(ϱ)2t=1nϑρht_qϖtqt=1n2-ϑρht_qϖt+t=1nϑρht_qϖtq,δht_ψhYρ_(ϱ)t=1n1+δρhtq_ϖt-t=1n1-δρhtq_ϖtqt=1n1+δρhtq_ϖt+t=1n1-δρhtq_ϖtqϑht¯ψhYρ¯(ϱ)2t=1nϑρhtq¯ϖtqt=1n2-ϑρhtq¯ϖt+t=1nϑρhtq¯ϖtq,δht¯ψhY¯ρ(ϱ)t=1n1+δρhtq¯ϖt-t=1n1-δρhtq¯ϖtqt=1n1+δρhtq¯ϖt+t=1n1-δρhtq¯ϖtq,

where ϖ=ϖ1,ϖ2,,ϖnT is the weight vector such that t=1nϖt=1 and 0 ϖt1.

Proof

The proof is straightforward and is similar to Theorem 3.2.

Theorem 3.6

Let Y(ϱt)=(Y_(ϱt),Y¯(ϱt)) (t=1,2,3,,n) be the collection of q-ROHFR values and ϖ=ϖ1,ϖ2,,ϖnT is the weight vector such that ϖt[0,1] and t=1nϖt=1. Then q-ROHFREOWG operator satisfy the following properties:

(1)
Idempotency: If Y(ϱt)=F(ϱ) for t=1,2,3,,n where F(ϱ)=F_(ϱ),F¯(ϱ)=(bh(x)_,dh(x)_),(b¯h(x),dh(x)¯). Then
q-ROHFREOWGY(ϱ1),Y(ϱ2),,Y(ϱn)=F(ϱ).
(2)
Boundedness: Let Y(ϱ)min=mintY_ϱt,maxtY¯(ϱt) and Y(ϱ)max= maxtY_ϱt,mintY¯(ϱt). Then
Y(ϱ)minq-ROHFREOWGY(ϱ1),Y(ϱ2),,Y(ϱn)Y(ϱ)max.
(3)
Monotonicity: Suppose F(ϱ)=F_(ϱt),F¯(ϱt)(t=1,2,,n)is another collection of q-ROHFR values such that F_(ϱt)Y_ϱt and F¯(ϱt)Y¯(ϱt). Then
q-ROHFREOWGF(ϱ1),F(ϱ2),,F(ϱn)q-ROHFREOWGY(ϱ1),Y(ϱ2),Y(ϱn).

Proof

The proof is straightforward and is similar to Theorem 3.3.

The q-rung orthopair hesitant fuzzy rough Einstein hybrid geometric aggregation operator

In this part a  q-ROHFRHWG aggregation operator is introduce, as well as the essential properties of the suggested operators are addressed.

Definition 3.7

Let Y(ϱt)=(Y_(ϱt),Y¯(ϱt)) (t=1,2,3,4,,n) be the collection of q-ROHFR values and let ϖ=ϖ1,ϖ2,,ϖnT is the weights vector of the given collection of q-ROHFR values such that t=1nϖt=1 and 0 ϖt1.Let w1,w2,,wnTbe the associated weights such that t=1nwt=1 and 0 wt1. Then the q-ROHFREHWG operator is determined as:

q-ROHFREHWGY(ϱ1),Y(ϱ2),,Y(ϱn)=t=1nYρ_^(ϱt)ϖt,t=1nY^ρ¯(ϱt)ϖt,

where Y_ρ^(ϱt),Y^¯ρ(ϱt)=nϖtY_ρ(ϱt),nϖtY¯ρ(ϱt).

Theorem 3.8

Let Y(ϱt)=(Y_(ϱt),Y¯(ϱt)) (t=1,2,3,4,,n) be the collection of q-ROHFR values and let ϖ=ϖ1,ϖ2,,ϖnT be the weights vector such that t=1nwt=1 and 0 wt1. Let w1,w2,,wnT is the associated weights of the given collection of q-ROHFR values such that t=1nϖt=1 and 0 ϖt1. Then the q-ROHFREHWG operator is described as:

q-ROHFREHWGY(ϱ1),Y(ϱ2),,Y(ϱn)=t=1nYρ^_(ϱt)wt,t=1nY^ρ¯(ϱt)wt=ϑht_ðhYρ_^(ϱ)2t=1nϑ^ρht_qwtqt=1n2-ϑ^ρht_qwt+t=1nϑ^ρht_qwtq,δht_ψhYρ^_(ϱ)t=1n1+δ^ρhtq_wt-t=1n1-δ^ρhtq_wtqt=1n1+δ^ρhtq_wt+t=1n1-δ^ρhtq_wtqϑht¯ψhY^ρ¯(ϱ)2t=1nϑ^ρhtq¯wtqt=1n2-ϑ^ρhtq¯wt+t=1nϑ^ρhtq¯wtq,δht¯ψhY^ρ¯(ϱ)t=1n1+δ^ρhtq¯wt-t=1n1-δ^ρhtq¯wtqt=1n1+δ^ρhtq¯wt+t=1n1-δ^ρhtq¯wtq,

Proof

The proof is straightforward and is similar to Theorem 3.2.

Theorem 3.9

Let Y(ϱt)=(Y_(ϱt),Y¯(ϱt)) (t=1,2,3,4,,n) be the collection of q-ROHFR values and let w1,w2,,wnT be the associated weights such that t=1nwt=1 and 0 wt1. Let ϖ=ϖ1,ϖ2,,ϖnT be the weights vector of the given collection of q-ROHFR values such that t=1nϖt=1 and 0 ϖt1. Then q-ROHFREHWG operator satisfy the following properties:

(1)
Idempotency: If Y(ϱt)=F(ϱ) for t=1,2,3,,n where F(ϱ)=F_(ϱ),F¯(ϱ)=(bh(x)_,dh(x)_),(b¯h(x),dh(x)¯). Then
q-ROHFREHWGY(ϱ1),Y(ϱ2),,Y(ϱn)=F(ϱ).
(2)
Boundedness: Let Y(ϱ)min=mintY_ϱt,maxtY¯(ϱt) and Y(ϱ)max= maxtY_ϱt,mintY¯(ϱt). Then
Y(ϱ)minq-ROHFREHWGY(ϱ1),Y(ϱ2),,Y(ϱn)Y(ϱ)max.
(3)
Monotonicity: Suppose F(ϱ)=F_(ϱt),F¯(ϱt)(t=1,2,,n) is another collection of q-ROHFR values such that F_(ϱt)Y_ϱt and F¯(ϱt)Y¯(ϱt). Then
q-ROHFREHWGF(ϱ1),F(ϱ2),,F(ϱn)q-ROHFREHWGY(ϱ1),Y(ϱ2),,Y(ϱn).

Proof

The proof is easy and is similar to the proof of Theorem 3.3.

The multi-attribute decision making methodology

In this section, we developed an approach to dealing with uncertainty in MAGDM using q-ROHFR information. Consider a DM problem with a set A1,A2,,An of n alternatives and a set of n attributes χ1,χ2,,χn with (ϖ1,ϖ2,,ϖn)T the weights, that is, ϖt[0,1], t=1nϖt=1. To test the reliability of kth alternative At under the the attribute χt, let D˚1,D˚2,,D˚ȷ^ be a set of decision makers (DMs). The expert evaluation matrix is defined as follows:

M=Y¯(ϱtjȷ^)m×n=Y_(ϱ11),Y¯(ϱ11)Y_(ϱ12),Y¯(ϱ12)Y_(ϱ1j),Y¯(ϱ1j)Y_(ϱ21),Y¯(ϱ21)Y_(ϱ22),Y¯(ϱ22)Y_(ϱ2j),Y¯(ϱ2j)Y_(ϱ31),Y¯(ϱ31)Y_(ϱ32),Y¯(ϱ32)Y_(ϱ3j),Y¯(ϱ3j)Y_(ϱt1),Y¯(ϱt1)Y_(ϱt2),Y¯(ϱt2)Y_(ϱtj),Y¯(ϱtj),

where

Y_(ϱ)=μ,ðhY_(ϱ)(μ),ψhY_(ϱ)(μ)|μ

and

Y¯(ϱtj)=μ,ðhY¯(ϱ)(μ),ψhY¯(ϱ)(μ)|μ0max(ðhY¯(ϱ)(μ))q+min(ψhY¯(ϱ)(μ))q1

and

0min(ðhY_(ϱ)(μ)q+max(ψhY_(ϱ)(μ))q1,

are the q-ROHFR values. The following are the main steps for MAGDM:

Step-1
Construct the experts evaluation matrices as
Eȷ^=Y_(ϱ11ȷ^),Y¯(ϱ11ȷ^)Y_(ϱ12ȷ^),Y¯(ϱ12ȷ^)Y_(ϱ1jȷ^),Y¯(ϱ1jȷ^)Y_(ϱ21ȷ^),Y¯(ϱ21ȷ^)Y_(ϱ22ȷ^),Y¯(ϱ22ȷ^)Y_(ϱ2jȷ^),Y¯(ϱ2jȷ^)Y_(ϱ31ȷ^),Y¯(ϱ31ȷ^)Y_(ϱ32ȷ^),Y¯(ϱ32ȷ^)Y_(ϱ3jȷ^),Y¯(ϱ3jȷ^)Y_(ϱt1ȷ^),Y¯(ϱt1ȷ^)Y_(ϱt2ȷ^),Y¯(ϱt2ȷ^)Y_(ϱtjȷ^),Y¯(ϱtjȷ^)
where ȷ^ shows the number of experts.
Step-2
Explore the expert matrices that were normalised Nȷ^, as
Nȷ^=Y(ϱtj)=Y_ϱtj,Y¯ϱtjiffor benefitY(ϱtj)c=Y_ϱtjc,Y¯ϱtjciffor cost
Step-3

Using the suggested aggregation information, compute the q-ROHFR values for each considered alternative with respect to the given list of criteria/attributes.

Step-4
Determine the ranking of alternatives based on the score function as follows:
SR(Y(ϱ))=142+1MFϑht_ðh_(ϱ)(ϑht_)+1NFϑht¯ψhY¯(ϱ)(ϑht¯)1MFδht_ψh_(ϱ)(δht_)-1MFδht¯ψhY¯(ϱ)(δht¯).
Step-5

All alternative scores must be ranked in descending order. The superior/best alternative will be the one with a higher value.

The application of proposed decision-making approach

To demonstrate the validity of the established operators, we present a numerical MCGDM example that use the suggested aggregations technique in combination with q-ROHFR information to identify the optimum location for a wind power plant.

Case study (the evaluation of wind power station site selection)

Currently, the civilization is facing threat because of several environmental issues caused by the fossil fuel consumption. As a result, several renewable energy power generation projects have gained a prominent development. Renewable energy is the most cost-effective and environmentally safe energy source which is never going to exhaus88. Renewable energy generation is a burgeoning field, with more and more renewable energy sources being investigated and it has a bright future. Therefore, nations have made significant investments in renewable energy power generation90. More comprehensive review techniques are needed to choose the appropriate initiatives, so that we can identify their strengths and weaknesses and put forward some new suggestions to accomplish the objectives. The site selection is usually a crucial challenge in dealing with all renewable energy projects for professional and decision-makers because several factors were evaluated while deciding on a location for a large-scale renewable energy installation92. The aim is to optimize the location in which the power will produce in more efficient and cost-effective systems and fulfil the demand while maintaining a minimal impact on the environment and society.Wind energy stations are among the most efficient and environmentally energy sources, making a significant contribution to existing energy supply. It is essential to mention that the installation of a wind power plant requires wind energy potential, distance from the electricity grid, distance to roads and urban areas.

(1)

Wind energy potential: The most significant aspect is the wind energy potential criteria. The average wind speed in the region is a fundamental requirement for the economic efficiency of wind generators. Winds are highly influenced and reformed by plant, water bodies, spatial patterns, local topography, weather changes, and a variety of other factors.

(2)

Slope of topography: The slope of a site is a significant economic and transportation factor. Wind energy power plant should ideally be erected on completely flat land. However, if this is not accessible, the slope must be developed, which will take effort and time, raising installation costs.

(3)

Range from the energy grid: It is intrinsically connected to the efficiency of energy transmission to power grids or transformers, because the shorter the range and the less energy spent, the closer to the energy stations. Additionally, shorter ranges lead to lower network connection costs.

(4)

Distance from roads and urban areas: Wind farms particularly in the urban and high-consumption regions provide financial benefits. When wind turbines are located near areas with significant energy use, the energy produced by the plantation will require minimum transmission lines to transfer the power, minimising the cost of transmitting the energy to consumers.

The evaluation procedure of a site selection for wind power station

Assume an organization intends to evaluate the selection process of a location for a wind power project. They will appoint a team of specialists to choose the best location for a wind power plant. In this problem, we analyse a case study for selecting site in which four alternative locations, say, A1,A2,A3,A4 are evaluated in addressing the problem and we must select the ideal one. Let χ1,χ2,χ3,χ4 be the attributes of each alternative based on the influencing factors determined as follows: wind energy potential χ1, slope of topography χ2, distance from the electricity grid χ3 and distance from roads and urban areas χ4 of wind power site. Because of the uncertainty, the DMs’ selection information is presented as q-ROHFR information. The weights vector for criteria is ϖ=0.13,0.27,0.29,0.31T. To solve the DM problem using the developed methodology for evaluating alternatives, the following calculations are performed:

Step-1:

Tables 2, 3, 4 and 5 present professional expert information in the form of q-ROHFRS (q=3).

Table 2.

Decision making information.

χ1 χ2
A1 0.1,0.2,0.5,0.3,0.4,0.8,0.4,0.6 0.5,0.7,0.5,0.6,0.4,0.5,0.7,0.9
A2 0.6,0.7,0.7,0.9,0.3,0.5,0.6 0.2,0.4,0.5,0.5,0.6,0.7,0.3

Table 3.

Decision making information.

χ3 χ4
A1 0.4,0.3,0.7,0.5,0.9 0.6,0.7,0.6,0.8,0.9,0.7,0.9
A2 0.8,0.4,0.5,0.7,0.2,0.5,0.4,0.5 0.8,0.5,0.7,0.1,0.3,0.4

Table 4.

Decision making information.

χ1 χ2
A3 0.4,0.5,0.6,0.6,0.7,0.9,0.5 0.1,0.5,0.6,0.4,0.6,0.7,0.5,0.7
A4 0.4,0.5,0.6,0.3,0.4,0.8 0.4,0.5,0.4,0.1,0.2,0.2,0.3

Table 5.

Decision making information.

χ3 χ4
A3 0.3,0.7,0.8,0.7,0.8,0.1,0.4,0.7 0.3,0.6,0.8,0.7,0.3
A4 0.3,0.7,0.8,0.7,0.6 0.6,0.7,0.9,0.3,0.4,0.2,0.7,0.7,0.8,0.9
Step-2

The expert information is of benefit type. Therefore, , we need not to normalise the q-ROHFR values in this case.

Step-3

Only one expert is considered in this problem for the collection of uncertain information. Therefore, we are not required to find the collected information.

Step-4

The following information is used to assess the aggregated information for the alternative under the specified set of attributes:

Case-1: Table 6 displays aggregation information using q-ROHFREWG operator.

Table 6.

Aggregated information using q-ROHFREWG.

A1 0.0018,0.0025,0.0036,0.0051,0.0090,0.0128,0.53700.6272,0.9732,0.6466,0.5424,0.6310,0.5689,0.6502,0.0183,0.0248,0.0284,0.0146,0.0198,0.0226,0.7662,0.8334,0.8977,0.8759,0.7751,0.8397,0.8326,0.8806
A2 0.0120,0.0241,0.0302,0.0120,0.0241,0.0302,0.5156,0.5366,0.9654,0.59330.6090,0.6608,0.0038,0.0096,0.0045,0.0113,0.0064,0.0160,0.0075,0.0188,0.3795,0.3973,0.9836,0.4169,0.4317,0.4512
A3 0.0005,0.0011,0.0007,0.0013,0.0008,0.0016,0.6902,0.7252,0.9973,0.7386,0.7011,0.7347,0.7158,0.7476,0.0275,0.0317,0.0415,0.0479,0.0488,0.0563,0.3890,0.5179,0.8973,0.4945,0.5179,0.6048
A4 0.0043,0.0051,0.0067,0.0054,0.0063,0.00840.5249,0.5382,0.9675,0.59830.53900.55150.59890.6089,,0.0006,0.0022,0.0013,0.0045,0.0008,0.0030,0.0017,0.0060,0.62580.6728,0.9843,0.6298,0.6763,0.7409

Case-2: Aggregation information using Einstein ordered weighted averaging operator is shown in Table 7.

Table 7.

Aggregated information using q-ROHFREOWG.

A1 0.4012,0.4458,0.4376,0.4856,0.4913,0.5440,0.5240,0.6235,0.5544,0.6446,0.5296,0.6274,0.5594,0.6481,0.5612,0.5273,0.6107,0.5747,0.6359,0.5990,0.7713,0.8334,0.8298,0.8759,0.7800,0.8397,0.8362,0.8806
A2 0.5183,0.5456,0.6159,0.6464,0.6508,0.6822,0.5623,0.6992,0.5799,0.7097,0.6372,0.7457,0.3634,0.4259,0.4721,0.5500,0.3809,0.4461,0.4941,0.5748,0.4543,0.4812,0.4596,0.4860,0.4671,0.4926
A3 0.2220,0.3775,0.2288,0.3889,0.2348,0.3987,0.6789,0.6972,0.7155,0.7314,0.6904,0.7079,0.7254,0.7406,0.6180,0.6935,0.7258,0.6451,0.7221,0.7548,0.3975,0.5116,0.4327,0.5335,0.5482,0.6160
A4 0.3889,0.4134,0.3978,0.4228,0.4151,0.44110.5451,0.5751,0.6038,0.6279,0.5503,0.5797,0.6079,0.6317,,0.2749,0.3008,0.3307,0.3616,0.3254,0.3558,0.3908,0.4268,0.6541,0.6578,0.6728,0.6763,0.7024,0.7055

Case-3: Tables 8 and 9 present the aggregation information using the q-ROHFRWG operator.

Table 8.

Weighted information (EWG).

χ1 χ2
A1 0.8456,0.8902,0.9481,0.1438,0.1917,0.9801,0.1917,0.2890 0.8609,0.9217,0.3276,0.3944,0.8252,0.8222,0.4638,0.6331
A2 0.9599,0.9703,0.3400,0.4666,0.9159,0.9481,0.2890 0.7058,0.8222,0.8609,0.3276,0.8637,0.8989,0.1963
A3 0.9339,0.9481,0.9599,0.2890,0.3400,0.9897,0.2400 0.5970,0.3276,0.3944,0.8222,0.8933,0.9217,0.32760.4638
A4 0.9339,0.2400,0.2890,0.9159,0.9339,0.3960 0.8222,0.8609,0.2618,0.5970,0.7058,0.1308,0.1963

Table 9.

Weighted information (EWG).

χ3 χ4
A1 0.8087,0.2008,0.4745,0.8503,0.6472 0.8811,0.4797,0.8811,0.9421,0.9705,0.4797,0.6539
A2 0.9440,0.2679,0.3352,0.4745,0.6846,0.8503,0.2679,0.3352 0.9421,0.3389,0.9128,0.0677,0.2031,0.2708
A3 0.7563,0.4745,0.5518,0.91580.9440,0.0669,0.2679,0.4745 0.74780.8811,0.5578,0.9128,0.2031
A4 0.7563,0.4745,0.5518,0.9158,0.4036 0.8811,0.9128,0.9705,0.2031,0.2708,0.6740,0.9128,0.4797,0.5578,0.6539

The score values of Tables 8 and 9 are presented in Table 10. On the basis of score values ordered the information shown in Tables 11 and 12. Aggregation information using q-ROHFREHWG are presented in Table 13.

Step-5

Table 14 shows the score values for all alternatives under established aggregation operators.

Step-6

Table 15 illustrates the ranking of the alternatives Ak(k=1,2,.,4). We determined that alternative A2 is the best choice among the others based on the findings of the prior computational technique and so strongly recommend it. The graphical representation of alternatives are depicted in Fig. 1.

Table 10.

Score value of weighted (EWG) matrix.

χ1 χ2 χ3 χ4
A1 0.8667 0.7014 0.6685 0.6915
A2 0.8012 0.7884 0.7627 0.8339
A3 0.8456 0.6798 0.7258 0.7416
A4 0.7996 0.7669 0.6888 0.7285

Table 11.

Ordered weighted information (EWG).

χ1 χ2
A1 0.8456,0.8902,0.9481,0.14380.1917,0.9801,0.1917,0.2890 0.8609,0.9217,0.3276,0.3944,0.8252,0.8222,0.4638,0.6331
A2 0.9421,0.3389,0.9128,0.0677,0.2031,0.2708 0.9599,0.9703,0.3400,0.4666,0.9159,0.9481,0.2890
A3 0.9339,0.9481,0.9599,0.2890,0.3400,0.9897,0.2400 0.7478,0.8811,0.5578,0.9128,0.2031
A4 0.9339,0.2400,0.2890,0.9159,0.9339,0.3960 0.8222,0.8609,0.2618,0.5970,0.7058,0.1308,0.1963

Table 12.

Ordered weighted information (EWG).

χ3 χ4
A1 0.8811,0.4797,0.8811,0.9421,0.9705,0.4797,0.6539 0.8087,0.2008,0.4745,0.8503,0.6472
A2 0.70580.82220.8609,0.3276,0.8637,0.8989,0.1963 0.9440,0.2679,0.3352,0.4745,0.6846,0.8503,0.2679,0.3352
A3 0.7563,0.4745,0.5518,0.9158,0.9440,0.0669,0.2679,0.4745 0.5970,0.3276,0.3944,0.8222,0.8933,0.9217,0.3276,0.4638
A4 0.8811,0.9128,0.9705,0.2031,0.2708,0.6740,0.9128,0.4797,0.5578,0.6539 0.7563,0.4745,0.5518,0.9158,0.4036

Table 13.

Aggregated information using q-ROHFREHWG.

A1 0.8487,0.8655,0.8546,0.8713,0.8624,0.8791,0.3544,0.4220,0.3722,0.4348,0.3558,0.4229,0.3735,0.4357,0.8702,0.8884,0.8972,0.8694,0.8876,0.8964,0.5257,0.5798,0.5719,0.6179,0.5283,0.5819,0.5741,0.6197
A2 0.8814,0.9140,0.9247,0.8844,0.9170,0.9277,0.3169,0.3348,0.3894,0.3652,0.3789,0.4234,0.8292,0.8803,0.8396,0.8905,0.8384,0.8894,0.8488,0.8995,0.2450,0.2734,0.2507,0.2780,0.2584,0.2843
A3 0.7261,0.7620,0.7280,0.7640,0.7297,0.7657,0.4518,0.4646,0.4793,0.4907,0.4550,0.4676,0.4821,0.4934,0.8968,0.9181,0.9268,0.9052,0.9264,0.9350,0.2470,0.3277,0.2738,0.3438,0.3584,0.4043
A4 0.8339,0.8434,0.8614,0.8444,0.8539,0.87180.3484,0.3949,0.3573,0.4019,0.3520,0.3977,0.3608,0.4046,,0.7581,0.8283,0.7892,0.8593,0.7605,0.8308,0.7917,0.8617,0.3940,0.4305,0.4819,0.3971,0.4330,0.4840

Table 14.

Score values.

Operators SRA1 SRA2 SRA3 SRA4
q-ROHFREWG 0.4989 0.5066 0.5018 0.4867
q-ROHFREOWG 0.4082 0.4860 0.4460 0.3727
q-ROHFREHWG 0.6943 0.7849 0.7163 0.7119

Table 15.

The ranking of the alternatives.

Operators Score Best Alternative
q-ROHFREWG SRA2>SRA3>SRA1>SRA4 A2
q-ROHFREOWG SRA2>SRA3>SRA1>SRA4 A2
q-ROHFREHWG SRA2>SRA3>SRA4>SRA1 A2

Figure 1.

Figure 1

The graphical representation of ranking under proposed operators.

Comparison analysis

To demonstrate the characteristics of the developed technique clearly, we shall perform a comparison with TOPSIS approach.

The TOPSIS approach utilizing q-ROHFR information

Hwang and Yoon11 introduced the TOPSIS approach for evaluating ideal solutions, which enables policymakers to evaluate ideal positive and negative solutions. TOPSIS is predicated on the idea that the optimal alternative is the one that is closest to the positive ideal solution and furthest from the negative ideal solution10,14. Through the following steps, we will develop an approach for ranking all of the alternatives using improved TOPSIS technique:

Firstly, let A={A1,A2,A3,,Am} be the set of alternatives and C={χ1,χ2,χ3,,χn} be a set of criteria. The expert’s decision matrix is as follows:

M=Y_(μijȷ^),Y¯(μijȷ^)m×n=Y_(ϱ11),Y¯(ϱ11)Y_(ϱ12),Y¯(ϱ12)Y_(ϱ1j),Y¯(ϱ1j)Y_(ϱ21),Y¯(ϱ21)Y_(ϱ22),Y¯(ϱ22)Y_(ϱ2j),Y¯(ϱ2j)Y_(ϱ31),Y¯(ϱ31)Y_(ϱ32),Y¯(ϱ32)Y_(ϱ3j),Y¯(ϱ3j)Y_(ϱi1),Y¯(ϱi1)Y_(ϱi2),Y¯(ϱi2)Y_(ϱij),Y¯(ϱij),

where

Y¯(ϱij)=μ,ðhY¯(ϱ)(μ),ψhY¯(ϱ)(μ)|μ£

and

Y_(ϱ)=μ,ðhY_(ϱ)(μ),ψhY_(ϱ)(μ)|μ£

such that

0max(ðhY¯(ϱ)(μ))q+min(ψhY¯(ϱ)(μ))q1

and

0min(ðhY_(ϱ)(μ)q+max(ψhY_(ϱ)(μ))q1

are the q-ROHF rough values. Secondly, we collect information from DMs in the form of q-ROHFRNs.

Thirdly, normalise the data defined by DMs, since the decision matrix may include both benefits and cost criteria, as illustrated below:

Hȷ^=Y¯(ϱ11ȷ^),Y_(ϱ11ȷ^)Y¯(ϱ12ȷ^),Y_(ϱ12ȷ^)Y¯(ϱ1jȷ^),Y_(ϱ1jȷ^)Y¯(ϱ21ȷ^),Y_(ϱ21ȷ^)Y¯(ϱ22ȷ^),Y_(ϱ22ȷ^)Y¯(ϱ2jȷ^),Y_(ϱ2jȷ^)Y¯(ϱ31ȷ^),Y_(ϱ31ȷ^)Y¯(ϱ32ȷ^),Y_(ϱ32ȷ^)Y¯(ϱ3jȷ^),Y_(ϱ3jȷ^)Y¯(ϱi1ȷ^),Y_(ϱi1ȷ^)Y¯(ϱi2ȷ^),Y_(ϱi2ȷ^)Y¯(ϱijȷ^),Y_(ϱijȷ^),

where ȷ^ identifies the number of experts.

Fourthly, assess the normalised matrices of experts Nȷ^, as

Nȷ^=Y(ϱij)=Y_ϱij,Y¯ϱijifFor benefitY(ϱij)c=Y_ϱijc,Y¯ϱijcifFor cost

Fifthly, determine the positive ideal solution and the negative ideal solution based on the score value. Positive ideal solutions and negative ideal solutions are represented as: Υ+=Γ1+,Γ2+,Γ3+,,Γn+ and Υ-=Γ1-,Γ2-,Γ3-,,Γn- respectively. For positive ideal solution Υ+, it can be calculated as follows:

Υ+=Γ1+,Γ2+,Γ3+,,Γn+=maxiscore(Γi1),maxiscoreΓi2,maxiscoreΓi3,,maxiscoreΓin.

Similarly, the following formula may be used to find the negative ideal solution:

Υ-=Γ1-,Γ2-,Γ3-,Γn-=miniscoreΓi1,miniscoreΓi2,miniscoreΓi3,,miniscoreΓin.

Afterwards, determine the geometric distance between all possible options and the positive ideal Υ+ as follows:

d(αij,Υ+)=181#hs=1#hμ_ij(s)2-μ_i+2+μ¯ij(s)2-μ¯i(s)+2+1#gs=1#gδ_ij(s)2-δ_i(s)+2+δh¯ij2-δh¯i+2,wherei=1,2,3,,n,andj=1,2,3,,m.

Likewise, the geometric distance between all possible alternatives and the negative ideal Υ- can be find as follows:

d(αij,Υ-)=181#hs=1#hμ_ij(s)2-μ_i(s)-2+μ¯ij(s)2-μ¯i(s)-2+1#gs=1#gδ_ij(s)2-δ_i(s)-2+δh¯ij2-δh¯i-2,wherei=1,2,3,,n,andj=1,2,3,,m.

Sixthly, the following formula is used to determine the relative closeness indices for all decision makers of the alternatives:

RC(αij)=d(αij,Υ+)d(αij,Υ-)+d(αij,Υ+)

Finally, determine the ranking order of alternatives, and then choose the most desirable alternative that is the smallest distance.

Numerical example

Through a numerical example, this section will describe the features and validity of the suggested approach for selecting a wind power plant location.

Step-1

Tables 2, 3, 4 and 5 contain information regarding decision makers in the form of q-ROHFRNs.

Step-2

Table 16 computes both positive and negative ideal solutions as follows:

Step-3

Determine the distance between the positive and negative ideal solutions.

0.6019 0.2140 0.3849 0.5427

and

0.3265 0.5313 0.5035 0.4266
Step-4
The following are the relative closeness indices for DMs of the alternatives:
A1 A2 A3 A4
0.6483 0.2871 0.4333 0.5599
Step-5

According to the aforementioned findings and Fig. 2, A2 has the shortest distance. As a consequence, A2 is the most appropriate option. By synthesizing the above concepts, we can conclude that proposed solution based on q-ROHFRSs is effective and reasonable for handling MCDM problems.

Table 16.

Ideal solutions.

Criteria Υ+ Υ-
χ1 0.4,0.5,0.6,0.6,0.7,0.9,0.5 0.4,0.5,0.6,0.3,0.4,0.8
χ2 0.2,0.4,0.5,0.5,0.6,0.7,0.3 0.1,0.5,0.6,0.4,0.6,0.7,0.5,0.7
χ3 0.8,0.4,0.5,0.7,0.2,0.5,0.4,0.5 0.4,0.3,0.7,0.5,0.9
χ4 0.8,0.5,0.7,0.1,0.3,0.4 0.6,0.7,0.6,0.8,0.9,0.7,0.9

Figure 2.

Figure 2

The graphical representation of ranking under TOPSIS method.

Conclusion

Choosing the best site for establishing the projects is a crucial stage in wind energy power stations. There are several aspects to consider while deciding the best location for the plants to be installed, which is a significant stage in wind energy projects. Therefore, a novel approach based on q-ROHFRS is suggested for assessment in order to overcome the restrictions and support the researcher in selecting an appropriate site for installing a wind power station. The knowledge of the concepts presented in this study provide a broad space for analyzing information, enabling decision-makers to incorporate the features of uncertain data and having a high computing capabilities for uncertain information. A list of geometric aggregation operators is presented based on the proposed approach, employing Einstein’s t-norm and t-conorm. The aforementioned methodology can handle the complication of the MADM approach based on the q-ROHFRS, and the evaluation information is very reasonable. Furthermore, a case study in the evaluation of wind power plant site selection schemes together with comparative analysis using the improved q-ROHFR-TOPSIS approach demonstrates the approach’s validity and reasonability. In the future, the established approach can be extended to other fuzzy and uncertain situations such as language and probability sets to broaden the space for representation of analysing information, adapt to a wider range of evaluation environments, and improve the method’s flexibility. Additionally, within the context of three-way notions, it is worthwhile to investigate consensus procedures based on q-ROHFRS.

Acknowledgements

Muhammad Naeem would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4310396DSR06). C. Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B04032937).

Author contributions

All authors contributed equaly to the manucript.

Competing interests

The authors declare no competing interests.

Footnotes

The original online version of this Article was revised: The original version of this Article contained errors. Shahzaib Ashraf was incorrectly affiliated with ‘Department of Mathematics and Statistics, Bacha Khan University, Charsadda, KPK, Pakistan’. The correct affiliation is ‘Department of Mathematics, Khawaja Farid University of Engineering and Information Technology, Rahim Yar Khan, Pakistan’. In the Acknowledgements section, “Muhammad Naeem would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4310396DSR02).” now reads: “Muhammad Naeem would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4310396DSR06).”

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

4/28/2022

A Correction to this paper has been published: 10.1038/s41598-022-11165-0

References

  • 1.Commission, World Energy, Technology, and Climate Policy Outlook 2030, Energy, environment, and sustainable development’ program, European Commission’s Directorate-General for Research, Brussels (2003).
  • 2.Mostafa Eipour, A., Sadeghi, S., Jahangiri, M., Nematollahi, O., & Sabbagh, A.R. Investigation of accurate location planning for wind farm establishment: a case study. J. Eng. Des. Technol. (2019)
  • 3.Rediske G, Siluk JCM, Michels L, Rigo PD, Rosa CB, Cugler G. Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil. Energy. 2020;197:117167. doi: 10.1016/j.energy.2020.117167. [DOI] [Google Scholar]
  • 4.Rehman AU, Abidi MH, Umer U, Usmani YS. Multi-criteria decision-making approach for selecting wind energy power plant locations. Sustainability. 2019;11(21):6112. doi: 10.3390/su11216112. [DOI] [Google Scholar]
  • 5.Ari ES, Gencer C. The use and comparison of a deterministic, a stochastic, and a hybrid multiple-criteria decision-making method for site selection of wind power plants: An application in Turkey. Wind Eng. 2020;44(1):60–74. doi: 10.1177/0309524X19849831. [DOI] [Google Scholar]
  • 6.Torra, V., & Narukawa, Y. On hesitant fuzzy sets and decision. In 2009 IEEE international conference on fuzzy systems (pp. 1378–1382). IEEE. (2009)
  • 7.Torra V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010;25(6):529–539. [Google Scholar]
  • 8.Atanassov KT. In Intuitionistic fuzzy sets. Heidelberg: Physica; 1999. pp. 1–137. [Google Scholar]
  • 9.Chinram R, Hussain A, Mahmood T, Ali MI. EDAS method for multi-criteria group decision making based on intuitionistic fuzzy rough aggregation operators. IEEE Access. 2021;9:10199–10216. doi: 10.1109/ACCESS.2021.3049605. [DOI] [Google Scholar]
  • 10.Hsu PF, Hsu MG. Optimizing the information outsourcing practices of primary care medical organizations using entropy and TOPSIS. Quality Quantity. 2008;42(2):181–201. doi: 10.1007/s11135-006-9040-8. [DOI] [Google Scholar]
  • 11.Hwang, C.L., & Yoon, K. Methods for multiple attribute decision making. In Multiple attribute decision making Springer, Berlin, Heidelberg, (pp. 58–191) (1981).
  • 12.Liu D, Peng D, Liu Z. The distance measures between q-rung orthopair hesitant fuzzy sets and their application in multiple criteria decision making. Int. J. Intell. Syst. 2019;34(9):2104–2121. doi: 10.1002/int.22133. [DOI] [Google Scholar]
  • 13.Pawlak Z, Skowron A. Rudiments of rough sets. Inf. Sci. 2007;177(1):3–27. doi: 10.1016/j.ins.2006.06.003. [DOI] [Google Scholar]
  • 14.Tzeng GH, Huang JJ. Multiple attribute decision making: Methods and applications. London: CRC Press; 2011. [Google Scholar]
  • 15.Yager RR. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2016;25(5):1222–1230. doi: 10.1109/TFUZZ.2016.2604005. [DOI] [Google Scholar]
  • 16.Ashraf S, Abdullah S. Spherical aggregation operators and their application in multiattribute group decision-making. Int. J. Intell. Syst. 2019;34(3):493–523. doi: 10.1002/int.22062. [DOI] [Google Scholar]
  • 17.Ashraf S, Abdullah S, Khan S. Fuzzy decision support modeling for internet finance soft power evaluation based on sine trigonometric Pythagorean fuzzy information. J. Ambient. Intell. Humaniz. Comput. 2020;12(12):3101–3119. [Google Scholar]
  • 18.Ashraf S, Mahmood T, Abdullah S, Khan Q. Different approaches to multi-criteria group decision making problems for picture fuzzy environment. Bull. Braz. Math. Soc. New Ser. 2019;50(2):373–397. doi: 10.1007/s00574-018-0103-y. [DOI] [Google Scholar]
  • 19.Ashraf S, Abdullah S, Aslam M. Symmetric sum based aggregation operators for spherical fuzzy information: Application in multi-attribute group decision making problem. J. Intell. Fuzzy Syst. 2020;38(4):5241–5255. doi: 10.3233/JIFS-191819. [DOI] [Google Scholar]
  • 20.Akram M, Luqman A, Alcantud JCR. Risk evaluation in failure modes and effects analysis: Hybrid TOPSIS and ELECTRE I solutions with Pythagorean fuzzy information. Neural Comput. Appl. 2021;33(11):5675–5703. doi: 10.1007/s00521-020-05350-3. [DOI] [Google Scholar]
  • 21.Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets Syst.20(1), 87–96 (1986).
  • 22.Cong, B., & Kreinovich, V. Picture fuzzy sets-a new concept for computational intelligence problems. in Proceedings of the 2013 third World Congress on Information and Communication Technologies (WICT 2013), Hanoi, Vietnam, (2013)
  • 23.Çalik A. A novel Pythagorean fuzzy AHP and fuzzy TOPSIS methodology for green supplier selection in the Industry 4.0 era. Soft. Comput. 2021;25(3):2253–2265. doi: 10.1007/s00500-020-05294-9. [DOI] [Google Scholar]
  • 24.Feng T, Fan HT, Mi JS. Uncertainty and reduction of variable precision multigranulation fuzzy rough sets based on three-way decisions. Int. J. Approx. Reason. 2017;85:36–58. doi: 10.1016/j.ijar.2017.03.002. [DOI] [Google Scholar]
  • 25.Guleria A, Bajaj RK. A robust decision making approach for hydrogen power plant site selection utilizing (R, S)-Norm Pythagorean Fuzzy information measures based on VIKOR and TOPSIS method. Int. J. Hydrogen Energy. 2020;45(38):18802–18816. doi: 10.1016/j.ijhydene.2020.05.091. [DOI] [Google Scholar]
  • 26.Garg, H. Hesitant Pythagorean fuzzy sets and their aggregation operators in multiple attribute decision-making. Int. J. Uncert. Quant.8(3) (2018).
  • 27.Gomes LFAM. An application of the TODIM method to the multicriteria rental evaluation of residential properties. Eur. J. Oper. Res. 2009;193(1):204–211. doi: 10.1016/j.ejor.2007.10.046. [DOI] [Google Scholar]
  • 28.He T, Wei G, Lu J, Wu J, Wei C, Guo Y. A novel EDAS based method for multiple attribute group decision making with Pythagorean 2-tuple linguistic information. Technol. Econ. Dev. Econ. 2020;26(6):1125–1138. doi: 10.3846/tede.2020.12733. [DOI] [Google Scholar]
  • 29.He T, Zhang S, Wei G, Wang R, Wu J, Wei C. CODAS method for 2-tuple linguistic Pythagorean fuzzy multiple attribute group decision making and its application to financial management performance assessment. Technol. Econ. Dev. Econ. 2020;26(4):920–932. doi: 10.3846/tede.2020.11970. [DOI] [Google Scholar]
  • 30.Hussain A, Irfan Ali M, Mahmood T. Covering based q-rung orthopair fuzzy rough set model hybrid with TOPSIS for multi-attribute decision making. J. Intell. Fuzzy Syst. 2019;37(1):981–993. doi: 10.3233/JIFS-181832. [DOI] [Google Scholar]
  • 31.Ju Y, Luo C, Ma J, Wang A. A novel multiple-attribute group decision-making method based on q-rung orthopair fuzzy generalized power weighted aggregation operators. Int. J. Intell. Syst. 2019;34(9):2077–2103. doi: 10.1002/int.22132. [DOI] [Google Scholar]
  • 32.Keshavarz Ghorabaee, M., Zavadskas, E.K., Turskis, Z., & Antucheviciene, J. A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Econ. Comput. Econ. Cybern. Stud. Res.50(3) (2016).
  • 33.Khan MA, Ashraf S, Abdullah S, Ghani F. Applications of probabilistic hesitant fuzzy rough set in decision support system. Soft. Comput. 2020;24:16759–16774. doi: 10.1007/s00500-020-04971-z. [DOI] [Google Scholar]
  • 34.Ashraf S, Rehman N, Khan A, Park C. A decision making algorithm for wind power plant based on q-rung orthopair hesitant fuzzy rough aggregation information and TOPSIS. AIMS Math. 2022;7(4):5241–5274. doi: 10.3934/math.2022292. [DOI] [Google Scholar]
  • 35.Ashraf, S., Rehman, N., AlSalman, H., & Gumaei, A.H. A decision-making framework using q-rung orthopair probabilistic hesitant fuzzy rough aggregation information for the drug selection to treat COVID-19. Complexity (2022).
  • 36.Khan, A., Abosuliman, S.S., Ashraf, S., & Abdullah, S. Hospital admission and care of COVID-19 patients problem based on spherical hesitant fuzzy decision support system. Int. J. Intell. Syst. (2021).
  • 37.Keshavarz Ghorabaee M, Zavadskas EK, Olfat L, Turskis Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS) Informatica. 2015;26(3):435–451. doi: 10.15388/Informatica.2015.57. [DOI] [Google Scholar]
  • 38.Zhou L, Wu WZ. On generalized intuitionistic fuzzy rough approximation operators. Inf. Sci. 2008;178:2448–2465. [Google Scholar]
  • 39.Li L, Zhang R, Wang J, Zhu X, Xing Y. Pythagorean fuzzy power Muirhead mean operators with their application to multi-attribute decision making. J. Intell. Fuzzy Syst. 2018;35(2):2035–2050. doi: 10.3233/JIFS-171907. [DOI] [Google Scholar]
  • 40.Li Y, Wu S, Lin Y, Liu J. Different classes’ ratio fuzzy rough set based robust feature selection. Knowl.-Based Syst. 2017;120:74–86. doi: 10.1016/j.knosys.2016.12.024. [DOI] [Google Scholar]
  • 41.Liu C, Pedrycz W, Jiang F, Wang M. Decision-theoretic rough set approaches to multi-covering approximation spaces based on fuzzy probability measure. J. Intell. Fuzzy Syst. 2018;34(3):1917–1931. doi: 10.3233/JIFS-171275. [DOI] [Google Scholar]
  • 42.Liang D, Cao W. q-Rung orthopair fuzzy sets-based decision-theoretic rough sets for three-way decisions under group decision making. Int. J. Intell. Syst. 2019;34(12):3139–3167. doi: 10.1002/int.22187. [DOI] [Google Scholar]
  • 43.Niu LL, Li J, Li F, Wang ZX. Multi-criteria decision-making method with double risk parameters in interval-valued intuitionistic fuzzy environments. Complex Intell. Syst. 2020;6(3):669–679. doi: 10.1007/s40747-020-00165-0. [DOI] [Google Scholar]
  • 44.Opricovic S, Tzeng GH, Engn FC. Emerging research fronts-2009. Eur. J. Oper. Res. 2004;156(2):445–455. doi: 10.1016/S0377-2217(03)00020-1. [DOI] [Google Scholar]
  • 45.Pamucar D, Cirovic G. The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC) Expert Syst. Appl. 2015;42(6):3016–3028. doi: 10.1016/j.eswa.2014.11.057. [DOI] [Google Scholar]
  • 46.Paelinck JH. Qualiflex: A flexible multiple-criteria method. Econ. Lett. 1978;1(3):193–197. doi: 10.1016/0165-1765(78)90023-X. [DOI] [Google Scholar]
  • 47.Pawlak Z. Rough sets. Int. J. Comput. Inf. Sci. 1982;11(5):341–356. doi: 10.1007/BF01001956. [DOI] [Google Scholar]
  • 48.Xu Z, Zhang X. Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information. Knowl. Based Syst. 2013;52:53–64. doi: 10.1016/j.knosys.2013.05.011. [DOI] [Google Scholar]
  • 49.Liao, H., Xu, Z, & Xu, J. An approach to hesitant fuzzy multi-stage multi-criterion decision making. Kybernetes (2014).
  • 50.Mahmoudi, A., Sadi-Nezhad, S., Makui, A., & Vakili, M.R. An extension on PROMETHEE based on the typical hesitant fuzzy sets to solve multi-attribute decision-making problem. Kybernetes (2016).
  • 51.Alcantud JCR, Torra V. Decomposition theorems and extension principles for hesitant fuzzy sets. Inf. Fusion. 2018;41:48–56. doi: 10.1016/j.inffus.2017.08.005. [DOI] [Google Scholar]
  • 52.Qian G, Wang H, Feng X. Generalized hesitant fuzzy sets and their application in decision support system. Knowl. Based Syst. 2013;37:357–365. doi: 10.1016/j.knosys.2012.08.019. [DOI] [Google Scholar]
  • 53.Zhu, B., Xu, Z., & Xia, M. Dual hesitant fuzzy sets. J. Appl. Math. (2012).
  • 54.Rodriguez RM, Martinez L, Herrera F. Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 2011;20(1):109–119. doi: 10.1109/TFUZZ.2011.2170076. [DOI] [Google Scholar]
  • 55.Rodríguez RM, Martínez L, Herrera F. A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets. Inf. Sci. 2013;241:28–42. doi: 10.1016/j.ins.2013.04.006. [DOI] [Google Scholar]
  • 56.Chen N, Xu Z, Xia M. Interval-valued hesitant preference relations and their applications to group decision making. Knowl. Based Syst. 2013;37:528–540. doi: 10.1016/j.knosys.2012.09.009. [DOI] [Google Scholar]
  • 57.Xia M, Xu Z. Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 2011;52(3):395–407. doi: 10.1016/j.ijar.2010.09.002. [DOI] [Google Scholar]
  • 58.Xu Z, Xia M. Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 2011;181(11):2128–2138. doi: 10.1016/j.ins.2011.01.028. [DOI] [Google Scholar]
  • 59.Farhadinia B. Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets. Inf. Sci. 2013;240:129–144. doi: 10.1016/j.ins.2013.03.034. [DOI] [Google Scholar]
  • 60.Liang D, Liu D. A novel risk decision making based on decision-theoretic rough sets under hesitant fuzzy information. IEEE Trans. Fuzzy Syst. 2014;23(2):237–247. doi: 10.1109/TFUZZ.2014.2310495. [DOI] [Google Scholar]
  • 61.Wu P, Zhou L, Chen H, Tao Z. Multi-stage optimization model for hesitant qualitative decision making with hesitant fuzzy linguistic preference relations. Appl. Intell. 2020;50(1):222–240. doi: 10.1007/s10489-019-01502-8. [DOI] [Google Scholar]
  • 62.Shao Y, Qi X, Gong Z. A general framework for multi-granulation rough decision-making method under q-rung dual hesitant fuzzy environment. Artif. Intell. Rev. 2020;53(7):4903–4933. doi: 10.1007/s10462-020-09810-z. [DOI] [Google Scholar]
  • 63.Yang X, Song X, Qi Y, Yang J. Constructive and axiomatic approaches to hesitant fuzzy rough set. Soft. Comput. 2014;18(6):1067–1077. doi: 10.1007/s00500-013-1127-2. [DOI] [Google Scholar]
  • 64.Zhang H, Shu L, Xiong L. On novel hesitant fuzzy rough sets. Soft. Comput. 2019;23(22):11357–11371. doi: 10.1007/s00500-019-04037-9. [DOI] [Google Scholar]
  • 65.Zhang C, Li D, Liang J. Hesitant fuzzy linguistic rough set over two universes model and its applications. Int. J. Mach. Learn. Cybern. 2018;9(4):577–588. doi: 10.1007/s13042-016-0541-z. [DOI] [Google Scholar]
  • 66.Zhang H, Shu L, Liao S. On interval-valued hesitant fuzzy rough approximation operators. Soft. Comput. 2016;20(1):189–209. doi: 10.1007/s00500-014-1490-7. [DOI] [Google Scholar]
  • 67.Zhang H, Shu L, Liao S. Hesitant fuzzy rough set over two universes and its application in decision making. Soft. Comput. 2017;21(7):1803–1816. doi: 10.1007/s00500-015-1882-3. [DOI] [Google Scholar]
  • 68.Zhang C, Li D, Mu Y, Song D. An interval-valued hesitant fuzzy multigranulation rough set over two universes model for steam turbine fault diagnosis. Appl. Math. Model. 2017;42:693–704. doi: 10.1016/j.apm.2016.10.048. [DOI] [Google Scholar]
  • 69.Zhang H, Zhan J, He Y. Multi-granulation hesitant fuzzy rough sets and corresponding applications. Soft. Comput. 2019;23(24):13085–13103. doi: 10.1007/s00500-019-03853-3. [DOI] [Google Scholar]
  • 70.Ma W, Lei W, Sun B. Three-way group decisions based on multigranulation hesitant fuzzy decision-theoretic rough set over two universes. J. Intell. Fuzzy Syst. 2020;38(2):2165–2179. doi: 10.3233/JIFS-190970. [DOI] [Google Scholar]
  • 71.Lei W, Ma W, Sun B. Multigranulation behavioral three-way group decisions under hesitant fuzzy linguistic environment. Inf. Sci. 2020;537:91–115. doi: 10.1016/j.ins.2020.05.025. [DOI] [Google Scholar]
  • 72.Pan W, She K, Wei P. Multi-granulation fuzzy preference relation rough set for ordinal decision system. Fuzzy Sets Syst. 2017;312:87–108. doi: 10.1016/j.fss.2016.08.002. [DOI] [Google Scholar]
  • 73.Radzikowska AM, Kerre EE. A comparative study of fuzzy rough sets. Fuzzy Sets Syst. 2002;126(2):137–155. doi: 10.1016/S0165-0114(01)00032-X. [DOI] [Google Scholar]
  • 74.Sun B, Ma W, Chen X, Zhang X. Multigranulation vague rough set over two universes and its application to group decision making. Soft. Comput. 2019;23(18):8927–8956. doi: 10.1007/s00500-018-3494-1. [DOI] [Google Scholar]
  • 75.Khan S, Abdullah S, Ashraf S. Picture fuzzy aggregation information based on Einstein operations and their application in decision making. Math. Sci. 2019;13(3):213–229. doi: 10.1007/s40096-019-0291-7. [DOI] [Google Scholar]
  • 76.Vluymans S, Tarragó DS, Saeys Y, Cornelis C, Herrera F. Fuzzy rough classifiers for class imbalanced multi-instance data. Pattern Recogn. 2016;53:36–45. doi: 10.1016/j.patcog.2015.12.002. [DOI] [Google Scholar]
  • 77.Wu X, Liao H. A consensus-based probabilistic linguistic gained and lost dominance score method. Eur. J. Oper. Res. 2019;272(3):1017–1027. doi: 10.1016/j.ejor.2018.07.044. [DOI] [Google Scholar]
  • 78.Wei G, Lei F, Lin R, Wang R, Wei Y, Wu J, Wei C. Algorithms for probabilistic uncertain linguistic multiple attribute group decision making based on the GRA and CRITIC method: application to location planning of electric vehicle charging stations. Econ. Res. 2020;33(1):828–846. [Google Scholar]
  • 79.Wang CY, Hu BQ. Granular variable precision fuzzy rough sets with general fuzzy relations. Fuzzy Sets Syst. 2015;275:39–57. doi: 10.1016/j.fss.2015.01.016. [DOI] [Google Scholar]
  • 80.Wang CY, Hu BQ. Fuzzy rough sets based on generalized residuated lattices. Inf. Sci. 2013;248:31–49. doi: 10.1016/j.ins.2013.03.051. [DOI] [Google Scholar]
  • 81.Wang X, Triantaphyllou E. Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega. 2008;36(1):45–63. doi: 10.1016/j.omega.2005.12.003. [DOI] [Google Scholar]
  • 82.Yanmaz O, Turgut Y, Can EN, Kahraman C. Interval-valued Pythagorean fuzzy EDAS method: An application to car selection problem. J. Intell. Fuzzy Syst. 2020;38(4):4061–4077. doi: 10.3233/JIFS-182667. [DOI] [Google Scholar]
  • 83.Zeng, S., Munir, M., Mahmood, T., & Naeem, M. Some T-spherical fuzzy Einstein interactive aggregation operators and their application to selection of photovoltaic cells. Math. Probl. Eng. (2020).
  • 84.Zadeh LA. Fuzzy collection. Inf. Control. 1965;8:338–356. doi: 10.1016/S0019-9958(65)90241-X. [DOI] [Google Scholar]
  • 85.Zhang H, Shu L. Generalized interval-valued fuzzy rough set and its application in decision making. Int. J. Fuzzy Syst. 2015;17(2):279–291. doi: 10.1007/s40815-015-0012-9. [DOI] [Google Scholar]
  • 86.Zhang Z, Chen SM. Group decision making with incomplete q-rung orthopair fuzzy preference relations. Inf. Sci. 2021;553:376–396. doi: 10.1016/j.ins.2020.10.015. [DOI] [Google Scholar]
  • 87.Zhang X, Mei C, Chen D, Li J. Feature selection in mixed data: A method using a novel fuzzy rough set-based information entropy. Pattern Recogn. 2016;56:1–15. doi: 10.1016/j.patcog.2016.02.013. [DOI] [Google Scholar]
  • 88.Chamanehpour E. Site selection of wind power plant using multi-criteria decision-making methods in GIS: A case study. Comput. Ecol. Softw. 2017;7(2):49. [Google Scholar]
  • 89.Kamau JN, Kinyua R, Gathua JK. 6 years of wind data for Marsabit, Kenya average over 14 m/s at 100 m hub height; An analysis of the wind energy potential. Renew. Energy. 2010;35(6):1298–1302. doi: 10.1016/j.renene.2009.10.008. [DOI] [Google Scholar]
  • 90.Sliz-Szkliniarz B, Vogt J. GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship. Renew. Sustain. Energy Rev. 2011;15(3):1696–1707. doi: 10.1016/j.rser.2010.11.045. [DOI] [Google Scholar]
  • 91.Al-Yahyai S, Charabi Y, Gastli A, Al-Badi A. Wind farm land suitability indexing using multi-criteria analysis. Renew. Energy. 2012;44:80–87. doi: 10.1016/j.renene.2012.01.004. [DOI] [Google Scholar]
  • 92.Rediske G, Burin HP, Rigo PD, Rosa CB, Michels L, Siluk JCM. Wind power plant site selection: A systematic review. Renew. Sustain. Energy Rev. 2021;148:111293. doi: 10.1016/j.rser.2021.111293. [DOI] [Google Scholar]
  • 93.Azizi A, Malekmohammadi B, Jafari HR, Nasiri H, Parsa VA. Land suitability assessment for wind power plant site selection using ANP-DEMATEL in a GIS environment: Case study of Ardabil province. Iran. Environ. Monit. Assess. 2014;186(10):6695–6709. doi: 10.1007/s10661-014-3883-6. [DOI] [PubMed] [Google Scholar]

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES