Abstract
目的
观察钙调素依赖蛋白激酶(CaMK Ⅱ)在重症急性胰腺炎(SAP)小鼠胰腺组织中的表达情况,并探讨其抑制剂KN93对SAP胰腺损伤的保护作用和机制。
方法
36只健康雄性C57小鼠随机分为假手术组、SAP组、KN93组、SAP组+KN93组,9只/组。于造模后24 h收集血清和胰腺组织;采用HE染色观察胰腺组织病理改变;Elisa检测血清脂肪酶、淀粉酶活性以及炎性因子变化情况;免疫印迹法检测CaMK Ⅱ、p-CaMK Ⅱ、p-NF-κB、MAPK、p-MAPK在小鼠胰腺组织中的表达变化。
结果
与假手术组比较,SAP组p-CaMK Ⅱ、p-NF-κB、p-MAPK表达水平升高(P < 0.05)。KN93干预后,SAP小鼠胰腺组织病理损伤减轻,血清脂肪酶、淀粉酶以及炎性因子(TNF-α、IL-6)水平降低(P < 0.05),同时NF-κB、ERK和MAPK蛋白磷酸化也降低(P < 0.05)。
结论
CaMK Ⅱ蛋白在SAP疾病胰腺组织活性升高,CaMK Ⅱ抑制剂KN93能有效减轻SAP小鼠胰腺损伤和炎症程度,其机制可能与ERK/MAPK信号通路有关。
Keywords: 重症急性胰腺炎, CaMK Ⅱ, NF-κB, KN93
Abstract
Objective
To investigate the expression of Ca2+/calmodulin-dependent protein kinase II (CaMK Ⅱ) in pancreatic tissues of mice with severe acute pancreatitis (SAP) and explore the protective effect of KN93, a CaMK Ⅱ inhibitor, against pancreatic injury in SAP and the possible mechanism.
Methods
Thirty-six healthy male C57 mice were randomly divided into sham operation group, SAP group, KN93 group and SAP + KN93 group (n=9). Serum and pancreatic tissue samples were collected 24 h after modeling. The pathological changes in the pancreatic tissues were observed using HE staining. Serum lipase and amylase activities and the levels of inflammatory factors were detected using ELISA. Western blotting was used to detect the expressions of CaMK Ⅱ, p-CaMK Ⅱ, p-NF-κB, MAPK and p-MAPK in mouse pancreas.
Results
Compared with those in sham operation group, the expressions of p-CaMK Ⅱ, p-NF-κB and p-MAPK were significantly increased in SAP group (P < 0.05). KN93 treatment obviously alleviated pathological injuries of the pancreas in SAP mice, and significantly lowered serum levels of lipase, amylase and inflammatory factors (TNF-α and IL-6) and phosphorylation levels of NF-κB, ERK and MAPK proteins (P < 0.05).
Conclusion
The activity of CaMK Ⅱ is significantly increased in the pancreatic tissue of SAP mice. KN93 can alleviate pancreatic injury and inflammation in SAP mice possibly through the ERK/MAPK signaling pathway.
Keywords: severe acute pancreatitis, CaMKⅡ, nuclear factor-κB, KN93
重症急性胰腺炎(SAP)是一种较高致死率的炎性疾病,亢进的炎症反应导致机体全身炎症反应综合征(SIRS)与多器官功能衰竭[1]。目前已经证实,胰腺腺泡细胞内钙离子浓度增高可以促进胰蛋白酶原激活和释放,加重组织损伤[2-4]。组织损伤因子的释放诱导NF-κB的表达水平升高进而调控IL-1β、TNF-α等炎症因子的水平的转录来参与SAP的局部炎症反应[5, 6];局部炎症反应进一步可能发展为全身炎症反应,导致多器官功能衰竭[7]。因此,探索控制全身炎症进展的措施,对于SAP救治具有重要的现实意义。
钙调素依赖蛋白激酶(CaMK Ⅱ)可以通过调控细胞膜及肌质网的钙通道来调节细胞质内的钙离子浓度,进而参与细胞的重要病理生理进程。研究表明,CaM K Ⅱ蛋白与胰腺疾病的病理生理过程有密切的联系[8-9]。除了通过细胞内钙离子浓度参与机体病理生理过程外,CaMKⅡ还可通过抑制NF-κB来参与调控疾病进程[10-11]。但是CaMK Ⅱ蛋白在重症急性胰腺炎中的作用尚无深入研究。因此,本研究通过构建小鼠SAP模型,探索CaMK Ⅱ在SAP疾病发生发展中的作用。此外我们还通过CAMK Ⅱ特异性抑制剂KN93进行对CaMK Ⅱ进行抑制,进一步明确其发挥作用的机制。
1. 材料和方法
1.1. 实验动物和主要试剂
6~8周雄性SPF级C57小鼠36只(重庆恩斯维尔生物科技有限公司),体质量20~25 g。牛磺胆酸钠(Sigma)。小鼠血清淀粉酶、脂肪酶ELISA试剂盒(南京建成生物工程研究所),TNF-α、IL-6、IL-10ELISA试剂盒(上海茁彩生物科技有限公司)。全蛋白提取试剂盒(北京索莱宝公司)、Trizol试剂(Invitrogen)、BCA蛋白定量试剂盒(博士德)、抗CaMK Ⅱ单克隆抗体(Abcam)。抗NF-κB单克隆抗体、抗p-NF-κB单克隆抗体、抗p-CaMK Ⅱ单克隆抗体、抗ERK单克隆抗体、抗p-ERK单克隆抗体(CST)。抗GAPDH单克隆抗体(武汉Proteintech)。辣根过氧化物酶标记山羊抗兔IgG抗体(二抗)(Ab-cam)。山羊抗兔IgG抗体(二抗)(CST)。CaMK Ⅱ蛋白抑制剂KN93(MedChem Express)。RT-PCR引物(广州锐博生物技术有限公司),异氟烷麻醉剂(深圳瑞沃德)。
1.2. 动物分组及模型制备
SAP模型构造:将36只C57小鼠置于实验室IVC笼具适应1周,12 h昼夜交替光照,造模前禁食不禁水12 h,采用随机数字表法将小鼠分为4组:假手术组(Sham组)、抑制剂组(KN93组)、重症急性胰腺炎组(SAP组)、抑制剂和急性重症胰腺炎组(KN93+SAP组),9只/组。所有小鼠实验操作均采用异氟烷进行吸入性麻醉。Sham组小鼠麻醉后,开腹后翻动数次胰腺后关腹。SAP组小鼠麻醉后,开腹后十二指肠降段处确定胰胆管开口处,动脉夹夹闭胰胆管上端,用1 mL注射器经胰胆管逆行注射5%牛磺胆酸钠(1 mL/kg)诱导SAP。KN93组开腹后翻动数次胰腺以后关腹,同时尾静脉注射KN93(1 mg/kg)。KN93+SAP组开腹后经胰胆管逆行注射5%牛磺胆酸钠(1 mL/kg)诱导SAP并且同时尾静脉注射KN93(1 mg/kg)。实验过程均符合单位及国家相关实验动物管理和使用规定,遵循了国际兽医学编辑协会《关于动物伦理与福利的作者指南共识》。
1.3. 标本采集
于建模后24 h分批进行取材,收集胰腺组织和血液。血液常温静置15 min后立刻离心(3000 r/min,15 min),收集上清液置于-80 ℃冰箱中冻存。胰腺组织分为两份,一份保存于-80 ℃冰箱用于蛋白质提取,另一份用4%甲醛固定后期用于相关检测。
1.4. 病理评估
胰腺组织甲醛固定后进行脱水、包埋、切片、58 ℃烤片脱蜡,依次进行苏木素、伊红处理,自然晾干1 h后封片,于Leica DM300光学显微镜下仔细观察胰腺结构。由两个病理医师对胰腺病理进行独立评分,通过计算每张病理切片选取的10个视野的平均分得出最后评分。
1.5. 酶联免疫吸附测定(ELISA)
严格依照ELISA试剂盒说明书测定血清中淀粉酶、脂肪酶、IL-6、IL-10与肿瘤坏死因子α的浓度。
1.6. 免疫蛋白印迹
依照全蛋白提取试剂盒说明书进行小鼠胰腺组织的蛋白质提取,并用BCA法测定胰腺总蛋白水平。蛋白样品经电泳、转膜、封闭后与CaMK Ⅱ(1∶4000)单克隆抗体、p-CaMK Ⅱ(1∶1000)、NF-κB(1∶1000)单克隆抗体、p-NF-κB(1∶1000)单克隆抗体、ERK(1∶1000)单克隆抗体、p-ERK(1∶1000)单克隆抗体、GAPDH(1∶10000)单克隆抗体、反应,于4 ℃环境下孵育12 h。次日用新配TBST洗涤3次后与二抗(1∶2000)孵育1 h,TBST洗涤曝光,以GAPDH为内参,使用ImageJ采集图像、计算灰度值。
1.7. 免疫组织化学
采用免疫组织化学方法检测胰腺组织中NF-κB的表达。根据标准步骤对包埋的胰腺组织进行切片后58 ℃烤片3 h,透明剂脱蜡10 min、pH=9的柠檬酸钠抗原修复液煮沸10 min,山羊血清封闭过夜,次日滴加兔抗小鼠NF-κB(1∶1000)抗体在4 ℃下孵育12 h。新配PBS溶液温和冲洗切片后滴加生物素标记的山羊抗兔免疫球蛋白G(1∶200),37 ℃孵箱孵育1 h。一次进行DAB染色,分化,反蓝后封片,在Leica DM300光学显微镜下观察阳性染色并采集图像。
1.8. RT-PCR
RT-PCR测定胰腺组织CaMK Ⅱ mRNA的表达水平。采用TRIzol法提取胰腺组织总RNA,并用分光光度仪检测总RNA的含量和纯度,A260/A280比值在1.9~2.0的样本符合要求。依照一步法RT- PCR对CaMK Ⅱ mRNA的表达水平进行检测。
1.9. 统计学方法
采用GraphPad prism9.2和SPSS 26.0进行数据统计。定量数据以均数±标准差表示,组间比较采用单因素ANOVA方差分析,两两比较采用LSD-t检验。P < 0.05为差异具有统计学意义。
表 1.
RT-PCR引物序列
Primer sequences for RT-PCR
| Gene | Primer sequences |
| GAPDH | |
| REVERSE | AGGTCGGTGTGAACGGATTTG |
| REVERSE | TGTAGACCATGTAGTTGAGGTCA |
| CaMKⅡ | |
| FORWARD | CGTTTCACCGACGAGTACCAG |
| REVERSE | GCGTACAATGTTGGAATGCTTC |
2. 结果
2.1. SAP小鼠模型成功构建
HE染色结果显示,SAP小鼠的胰腺结构可见明显的破坏,出现大片坏死,组织水肿,小叶结构消失,炎症细胞浸润(图 1A、B)。相比Sham组,SAP组促炎因子IL-6、TNF-α表达水平升高(P < 0.01,图 1C),同时SAP组小鼠血清脂肪酶和淀粉酶也升高(P < 0.01,图 1D),小鼠的SAP模型成功构建。
图 1.

SAP对于胰腺组织和炎症的影响
Pathology of the pancreatic tissue and inflammatory response in SAP mice. A: HE staining of the pancreatic tissue (scale bar=100 μm). B: Pathological score of the pancreatic tissue. C: Serum IL- 6 and TNF- α levels. D: Serum lipase and amylase activity. **P < 0.01, ***P < 0.001, ****P < 0.0001.
2.2. CaMK Ⅱ蛋白在SAP组胰腺组织中活性升高
RT-PCR和Western blot结果显示,SAP组小鼠胰腺组织总CaMK Ⅱ(T-CaMK Ⅱ)表达水平相较于Sham组没有明显变化(P > 0.05,图 2A、B)。但是,SAP组小鼠p-CaMK Ⅱ的蛋白表达量比假手术组升高(P < 0.001,图 2B)。
图 2.

胰腺组织中p-CaMK Ⅱ蛋白和CaMK Ⅱ mRNA的表达情况
Expression of p-CaMK II and T-CaMK II proteins (A) and CaMKⅡ mRNA (B) in pancreatic tissue of SAP mice. ***P < 0.001.
2.3. 抑制CaMK Ⅱ可有效减轻SAP小鼠的胰腺损伤
注射KN93以后,KN93+SAP组的小鼠的胰腺损伤减轻(图 3A)。相比于SAP组的小鼠,KN93+SAP组的小鼠的血清淀粉酶和脂肪酶降低(P < 0.05,图 3B、C)。ELISA实验结果显示,血清IL-6、TNF-α的水平降低,抑炎因子IL-10水平升高(P < 0.05,图 3E~G)。
图 3.

各组小鼠的组织病理学检查及血清淀粉酶脂肪酶炎症因子水平
Histopathological examination of the pancreas, serum amylase and lipase activities and serum levels of inflammatory factor levels in each group. A: HE staining of the pancreatic tissue (scale bar=100 μm). B, C: Serum amylase and lipase activities. D: Pathological score of the pancreas; E: Serum TNF- α levels. F: Serum IL- 6 levels. G: Serum IL- 10 levels. *P < 0.05, **P < 0.01, ***P < 0.001.
2.4. 抑制CaMK Ⅱ后NF-κB蛋白降低,SAP的炎症缓解
免疫组化染色结果显示,SAP组胰腺组织的NF-κB表达水平相比于Sham组升高;CaMK Ⅱ被抑制后,SAP组胰腺组织NF-κB的蛋白含量下降(图 4A)。Western blot结果显示,SAP组的NF-κB磷酸化水平相比于Sham组明显增高(图 4B);但CaMK Ⅱ蛋白被抑制后,蛋白ERK的磷酸化水平降低,NF-κB的活性也被抑制(图 4B、C)。
图 4.

胰腺组织中p-NF-κB、p-CaMK Ⅱ和p-ERK的表达水平
Expression of p-NF-κB, p-CaMK II and CaMK II in the pancreas in each group. A: Immunohistochemical staining of NF- κB in the pancreas (scale bar=50 μm). B: Expression levels of p-CAMK/CaMK II and p-NF-κB/NF-κB proteins in the pancreatic tissue. C: Expression levels of p-ERK/ERK protein in the pancreatic tissue. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
3. 讨论
本研究发现CaMK Ⅱ蛋白在SAP小鼠的胰腺组织中活性明显升高,抑制CaMK Ⅱ可以有效抑制SAP的胰腺损伤和降低全身炎症反应,表明CaMK Ⅱ参与SAP的进展。CaMK Ⅱ在SAP当中的作用在既往研究中还未有明确探索,因此探明其在SAP发生发展过程中的作用及相关的机制有助于进一步认识SAP的发病机制及寻找可能的治疗靶点。CaMK Ⅱ为一种多聚体蛋白,受到刺激后,自身Thr286或Thr287位点发生磷酸化,Thr286位点自磷酸化后促进酶亚基相互磷酸化,亚基磷酸化后具有捕捉钙调蛋白能力,进而促进全酶活化发挥作用[12-13]。CaMK Ⅱ在许多疾病进展中起着重要作用。研究显示,当CaMK Ⅱ抑制剂和吡喹酮同时使用后,血吸虫病的治疗效果明显改善[14];在心脏中,CaMK Ⅱ被发现可以通过蛋白质精氨酸甲基转移酶1来调节心脏的收缩功能[15]。不仅如此,CaMK Ⅱ在胰腺疾病中也发挥着重要的作用。在高糖刺激下,CaMK Ⅱ蛋白可以发生自身磷酸化[16]来诱导ERK的激活[17],最终促进胰岛素的分泌[18, 19]。CaMK Ⅱ还被发现与炎症密切相关[20]。但是CaMK Ⅱ在SAP发生发展过程中的作用机制还不清楚。
本实验发现在SAP小鼠中CaMK Ⅱ的磷酸化水平明显增高,当CaMK Ⅱ的活性被KN93抑制后,SAP小鼠的胰腺损伤明显减轻,全身炎症明显改善,与CaMK Ⅱ在其他疾病中的作用一致。进一步提示CaMK Ⅱ可能参与促进SAP小鼠的全身炎症的发生发展。有研究表明在人大脑微血管内皮细胞中,CaMK Ⅱ可以通过ERK/NF-κB信号通路促进TNF-α诱导的金属蛋白酶9的表达[20]。在未分化的小鼠骨髓单核细胞中,KN93可以通过抑制细胞外信号调节激酶(ERK)和Akt的表达来抑制NF-κB的表达[21]。而NF-κB作为促炎细胞因子分泌的关键调节因子,是胰腺炎早期的重要分子[22]。大量激活的胰蛋白酶原造成组织损伤,细胞破裂[23]。组织细胞破裂释放大量组织因子,诱导NF-κB从无活性形式转变为活性形式[23]。一方面,NF-κB多聚体的IκB激酶解离[24],NF-κB发挥作用促进TNF-α的转录[25]。另一方面,NF-κB的激活导致胰腺中性粒细胞大幅度增加[26],大量促炎因子和黏附分子流入胰腺,加重胰腺炎症反应。组织损伤后中性粒细胞由胰腺局部扩散至肝脏、肺等组织器官,进一步导致全身炎症反应。本研究发现,使用KN93抑制CaMK Ⅱ后,NF-κB的表达出现了明显的降低,同时血清中的促炎因子IL-6/TNF-α明显降低,抗炎因子IL-10明显升高,表明CaMK Ⅱ可能通过增加NF-κB的表达参与SAP进展。本实验在SAP进展早期进行KN93干预,降低CaMK Ⅱ的活性从而减少NF-κB的表达,进一步减少IL-6、TNF-α的转录。
在神经系统炎症中,CaMK Ⅱ可以通过负向调控ERK/MAPK信号通路来降低NF-κB的表达,减轻神经炎症水平[27]。在急性胰腺炎中ERK/MAPK信号通路已经被证实发挥重要作用[28, 29],其机制是通过上调NF-κB来参与SAP的胰腺进展。急性胰腺炎中,黄芩素抑制ERK/MAPK信号通路和NF -κB表达水平来降低急性胰腺炎的炎症水平[30]。氧化苦参碱可以通过降低ERK/ MAPK途径蛋白的表达水平来降低NF-κB的表达,减轻急性胰腺炎的胰腺损伤和炎症水平[31]。川穹素可以通过抑制ERK/MAPK信号通路来减轻急性胰腺炎的胰腺损伤,同时也能在体外使用AR42J细胞观察到当ERK/MAPK通路被抑制后,细胞的炎症因子也出现了明显的下调[32]。本研究发现当CaMK Ⅱ的活性被抑制后,ERK(细胞外信号调节激酶)蛋白的磷酸化水平明显降低,提示CaMK Ⅱ通过抑制ERK/MAPK信号通路来降低IL-6、TNF-α的表达水平。
综上所述,抑制CaMK Ⅱ可能通过抑制ERK/ MAPK信号途径来减少NF -κB的蛋白水平,最终缓解SAP的炎症程度。但是CaMK Ⅱ与ERK之间具体的机制还有待进一步的研究去探索和发现。CaMK Ⅱ可能是治疗SAP炎症反应的一个新的靶点。
Biography
蒋文,硕士,E-mail: jwmebius@163.com
Funding Statement
国家自然科学基金(81772001);国家临床重点专科(41732113
Supported by National Natural Science Foundation of China (81772001)
Contributor Information
蒋 文 (Wen JIANG), Email: jwmebius@163.com.
汤 礼军 (Lijun TANG), Email: tanglj2016@163.com.
孙 红玉 (Hongyu SUN), Email: shongyu2008@163.com.
References
- 1.Khan GM, Li JJ, Tenner S. Association of extent and infection of pancreatic necrosis with organ failure and death in acute necrotizing pancreatitis. Clin Gastroenterol Hepatol. 2005;3(8):829–38. doi: 10.1016/s1542-3565(05)00485-4. [DOI] [PubMed] [Google Scholar]
- 2.Gukovskaya AS, Pandol SJ, Gukovsky I. New insights into the pathways initiating and driving pancreatitis. Curr Opin Gastroenterol. 2016;32(5):429–35. doi: 10.1097/MOG.0000000000000301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Wen L, Voronina S, Javed MA, et al. Inhibitors of ORAI1 prevent cytosolic calcium-associated injury of human pancreatic acinar cells and acute pancreatitis in 3 mouse models. Gastroenterology. 2015;149(2):481-92, e7. doi: 10.1053/j.gastro.2015.04.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Gerasimenko JV, Gryshchenko O, Ferdek PE, et al. Ca2+ release-activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci USA. 2013;110(32):13186–91. doi: 10.1073/pnas.1300910110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Jakkampudi A, Jangala R, Reddy BR, et al. NF-κB in acute pancreatitis: mechanisms and therapeutic potential. Pancreatology. 2016;16(4):477–88. doi: 10.1016/j.pan.2016.05.001. [DOI] [PubMed] [Google Scholar]
- 6.Zhang DM, Cai YX, Chen MM, et al. OGT-mediated O-GlcNAcylation promotes NF-κB activation and inflammation in acute pancreatitis. Inflamm Res. 2015;64(12):943–52. doi: 10.1007/s00011-015-0877-y. [DOI] [PubMed] [Google Scholar]
- 7.Kapoor VK, Beger HG. Acute Pancreatitis. Boca Raton, FL: CRC Press: CRC Press; 2017. [Google Scholar]
- 8.Kline CF, Wright PJ, Koval OM, et al. βIV-Spectrin and CaMKⅡ facilitate Kir6.2 regulation in pancreatic beta cells. Proc Natl Acad Sci USA. 2013;110(43):17576–81. doi: 10.1073/pnas.1314195110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Hwang HJ, Park KS, Choi JH, et al. Zafirlukast promotes insulin secretion by increasing calcium influx through L-type calcium channels. J Cell Physiol. 2018;233(11):8701–10. doi: 10.1002/jcp.26750. [DOI] [PubMed] [Google Scholar]
- 10.Cuschieri J, Bulger E, Garcia I, et al. Calcium/calmodulin-dependent kinase Ⅱ is required for platelet-activating factor priming. Shock. 2005;23(2):99–106. doi: 10.1097/01.shk.0000148075.19190.db. [DOI] [PubMed] [Google Scholar]
- 11.Kashiwase K, Higuchi Y, Hirotani S, et al. CaMKⅡ activates ASK1 and NF-kappaB to induce cardiomyocyte hypertrophy. Biochem Biophys Res Commun. 2005;327(1):136–42. doi: 10.1016/j.bbrc.2004.12.002. [DOI] [PubMed] [Google Scholar]
- 12.Li J, Wang PP, Ying J, et al. Curcumin attenuates retinal vascular leakage by inhibiting calcium/calmodulin-dependent protein kinase Ⅱ activity in streptozotocin-induced diabetes. Cell Physiol Biochem. 2016;39(3):1196–208. doi: 10.1159/000447826. [DOI] [PubMed] [Google Scholar]
- 13.Simon B, Huart AS, Wilmanns M. Molecular mechanisms of protein kinase regulation by calcium/calmodulin. Bioorg Med Chem. 2015;23(12):2749–60. doi: 10.1016/j.bmc.2015.04.051. [DOI] [PubMed] [Google Scholar]
- 14.Nawaratna SSK, McManus DP, Gasser RB, et al. Use of kinase inhibitors against schistosomes to improve and broaden praziquantel efficacy. Parasitology. 2020;147(13):1488–98. doi: 10.1017/S0031182020001250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Pyun JH, Kim HJ, Jeong MH, et al. Cardiac specific PRMT1 ablation causes heart failure through CaMKⅡ dysregulation. Nat Commun. 2018;9(1):5107–16. doi: 10.1038/s41467-018-07606-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Tabuchi H, Yamamoto H, Matsumoto K, et al. Regulation of insulin secretion by overexpression of Ca2+/calmodulin-dependent protein kinase Ⅱ in insulinoma MIN6 cells. Endocrinology. 2000;141(7):2350–60. doi: 10.1210/endo.141.7.7553. [DOI] [PubMed] [Google Scholar]
- 17.Gomez E, Pritchard C, Herbert TP. cAMP-dependent protein kinase and Ca2+ influx through L-type voltage-gated calcium channels mediate Raf-independent activation of extracellular regulated kinase in response to glucagon-like peptide-1 in pancreatic beta-cells. J Biol Chem. 2002;277(50):48146–51. doi: 10.1074/jbc.M209165200. [DOI] [PubMed] [Google Scholar]
- 18.Wenham RM, Landt M, Easom RA. Glucose activates the multifunctional Ca2+/calmodulin-dependent protein kinase Ⅱ in isolated rat pancreatic islets. J Biol Chem. 1994;269(7):4947–52. doi: 10.1016/S0021-9258(17)37637-8. [DOI] [PubMed] [Google Scholar]
- 19.Dadi PK, Vierra NC, Ustione A, et al. Inhibition of pancreatic β-cell Ca2+/calmodulin-dependent protein kinase Ⅱ reduces glucose-stimulated calcium influx and insulin secretion, impairing glucose tolerance. J Biol Chem. 2014;289(18):12435–45. doi: 10.1074/jbc.M114.562587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Ding XW, Sun X, Shen XF, et al. Propofol attenuates TNF-α-induced MMP-9 expression in human cerebral microvascular endothelial cells by inhibiting Ca2+/CAMK Ⅱ/ERK/NF-κB signaling pathway. Acta Pharmacol Sin. 2019;40(10):1303–13. doi: 10.1038/s41401-019-0258-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Yao CH, Zhang P, Zhang L. Differential protein and mRNA expression of CaMKs during osteoclastogenesis and its functional implications. Biochem Cell Biol. 2012;90(4):532–9. doi: 10.1139/o2012-002. [DOI] [PubMed] [Google Scholar]
- 22.Yang J, Zhou YW, Shi JS. Cordycepin protects against acute pancreatitis by modulating NF-κB and NLRP3 inflammasome activation via AMPK. Life Sci. 2020;251:117645–56. doi: 10.1016/j.lfs.2020.117645. [DOI] [PubMed] [Google Scholar]
- 23.Son A, Ahuja M, Schwartz DM, et al. Ca2+ influx channel inhibitor SARAF protects mice from acute pancreatitis. Gastroenterology. 2019;157(6):1660-72, e2. doi: 10.1053/j.gastro.2019.08.042. [DOI] [PubMed] [Google Scholar]
- 24.Rakonczay Z Jr, Hegyi P, Takács T, et al. The role of NF-kappaB activation in the pathogenesis of acute pancreatitis. Gut. 2008;57(2):259–67. doi: 10.1136/gut.2007.124115. [DOI] [PubMed] [Google Scholar]
- 25.Xu X, Piao HN, Aosai FM, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br J Pharmacol. 2020;177(22):5224–45. doi: 10.1111/bph.15261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.周 家华, 李 欢送, 朱 海涛, et al. 急性胰腺炎患者外周血中性粒细胞NF-KB活性变化及PDTC的抑制作用. 中华外科杂志. 2006;44(19):1345–8. doi: 10.3760/j:issn:0529-5815.2006.19.017. [DOI] [PubMed] [Google Scholar]
- 27.Madhi I, Kim JH, Shin JE, et al. Ginsenoside Re exhibits neuroprotective effects by inhibiting neuroinflammation via CAMK/ MAPK/NF-κB signaling in microglia. Mol Med Rep. 2021;24(4):698–705. doi: 10.3892/mmr.2021.12337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Chen P, Zhang YP, Qiao MM, et al. Activated protein C, an anticoagulant polypeptide, ameliorates severe acute pancreatitis via regulation of mitogen-activated protein kinases. J Gastroenterol. 2007;42(11):887–96. doi: 10.1007/s00535-007-2104-2. [DOI] [PubMed] [Google Scholar]
- 29.Schäfer C, Williams JA. Stress kinases and heat shock proteins in the pancreas: possible roles in normal function and disease. J Gastroenterol. 2000;35(1):1–9. doi: 10.1080/003655200750024443. [DOI] [PubMed] [Google Scholar]
- 30.Pu WL, Bai RY, Zhou K, et al. Baicalein attenuates pancreatic inflammatory injury through regulating MAPK, STAT 3 and NF-κB activation. Int Immunopharmacol. 2019;72:204–10. doi: 10.1016/j.intimp.2019.04.018. [DOI] [PubMed] [Google Scholar]
- 31.Zhang ZQ, Liu QF, Zang H, et al. Oxymatrine protects against l-arginine-induced acute pancreatitis and intestine injury involving Th1/Th17 cytokines and MAPK/NF-κB signalling. Pharm Biol. 2019;57(1):595–603. doi: 10.1080/13880209.2019.1657906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Chen JL, Chen JM, Wang XT, et al. Ligustrazine alleviates acute pancreatitis by accelerating acinar cell apoptosis at early phase via the suppression of p38 and Erk MAPK pathways. Biomed Phar-macother. 2016;82:1–7. doi: 10.1016/j.biopha.2016.04.048. [DOI] [PubMed] [Google Scholar]
