Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Mar 1;78(Pt 4):349–353. doi: 10.1107/S2056989022002225

Tetra­nuclear copper(II) complex of 2-hydroxy-N,N′-bis­[1-(2-hy­droxy­phen­yl)ethyl­idene]­propane-1,3-di­amine

Alassane Saïdou Diallo a, Ibrahima Elhadji Thiam b, Mbossé Gueye-Ndiaye b, Moussa Dieng a, James Orton c, Coles Simon c, Mohamed Gaye b,*
PMCID: PMC8983967  PMID: 35492279

In the title Schiff base tetra­nuclear copper(II) complex, two discrete environments are present in the structure: CuNO4 and CuNO3. Two copper(II) cations are situated in distorted square-pyramidal environment, while two copper(II) cations are located in a slightly square-planar geometry. One bridging acetate group acting in an η112-mode connects two copper(II) ions, while another bridging acetate group connects three copper(II) ions in an η1:-η2–μ3-mode.

Keywords: crystal structure; 1-(2-hy­droxy­phen­yl)ethanone; 1,3-di­amino­propan-2-ol

Abstract

The title mol­ecular structure, namely, (μ3-acetato)(μ2-acetato)­bis­(μ3-1,3-bis­{[1-(2-oxidophen­yl)ethyl­idene]amino}­propan-2-olato)tetra­copper(II) monohydrate, [Cu4(C19H19N2O3)2(CH3CO2)2]·H2O, corresponds to a non-symmetric tetra­nuclear copper complex. The complex exhibits one ligand mol­ecule that connects two copper CuII metal centres via its ethano­lato oxygen anion acting in a μ2-mode and one ligand mol­ecule that connects three copper CuII metal centres via its ethano­lato oxygen anion acting in a μ3-mode. One bridging acetate group acting in an η112-mode connects two copper(II) ions while another bridging acetate group connects three copper(II) ions in an η1:-η23-mode. A chair-like Cu3O3 structure is generated in which the two CuO4N units are connected by one μ2-O ethano­late oxygen atom. These two units are connected respectively to the CuO3N unit via one μ3-O ethano­late oxygen atom and one μ2-O atom from an acetate group. The μ3-O atom also connects one of the CuO4N units and the CuO3N unit to another CuO3N unit, which is out of the chair-like structure. Each of the two penta­coordinated CuII cations has a distorted NO4 square-pyramidal environment. The geometry of each of the two CuNO3 units is best described as a slightly square-planar environment. A series of intra­molecular O—H⋯O hydrogen bonds is observed. In the crystal, the units are connected by inter­molecular C—H⋯O and O—H⋯O hydrogen bonds, thus forming sheets parallel to the ac plane

Chemical context

The controlled design of new coordination complexes of transition metals from polydentate ligands is of great inter­est for research, because of the potential applications that these functional materials can have and for their inter­esting structural diversity (Popov et al., 2012; Mitra et al., 2014). In this context, important research is being devoted to the chemistry of transition-metal complexes with different oxidation states incorporating polydentate ligands with N and O donor sites (Xie et al., 2012; Banerjee & Chattopadhyay, 2019; Ferguson et al., 2006). These ligands can act in a versatile manner and generate compounds with very different structures, depending on the metal–ligand ratio and the nature of the metal cation (Fernandes et al., 2000). In this context, penta­dentate Schiff bases have made it possible to synthesize several complexes with various transition-metal cations, resulting in an unusual coordination environment with inter­esting stereochemistry (Banerjee et al., 2011). Depending on the size of the cation and its external electronic configuration and the flexibility of the ligand, novel structures with high nuclearity have been obtained (Aly, 1999). These compounds are very attractive for the above reasons, and they have been widely used in several studies. Many multinuclear transition-metal complexes with various structures have been generated, depending on the disposition of the metal ions and donor sites (N or O). Tetra­nuclear (Asadi et al., 2018; Manna et al., 2019), penta­nuclear (Hari et al., 2019; Ghosh, Clérac et al., 2013) hexa­nuclear (Shit et al., 2013; Kébé et al., 2021) and hepta­nuclear (Gheorghe et al., 2019; Ghosh, Bauzá et al., 2013) forms have reported with potential applications in the fields of magnetism (Gheorghe et al., 2019), catalysis (Nesterova et al., 2020; Das et al., 2018) or biomimetic synthesis (Nesterova et al., 2020; Sanyal et al., 2017). Our research group has already enabled us to prepare several multidentate Schiff base complexes (Mamour et al., 2018; Sarr et al., 2018a ,b ; Sall et al., 2019). We then explored the possibility of preparing complexes with several metal cations from a penta­dentate Schiff base obtained by condensation of 1,3-di­amino­propan-2-ol and 1-(2-hy­droxy­phen­yl)ethanone, which is rich in hydroxyl groups. From this Schiff base we prepared a hexa­nuclear complex with an open-cube structure (Kébé et al., 2021). In a continuation of our work with this Schiff base, we obtained the title tetra­nuclear copper complex (Fig. 1) whose structure is presented herein. graphic file with name e-78-00349-scheme1.jpg

Figure 1.

Figure 1

A view of the title compound, showing the atom-numbering scheme.

Structural commentary

N,N′-Bis­{[1-(2-hy­droxy­phen­yl)ethyl­idene)]}-2-hy­droxy­pro­pane-1, 3-di­amine (H3 L was synthesized via a condensation reaction between 1,3-di­amino­propan-2-ol and 1-(2-hy­droxy­phen­yl)ethanone in a 1:2 ratio in ethanol. Mixing H3 L and hydrated copper acetate yielded a tetra­nuclear complex formulated as [Cu4 L 2(CH3CO2)2]·H2O in which the ligand acts in its tri-deprotonated L−3 form. In the tetra­nuclear complex, one of the L−3 anions acts in μ2-mode, connecting the two penta­coordinated CuII cations. The second L−3 anion acts in μ3 mode, connecting the two tetra­coordinated CuII cations and one of the penta­coordinated CuII cations. The second penta­coordinated CuII cation is connected to the two tetra­coordinated CuII cations via an acetate group acting in η123 mode. Additionally, the two penta­coordinated CuII cations are connected by an acetate group acting in η112 mode. For each ligand, the azomethine nitro­gen atom and the phenolate oxygen atom of one arm are both linked to one CuII cation while the corresponding atoms of the other arm are bonded to another CuII cation. No phenolate oxygen atom acts in bridging mode. In one ligand the ethano­late oxygen atom bridges the two penta­coordinated CuII cations, and in the second ligand the ethano­late oxygen atom bridges the two tetra­coordinated CuII cations and one penta­coordinated CuII cation. The two L−3 ligands are coordinated differently in hexa­dentate (-η1-O phenolate, -η1-N imino, -μ2-O enolato, -η1-N imino, -η1-O phenolato) and hepta­dentate (-η1-O phenolate, -η1-N imino, -μ3-O enolato, -η1-N imino, -η1-O phenolato) fashions. Four five-membered CuOCCN rings and four six-membered CuOCCCN rings are formed upon the coordination of the ligand mol­ecules. In the tetra­nuclear complex, two discrete CuO4N and CuO3N units are observed.

Atoms Cu1 and Cu2 are penta­coordinated and their environments can be best described as slightly distorted square-pyramidal. The Addison τ parameter (Addison et al., 1984) calculated from the largest angles (Table 1; τ = 0 for perfect square-pyramidal and τ = 1 for perfect trigonal–bipyramidal geometries, respectively) around the metal ion are τ = 0.1103 for Cu1 and τ = 0.1887 for Cu2. For Cu1 and Cu2, the basal planes are occupied by one phenolate oxygen anion, one azomethine nitro­gen atom, one ethano­late oxygen atom and one oxygen atom from the η112 acetate group, the apical position being occupied by an ethano­late oxygen atom from a second ligand mol­ecule for Cu1 and an oxygen atom from the η123 acetate group for Cu2. The atoms forming the basal plane for Cu1 (N1, O1, O2, O10) are almost coplanar (r.m.s. deviation = 0.1088 Å) and the Cu1 atom is displaced toward the O5 atom, which occupies the apical position, by 0.0545 (2) Å. The Cu1—O5 distance of 2.749 (3) Å is longer than the distances between Cu1 and the atoms in the basal plane [Cu1—Nligand = 1.966 (4) Å, Cu1—Oligand = 1.878 (3) and 1.916 (3) Å and Cu1—Oacetate = 1.982 (3) Å)], as expected for a Jahn–Teller distortion (Monfared et al., 2009), typical of a CuII d 9 configuration (Monfared et al., 2009). These values are in accordance with those in similar copper(II) complexes (Haldar et al., 2016; Siluvai & Murthy, 2009). The cisoid and transoid angles are in the ranges 85.01 (14)–95.10 (14)° and 169.71 (16)–176.33 (14)°, respectively. The atoms forming the basal plane for Cu2 (N2, O2, O11, O3) are less coplanar than those around Cu1 (r.m.s. deviation = 0.2086 Å) and the Cu2 atom is displaced toward the O8 atom, which occupies the apical position, by 0.0808 (1) Å. The from Cu2—O8 distance of 2.703 (4) Å is longer than those to atoms in the equatorial plane [Cu2—Nligand = 1.961 (4) Å, Cu2—Oligand = 1.877 (3) and 1.920 (3) Å and Cu2—Oacetate = 1.940 (3) Å]. As observed for Cu1, Jahn–Teller distortion (Monfared et al., 2009) is responsible of the elongation of the distance between Cu2 and the apical atom O8. The cisoid and transoid angles are in the ranges 85.74 (15)–96.89 (14)° and 161.66 (15)–173.00 (15)°, respectively. The bond lengths involving the μ2-bridging ethano­lato oxygen atom and the copper cations are asymmetrical: Cu1—O2 = 1.916 (3) Å and Cu2—O2 = 1.920 (3) Å. The distances between the μ3-bridging ethano­lato oxygen atom and the copper cations are very different: Cu1—O5 = 2.749 (3) Å, Cu3—O5 = 1.907 (3) Å and Cu4—O5 = 1.921 (3) Å. The copper cations Cu3 and Cu4 are coordinated by one ethano­lato oxygen anion, one phenoxo oxygen anion, one azomethine nitro­gen atom of the ligand and one oxygen atom of a η123 acetate group (O8 for Cu3 and O7 for Cu4). The Cu3—O4 [1.873 (3) Å], Cu3—O5 [1.907 (3) Å], Cu3—N3 [1.947 (4) Å], Cu3—O8 [1.957 (3) Å], Cu4—O6 [1.869 (3) Å], Cu4—O5 [1.921 (3) Å], Cu4—N4 [1.962 (4) Å] and Cu4—O7 [1.955 (3) Å] distances are in close proximity to values reported for copper(II) complexes with analogous Schiff base ligands (Patra et al., 2015; Lukov et al., 2017). For the Cu3 and Cu4 centres, the coordination environment can be best described as distorted square planar with r.m.s. deviations of 0.7870 Å for N3/O4/O8/O5/Cu3 and 0.7921 Å for O5/O7/O6/N4/Cu4. These planes, which share one vertex (O5), form a dihedral angle of 65.67 (1)°. The tetra­gonality parameter (Singh et al., 2017) τ4 values of 0.0993 (Cu3) and 0.1801 (Cu4) suggested distorted square-planar geometries. For the two copper cations the cisoid angles are in the ranges 86.17 (14)–93.29 (15)° for Cu3 and 84.04 (14)–96.93 (14)° for Cu4 and the transoid angles are O4—Cu3—O5 = 177.07 (15)°, O8—Cu3—N3 = 173.28 (15)°, O6—Cu4—O5 = 170.48 (14)° and O7—Cu3—N4 = 164.11 (15)°. The C—N bonds are in the range 1.291 (6)–1.300 (6) Å, indicative of double-bond character and the presence of the imino groups in the two ligands.

Table 1. Selected geometric parameters (Å, °).

Cu2—O2 1.920 (3) Cu1—N1 1.966 (4)
Cu2—O3 1.877 (3) Cu3—O5 1.907 (3)
Cu2—O11 1.940 (3) Cu3—O4 1.873 (3)
Cu2—O8 2.703 (4) Cu3—O8 1.957 (3)
Cu2—N2 1.961 (4) Cu3—N3 1.947 (4)
Cu1—O5 2.749 (3) Cu4—O5 1.921 (3)
Cu1—O2 1.916 (3) Cu4—O7 1.955 (3)
Cu1—O10 1.982 (3) Cu4—O6 1.869 (3)
Cu1—O1 1.878 (3) Cu4—N4 1.962 (4)
       
O3—Cu2—O2 173.00 (15) O4—Cu3—O5 177.07 (15)
O11—Cu2—N2 161.66 (15) N3—Cu3—O8 173.28 (15)
O1—Cu1—O2 176.33 (14) O7—Cu4—N4 164.11 (15)
N1—Cu1—O10 169.71 (16)    

Supra­molecular features

Intra­molecular O—H⋯O hydrogen bonds involving the uncoordinated water mol­ecule, a phenoxo oxygen atom and an oxygen atom of acetate group and C—H⋯Ophenoxo are observed (Fig. 2, Table 2). The uncoordinated water mol­ecule is situated into the void of the tetra­nuclear complex and has O⋯O contacts of 2.894 (5) and 3.158 (5) Å suggesting medium-strength hydrogen bonds. In the crystal, the complex mol­ecules are arranged in sheets parallel to the ac plane (Fig. 3). The sheets are connected by C—H⋯O bonds (C—H⋯Ophenoxo, C—H⋯Owater, C—H⋯Oacetate; Table 2). The series of inter­molecular and intra­molecular hydrogen bonds stabilize and link the components into two-dimensional sheets parallel to the ac plane (Fig. 4).

Figure 2.

Figure 2

Detail of the structure of the complex showing the O—H⋯O and C—H⋯O hydrogen bonds.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9C⋯O4 0.85 2.08 2.894 (5) 159
O9—H9C⋯O8 0.85 2.56 3.158 (5) 128
O9—H9D⋯O3 0.85 2.08 2.928 (5) 175
C28—H28A⋯O1 0.97 2.58 3.427 (6) 146
C29—H29⋯O1i 0.98 2.60 3.424 (5) 142
C10—H10⋯O6ii 0.98 2.51 3.351 (6) 144
C8—H8A⋯O9iii 0.96 2.44 3.372 (6) 163
C9—H9B⋯O6 0.97 2.65 3.521 (6) 150
C32—H32A⋯O9iii 0.96 2.38 3.304 (6) 162
C42—H42A⋯O11i 0.96 2.66 3.256 (7) 121

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 3.

Figure 3

Sheets parallel to the ac plane.

Figure 4.

Figure 4

View of the two-dimensional sheets parallel to the ac plane.

Database survey

N,N′–Bis[(1-(2-hy­droxy­phen­yl)ethyl­idene)]-2-hy­droxy­pro­pane-1,3-di­amine is widely used in coordination chemistry. The current release of the CSD (Version 5.42, November 2021 update; Groom et al., 2016) gave eleven hits. Three are complexes of the ligand with NiII cations [KARPOK and KARPUQ (Liu et al., 2012); OMOFUS (Banerjee et al., 2011)]. Four entries are complexes of CuII cations [KUKTAM (Basak et al., 2009), NADDIJ and NADDOP (Osypiuk et al., 2020), OVOWAA (Kébé et al., 2021)]. In addition, two CoII complexes (OMOFOM and OMOGAZ; Banerjee et al., 2011), one FeII (RIDHUJ; Biswas et al., 2013) and one VV complex (KEWGUQ; Maurya et al., 2013) have been reported. In all eleven cases, the ligand acts in a penta­dentate mode through the two soft azomethine nitro­gen atoms, the two hard phenolate oxygen anions and the one hard enolate oxygen anion. In seven cases (KARPOK, KARPUQ, OMOFUS, KUKTAM, NADDIJ, NADDOP and OMOGAZ), the complexes are tetra­nuclear while two dinuclear (OMOFOM and RIDHUJ), one mononuclear (KEWGUQ) and one hexa­nuclear (OVOWAA) complex have been reported.

Synthesis and crystallization

The ligand N,N -bis­[(1-(2-hy­droxy­phen­yl)ethyl­idene)]-2-hy­droxy­propane-1,3-di­amine (HL 3) was prepared from 1-(2-hy­droxy­phen­yl)ethanone and 2-hy­droxy­propane-1,3-di­amine in a 2:1 ratio in ethanol according to a slight modification of a literature method (Song et al., 2003). To a solution of 1,3-di­amino­propane-2-ol (0.900 g, 10 mmol) in 25 mL of ethanol was added dropwise (2-hy­droxy­phen­yl)ethanone (2.720 g, 20 mmol). The resulting orange mixture was refluxed for 3 h, affording the organic ligand H3 L. On cooling, the yellow precipitate that appeared was recovered by filtration and dried in air. Yield 75%. m.p. 479–480 K. FT–IR (KBr, ν, cm−1): 3538 (OH), 3268 (OH), 1605 (C=N), 1538 (C=C), 1528 (C=C), 1455 (C=C), 1247 (C—O), 1043, 760. Analysis calculated for C19H22N2O3: C, 69.92; H, 6.79; N, 8.58. Found: C, 69.90; H, 6.76; N, 8.56%.

A solution of Cu(CH3CO2)2·(H2O) (0.1996 g, 1 mmol) in 5 mL of ethanol was added to a solution of H3 L (0.163 g, 0.5 mmol) in 10 mL of ethanol at room temperature. The initial yellow solution immediately turned deep green and was stirred for 30 min before being filtered. The filtrate was kept at 298 K. After one week, light-green crystals suitable for X-ray diffraction were collected and formulated as [Cu4 L 2(CH3CO2)2]·H2O. FT–IR (KBr, ν, cm−1): 3404, 1601, 1532, 1332, 1299, 895, 760. Analysis calculated for C42H46Cu4N4O11: C, 48.64; H, 4.47; N, 5.40. Found: C, 48.60; H, 4.49; N, 5.44%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms attached to the hydroxyl group and water mol­ecules were located in a difference-Fourier map and freely refined. Other H atoms (CH, CH2, CH3 groups and hydroxyl of ethanol mol­ecules) were geometrically optimized (O—H = 0.85 Å, C—H = 0.93–0.97 Å) and refined using a riding model (AFIX instructions) with U iso(H) = 1.2U eq(C) or 1.5U eq(C) for CH3 and OH groups.

Table 3. Experimental details.

Crystal data
Chemical formula [Cu4(C19H19N2O3)2(C2H3O2)2]·H2O
M r 1037.02
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 6.9688 (1), 25.8066 (4), 22.8290 (4)
β (°) 95.418 (2)
V3) 4087.25 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.12
Crystal size (mm) 0.25 × 0.2 × 0.1
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.967, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12039, 12039, 10024
R int 0.008
(sin θ/λ)max−1) 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.131, 1.13
No. of reflections 12039
No. of parameters 560
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.69, −0.88

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022002225/ex2053sup1.cif

e-78-00349-sup1.cif (730.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002225/ex2053Isup3.hkl

e-78-00349-Isup3.hkl (954.8KB, hkl)

CCDC reference: 2154581

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows: Conceptualization, MD, MG, MGN, ASD and IET; investigation, ASD and IET; writing (original draft), MG; writing (review and editing of the manuscript), MG, IET, MNG and MD; formal analysis, IET, JO and SC; resources, MG and MD; supervision, MG and IET.

supplementary crystallographic information

Crystal data

[Cu4(C19H19N2O3)2(C2H3O2)2]·H2O F(000) = 2120
Mr = 1037.02 Dx = 1.685 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
a = 6.9688 (1) Å Cell parameters from 5800 reflections
b = 25.8066 (4) Å θ = 2.4–28.7°
c = 22.8290 (4) Å µ = 2.12 mm1
β = 95.418 (2)° T = 293 K
V = 4087.25 (11) Å3 Prismatic, light-green
Z = 4 0.25 × 0.2 × 0.1 mm

Data collection

Nonius KappaCCD diffractometer 10024 reflections with I > 2σ(I)
CCD scans Rint = 0.008
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.6°, θmin = 1.8°
Tmin = 0.967, Tmax = 1.000 h = −9→9
12039 measured reflections k = −33→33
12039 independent reflections l = −29→28

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.038P)2 + 21.6332P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max = 0.001
12039 reflections Δρmax = 1.69 e Å3
560 parameters Δρmin = −0.88 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu2 0.60863 (8) 0.28366 (2) 0.32611 (2) 0.01219 (13)
Cu1 0.52144 (8) 0.38573 (2) 0.22819 (2) 0.01203 (13)
Cu3 0.84495 (8) 0.29191 (2) 0.17735 (2) 0.01246 (13)
Cu4 1.01850 (8) 0.39019 (2) 0.27079 (2) 0.01232 (13)
O5 0.8865 (4) 0.36243 (12) 0.20000 (13) 0.0132 (6)
O2 0.6231 (5) 0.35435 (12) 0.30062 (14) 0.0140 (6)
O10 0.4526 (5) 0.31935 (13) 0.18788 (15) 0.0222 (8)
O7 1.1025 (5) 0.32394 (12) 0.30599 (15) 0.0181 (7)
O3 0.6275 (5) 0.21453 (12) 0.35156 (15) 0.0185 (7)
O4 0.7906 (5) 0.22334 (12) 0.15452 (14) 0.0181 (7)
O1 0.4344 (5) 0.41970 (12) 0.15789 (14) 0.0152 (7)
O6 1.1072 (5) 0.42189 (12) 0.34184 (15) 0.0180 (7)
O11 0.4548 (5) 0.25787 (13) 0.25696 (15) 0.0202 (7)
O8 0.9004 (5) 0.26730 (13) 0.25825 (15) 0.0208 (7)
N1 0.5427 (5) 0.45103 (14) 0.27266 (17) 0.0126 (8)
C41 1.0334 (7) 0.27956 (17) 0.2974 (2) 0.0137 (9)
N3 0.8224 (5) 0.31721 (14) 0.09664 (16) 0.0111 (7)
O9 0.7291 (6) 0.15395 (13) 0.25055 (17) 0.0264 (8)
H9C 0.770732 0.177114 0.228491 0.040*
H9D 0.703080 0.170249 0.281168 0.040*
N2 0.6827 (5) 0.31062 (14) 0.40532 (16) 0.0114 (7)
N4 1.0044 (5) 0.45572 (14) 0.22705 (16) 0.0121 (7)
C39 0.4116 (6) 0.27589 (17) 0.2067 (2) 0.0143 (9)
C19 0.6706 (6) 0.19719 (18) 0.4053 (2) 0.0135 (9)
C26 0.7822 (6) 0.29142 (17) 0.04858 (19) 0.0110 (8)
C16 0.7556 (7) 0.15045 (19) 0.5168 (2) 0.0180 (10)
H16 0.781948 0.135243 0.553591 0.022*
C20 0.7860 (6) 0.20455 (18) 0.1007 (2) 0.0145 (9)
C13 0.7848 (7) 0.31399 (18) 0.5103 (2) 0.0156 (9)
H13A 0.823194 0.348621 0.501483 0.023*
H13B 0.890648 0.296314 0.531695 0.023*
H13C 0.677661 0.315238 0.533833 0.023*
C27 0.7355 (6) 0.31943 (17) −0.00920 (19) 0.0138 (9)
H27A 0.688273 0.353526 −0.001780 0.021*
H27B 0.638722 0.300470 −0.033070 0.021*
H27C 0.849757 0.322077 −0.029428 0.021*
C14 0.7197 (6) 0.22864 (17) 0.45570 (19) 0.0113 (8)
C25 0.7812 (6) 0.23439 (17) 0.0480 (2) 0.0117 (8)
C17 0.7117 (7) 0.12003 (18) 0.4666 (2) 0.0174 (10)
H17 0.710667 0.084111 0.469778 0.021*
C28 0.8313 (6) 0.37427 (16) 0.09623 (19) 0.0121 (9)
H28A 0.702933 0.388882 0.095759 0.014*
H28B 0.889213 0.386413 0.061739 0.014*
C29 0.9539 (6) 0.39016 (17) 0.1520 (2) 0.0122 (9)
H29 1.088626 0.380870 0.148407 0.015*
C11 0.6906 (6) 0.36775 (17) 0.40348 (19) 0.0126 (9)
H11A 0.822806 0.379269 0.402534 0.015*
H11B 0.640320 0.382256 0.438117 0.015*
C10 0.5701 (6) 0.38526 (17) 0.3486 (2) 0.0129 (9)
H10 0.433277 0.380043 0.353554 0.015*
C6 0.4719 (6) 0.50930 (18) 0.1912 (2) 0.0149 (9)
C7 0.5306 (6) 0.49832 (17) 0.2530 (2) 0.0123 (9)
C1 0.4262 (6) 0.47000 (17) 0.1482 (2) 0.0149 (9)
C12 0.7266 (6) 0.28539 (17) 0.45387 (19) 0.0113 (8)
C15 0.7586 (7) 0.20325 (18) 0.5103 (2) 0.0150 (9)
H15 0.787888 0.223430 0.543726 0.018*
C30 0.9411 (7) 0.44745 (17) 0.1646 (2) 0.0132 (9)
H30A 1.022816 0.466698 0.140256 0.016*
H30B 0.809436 0.459367 0.155977 0.016*
C8 0.5798 (7) 0.54254 (18) 0.2947 (2) 0.0182 (10)
H8A 0.633216 0.570576 0.273896 0.027*
H8B 0.672434 0.531122 0.325863 0.027*
H8C 0.465288 0.554100 0.311060 0.027*
C31 1.0235 (6) 0.50243 (18) 0.2480 (2) 0.0150 (9)
C22 0.7727 (7) 0.12579 (18) 0.0412 (2) 0.0197 (10)
H22 0.769101 0.089808 0.039118 0.024*
C23 0.7695 (7) 0.15510 (19) −0.0106 (2) 0.0190 (10)
H23 0.764424 0.138974 −0.047193 0.023*
C24 0.7741 (7) 0.20798 (18) −0.0062 (2) 0.0158 (9)
H24 0.772348 0.227402 −0.040560 0.019*
C9 0.6056 (7) 0.44167 (17) 0.33513 (19) 0.0136 (9)
H9A 0.533894 0.463677 0.359735 0.016*
H9B 0.741610 0.449663 0.343064 0.016*
C38 1.1219 (7) 0.47204 (18) 0.3522 (2) 0.0171 (10)
C33 1.0824 (6) 0.51236 (18) 0.3101 (2) 0.0156 (9)
C5 0.4589 (7) 0.56179 (18) 0.1719 (2) 0.0189 (10)
H5 0.490277 0.587974 0.199175 0.023*
C40 0.2961 (8) 0.23976 (18) 0.1642 (2) 0.0206 (10)
H40A 0.208940 0.259722 0.138055 0.031*
H40B 0.224171 0.215968 0.185905 0.031*
H40C 0.382332 0.220786 0.141722 0.031*
C32 0.9831 (7) 0.54776 (18) 0.2068 (2) 0.0202 (10)
H32A 0.930339 0.575865 0.227686 0.030*
H32B 0.892338 0.537490 0.174626 0.030*
H32C 1.100792 0.558715 0.191900 0.030*
C34 1.1021 (7) 0.56421 (19) 0.3302 (2) 0.0227 (11)
H34 1.074325 0.590881 0.303313 0.027*
C4 0.4018 (8) 0.57527 (19) 0.1147 (2) 0.0243 (11)
H4 0.392435 0.609970 0.103828 0.029*
C18 0.6705 (7) 0.14284 (19) 0.4130 (2) 0.0196 (10)
H18 0.641327 0.121833 0.380232 0.023*
C2 0.3711 (7) 0.48541 (19) 0.0895 (2) 0.0211 (10)
H2 0.342570 0.460076 0.061062 0.025*
C3 0.3585 (8) 0.5367 (2) 0.0733 (2) 0.0236 (11)
H3 0.320682 0.545600 0.034466 0.028*
C21 0.7810 (7) 0.14995 (18) 0.0949 (2) 0.0194 (10)
H21 0.783417 0.129738 0.128740 0.023*
C42 1.1047 (8) 0.2371 (2) 0.3389 (2) 0.0256 (11)
H42A 1.242630 0.238701 0.345497 0.038*
H42B 1.067072 0.204078 0.322069 0.038*
H42C 1.049827 0.241244 0.375637 0.038*
C35 1.1599 (9) 0.5768 (2) 0.3872 (3) 0.0300 (13)
H35 1.173262 0.611278 0.398564 0.036*
C36 1.1985 (9) 0.5374 (2) 0.4282 (3) 0.0339 (14)
H36 1.236433 0.545609 0.467253 0.041*
C37 1.1808 (8) 0.4863 (2) 0.4112 (2) 0.0249 (11)
H37 1.208207 0.460476 0.439069 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu2 0.0193 (3) 0.0094 (3) 0.0074 (3) 0.0025 (2) −0.0014 (2) −0.0003 (2)
Cu1 0.0176 (3) 0.0091 (3) 0.0087 (3) −0.0023 (2) −0.0022 (2) 0.0013 (2)
Cu3 0.0198 (3) 0.0098 (3) 0.0073 (3) −0.0045 (2) −0.0008 (2) 0.0007 (2)
Cu4 0.0161 (3) 0.0101 (3) 0.0100 (3) 0.0023 (2) −0.0029 (2) −0.0027 (2)
O5 0.0194 (16) 0.0129 (16) 0.0070 (15) −0.0049 (13) 0.0006 (12) −0.0013 (12)
O2 0.0222 (17) 0.0105 (15) 0.0091 (15) 0.0017 (12) −0.0001 (12) −0.0017 (12)
O10 0.040 (2) 0.0114 (17) 0.0146 (17) −0.0102 (15) 0.0000 (15) 0.0005 (13)
O7 0.0219 (17) 0.0133 (17) 0.0176 (18) 0.0033 (13) −0.0062 (13) −0.0013 (13)
O3 0.0324 (19) 0.0102 (16) 0.0123 (16) 0.0036 (14) −0.0016 (14) −0.0016 (13)
O4 0.0315 (19) 0.0108 (16) 0.0113 (16) −0.0033 (13) −0.0014 (14) 0.0001 (13)
O1 0.0227 (17) 0.0093 (15) 0.0125 (17) −0.0023 (12) −0.0040 (13) 0.0029 (12)
O6 0.0260 (18) 0.0109 (16) 0.0158 (18) 0.0015 (13) −0.0054 (14) −0.0052 (13)
O11 0.0298 (19) 0.0160 (17) 0.0137 (17) −0.0020 (14) −0.0034 (14) 0.0002 (13)
O8 0.0314 (19) 0.0184 (18) 0.0114 (17) −0.0083 (14) −0.0038 (14) 0.0047 (13)
N1 0.0165 (18) 0.0117 (19) 0.0093 (19) 0.0018 (14) −0.0001 (15) 0.0004 (14)
C41 0.020 (2) 0.012 (2) 0.008 (2) −0.0020 (17) 0.0000 (17) 0.0008 (17)
N3 0.0141 (18) 0.0114 (18) 0.0076 (18) −0.0008 (14) 0.0005 (14) 0.0007 (14)
O9 0.053 (2) 0.0092 (16) 0.0194 (19) −0.0017 (16) 0.0144 (17) −0.0007 (14)
N2 0.0147 (18) 0.0110 (18) 0.0086 (18) −0.0016 (14) 0.0015 (14) −0.0024 (14)
N4 0.0136 (18) 0.0144 (19) 0.0080 (18) 0.0009 (14) −0.0006 (14) −0.0019 (14)
C39 0.017 (2) 0.014 (2) 0.012 (2) 0.0041 (17) 0.0022 (17) −0.0051 (18)
C19 0.016 (2) 0.015 (2) 0.009 (2) 0.0034 (17) 0.0010 (17) 0.0008 (17)
C26 0.0094 (19) 0.014 (2) 0.009 (2) 0.0010 (16) 0.0019 (16) 0.0022 (17)
C16 0.023 (2) 0.018 (2) 0.013 (2) 0.0036 (19) 0.0018 (19) 0.0033 (18)
C20 0.016 (2) 0.014 (2) 0.013 (2) −0.0024 (17) −0.0026 (17) −0.0024 (17)
C13 0.021 (2) 0.015 (2) 0.010 (2) −0.0007 (18) −0.0033 (18) −0.0007 (17)
C27 0.019 (2) 0.012 (2) 0.010 (2) −0.0004 (17) −0.0016 (17) 0.0010 (17)
C14 0.013 (2) 0.011 (2) 0.010 (2) 0.0027 (16) 0.0008 (16) 0.0011 (16)
C25 0.011 (2) 0.010 (2) 0.013 (2) −0.0013 (16) −0.0007 (16) 0.0006 (17)
C17 0.026 (2) 0.011 (2) 0.016 (2) 0.0021 (18) 0.0032 (19) 0.0027 (18)
C28 0.018 (2) 0.009 (2) 0.009 (2) 0.0009 (16) 0.0009 (17) 0.0005 (16)
C29 0.013 (2) 0.010 (2) 0.013 (2) 0.0006 (16) 0.0026 (17) 0.0008 (17)
C11 0.019 (2) 0.012 (2) 0.006 (2) −0.0015 (17) −0.0012 (17) −0.0015 (16)
C10 0.015 (2) 0.011 (2) 0.013 (2) 0.0004 (16) 0.0002 (17) −0.0010 (17)
C6 0.016 (2) 0.013 (2) 0.015 (2) −0.0029 (17) 0.0019 (18) 0.0025 (18)
C7 0.011 (2) 0.011 (2) 0.015 (2) −0.0008 (16) 0.0027 (17) −0.0006 (17)
C1 0.015 (2) 0.011 (2) 0.019 (2) −0.0008 (17) 0.0009 (18) 0.0035 (18)
C12 0.0106 (19) 0.012 (2) 0.011 (2) −0.0005 (16) 0.0024 (16) −0.0007 (17)
C15 0.018 (2) 0.017 (2) 0.009 (2) 0.0005 (17) 0.0011 (17) 0.0002 (18)
C30 0.018 (2) 0.013 (2) 0.009 (2) −0.0024 (17) 0.0006 (17) −0.0027 (17)
C8 0.024 (2) 0.012 (2) 0.017 (2) −0.0014 (18) −0.0004 (19) −0.0027 (19)
C31 0.011 (2) 0.013 (2) 0.021 (3) 0.0017 (17) 0.0033 (17) −0.0001 (18)
C22 0.027 (3) 0.010 (2) 0.022 (3) −0.0043 (18) 0.004 (2) −0.0017 (19)
C23 0.024 (2) 0.018 (2) 0.016 (2) −0.0026 (19) 0.0020 (19) −0.0049 (19)
C24 0.018 (2) 0.018 (2) 0.011 (2) −0.0009 (18) 0.0012 (17) 0.0015 (18)
C9 0.018 (2) 0.014 (2) 0.009 (2) 0.0018 (17) 0.0029 (17) 0.0004 (17)
C38 0.016 (2) 0.016 (2) 0.019 (2) 0.0026 (17) −0.0010 (18) −0.0039 (19)
C33 0.016 (2) 0.013 (2) 0.018 (2) 0.0001 (17) 0.0012 (18) −0.0063 (18)
C5 0.024 (2) 0.012 (2) 0.021 (3) −0.0036 (18) 0.004 (2) 0.0026 (19)
C40 0.032 (3) 0.013 (2) 0.016 (2) −0.003 (2) −0.002 (2) 0.0004 (19)
C32 0.026 (3) 0.013 (2) 0.021 (3) −0.0004 (19) −0.001 (2) 0.0007 (19)
C34 0.025 (3) 0.016 (2) 0.026 (3) 0.003 (2) 0.002 (2) −0.005 (2)
C4 0.036 (3) 0.012 (2) 0.024 (3) −0.001 (2) 0.004 (2) 0.008 (2)
C18 0.027 (3) 0.016 (2) 0.015 (2) 0.0018 (19) 0.0003 (19) −0.0048 (19)
C2 0.029 (3) 0.015 (2) 0.019 (3) −0.004 (2) −0.004 (2) 0.0023 (19)
C3 0.029 (3) 0.021 (3) 0.019 (3) −0.001 (2) −0.005 (2) 0.011 (2)
C21 0.028 (3) 0.013 (2) 0.016 (2) −0.0007 (19) −0.003 (2) 0.0024 (18)
C42 0.033 (3) 0.021 (3) 0.021 (3) −0.002 (2) −0.008 (2) 0.008 (2)
C35 0.044 (3) 0.017 (3) 0.028 (3) 0.003 (2) −0.003 (2) −0.013 (2)
C36 0.052 (4) 0.028 (3) 0.019 (3) 0.002 (3) −0.007 (3) −0.015 (2)
C37 0.035 (3) 0.020 (3) 0.018 (3) 0.003 (2) −0.004 (2) −0.006 (2)

Geometric parameters (Å, º)

Cu2—O2 1.920 (3) C17—C18 1.364 (7)
Cu2—O3 1.877 (3) C28—H28A 0.9700
Cu2—O11 1.940 (3) C28—H28B 0.9700
Cu2—O8 2.703 (4) C28—C29 1.522 (6)
Cu2—N2 1.961 (4) C29—H29 0.9800
Cu1—O5 2.749 (3) C29—C30 1.510 (6)
Cu1—O2 1.916 (3) C11—H11A 0.9700
Cu1—O10 1.982 (3) C11—H11B 0.9700
Cu1—O1 1.878 (3) C11—C10 1.509 (6)
Cu1—N1 1.966 (4) C10—H10 0.9800
Cu3—O5 1.907 (3) C10—C9 1.513 (6)
Cu3—O4 1.873 (3) C6—C7 1.458 (6)
Cu3—O8 1.957 (3) C6—C1 1.427 (7)
Cu3—N3 1.947 (4) C6—C5 1.424 (6)
Cu4—O5 1.921 (3) C7—C8 1.506 (6)
Cu4—O7 1.955 (3) C1—C2 1.415 (7)
Cu4—O6 1.869 (3) C15—H15 0.9300
Cu4—N4 1.962 (4) C30—H30A 0.9700
O5—C29 1.424 (5) C30—H30B 0.9700
O2—C10 1.432 (5) C8—H8A 0.9600
O10—C39 1.244 (6) C8—H8B 0.9600
O7—C41 1.251 (5) C8—H8C 0.9600
O3—C19 1.313 (5) C31—C33 1.461 (7)
O4—C20 1.319 (5) C31—C32 1.511 (7)
O1—C1 1.317 (5) C22—H22 0.9300
O6—C38 1.318 (6) C22—C23 1.403 (7)
O11—C39 1.248 (6) C22—C21 1.373 (7)
O8—C41 1.266 (6) C23—H23 0.9300
N1—C7 1.300 (6) C23—C24 1.369 (7)
N1—C9 1.472 (6) C24—H24 0.9300
C41—C42 1.503 (6) C9—H9A 0.9700
N3—C26 1.291 (6) C9—H9B 0.9700
N3—C28 1.474 (5) C38—C33 1.426 (7)
O9—H9C 0.8499 C38—C37 1.418 (7)
O9—H9D 0.8500 C33—C34 1.417 (6)
N2—C11 1.476 (6) C5—H5 0.9300
N2—C12 1.297 (6) C5—C4 1.374 (7)
N4—C30 1.467 (5) C40—H40A 0.9600
N4—C31 1.299 (6) C40—H40B 0.9600
C39—C40 1.520 (6) C40—H40C 0.9600
C19—C14 1.424 (6) C32—H32A 0.9600
C19—C18 1.414 (7) C32—H32B 0.9600
C26—C27 1.512 (6) C32—H32C 0.9600
C26—C25 1.472 (6) C34—H34 0.9300
C16—H16 0.9300 C34—C35 1.366 (7)
C16—C17 1.399 (7) C4—H4 0.9300
C16—C15 1.371 (7) C4—C3 1.385 (8)
C20—C25 1.427 (6) C18—H18 0.9300
C20—C21 1.415 (6) C2—H2 0.9300
C13—H13A 0.9600 C2—C3 1.376 (7)
C13—H13B 0.9600 C3—H3 0.9300
C13—H13C 0.9600 C21—H21 0.9300
C13—C12 1.508 (6) C42—H42A 0.9600
C27—H27A 0.9600 C42—H42B 0.9600
C27—H27B 0.9600 C42—H42C 0.9600
C27—H27C 0.9600 C35—H35 0.9300
C14—C12 1.466 (6) C35—C36 1.389 (8)
C14—C15 1.412 (6) C36—H36 0.9300
C25—C24 1.409 (6) C36—C37 1.377 (7)
C17—H17 0.9300 C37—H37 0.9300
O2—Cu2—O11 96.89 (14) C30—C29—C28 112.6 (4)
O2—Cu2—O8 84.89 (12) C30—C29—H29 109.3
O2—Cu2—N2 85.74 (14) N2—C11—H11A 110.2
O3—Cu2—O2 173.00 (15) N2—C11—H11B 110.2
O3—Cu2—O11 86.73 (14) N2—C11—C10 107.7 (3)
O3—Cu2—O8 89.68 (13) H11A—C11—H11B 108.5
O3—Cu2—N2 92.70 (15) C10—C11—H11A 110.2
O11—Cu2—O8 82.40 (13) C10—C11—H11B 110.2
O11—Cu2—N2 161.66 (15) O2—C10—C11 107.7 (4)
N2—Cu2—O8 115.93 (13) O2—C10—H10 109.6
O2—Cu1—O5 80.48 (12) O2—C10—C9 108.7 (4)
O2—Cu1—O10 95.10 (14) C11—C10—H10 109.6
O2—Cu1—N1 85.01 (14) C11—C10—C9 111.6 (4)
O10—Cu1—O5 83.75 (13) C9—C10—H10 109.6
O1—Cu1—O5 97.68 (12) C1—C6—C7 123.5 (4)
O1—Cu1—O2 176.33 (14) C5—C6—C7 119.2 (4)
O1—Cu1—O10 87.83 (14) C5—C6—C1 117.4 (4)
O1—Cu1—N1 92.51 (15) N1—C7—C6 121.3 (4)
N1—Cu1—O5 106.38 (13) N1—C7—C8 119.3 (4)
N1—Cu1—O10 169.71 (16) C6—C7—C8 119.4 (4)
O5—Cu3—O8 92.44 (14) O1—C1—C6 125.6 (4)
O5—Cu3—N3 86.17 (14) O1—C1—C2 116.1 (4)
O4—Cu3—O5 177.07 (15) C2—C1—C6 118.3 (4)
O4—Cu3—O8 88.43 (14) N2—C12—C13 120.5 (4)
O4—Cu3—N3 93.29 (15) N2—C12—C14 121.3 (4)
N3—Cu3—O8 173.28 (15) C14—C12—C13 118.1 (4)
O5—Cu4—O7 96.93 (14) C16—C15—C14 123.5 (4)
O5—Cu4—N4 84.04 (14) C16—C15—H15 118.2
O7—Cu4—N4 164.11 (15) C14—C15—H15 118.2
O6—Cu4—O5 170.48 (14) N4—C30—C29 108.0 (4)
O6—Cu4—O7 87.96 (14) N4—C30—H30A 110.1
O6—Cu4—N4 93.50 (15) N4—C30—H30B 110.1
Cu3—O5—Cu1 98.74 (12) C29—C30—H30A 110.1
Cu3—O5—Cu4 129.24 (17) C29—C30—H30B 110.1
Cu4—O5—Cu1 95.83 (12) H30A—C30—H30B 108.4
C29—O5—Cu1 116.7 (2) C7—C8—H8A 109.5
C29—O5—Cu3 108.9 (3) C7—C8—H8B 109.5
C29—O5—Cu4 107.0 (2) C7—C8—H8C 109.5
Cu1—O2—Cu2 129.60 (17) H8A—C8—H8B 109.5
C10—O2—Cu2 105.8 (3) H8A—C8—H8C 109.5
C10—O2—Cu1 108.9 (3) H8B—C8—H8C 109.5
C39—O10—Cu1 132.3 (3) N4—C31—C33 122.0 (4)
C41—O7—Cu4 129.8 (3) N4—C31—C32 118.8 (4)
C19—O3—Cu2 128.0 (3) C33—C31—C32 119.2 (4)
C20—O4—Cu3 126.4 (3) C23—C22—H22 119.8
C1—O1—Cu1 127.5 (3) C21—C22—H22 119.8
C38—O6—Cu4 126.8 (3) C21—C22—C23 120.3 (4)
C39—O11—Cu2 133.4 (3) C22—C23—H23 120.8
Cu3—O8—Cu2 113.47 (15) C24—C23—C22 118.5 (5)
C41—O8—Cu2 95.5 (3) C24—C23—H23 120.8
C41—O8—Cu3 130.7 (3) C25—C24—H24 118.4
C7—N1—Cu1 128.8 (3) C23—C24—C25 123.1 (4)
C7—N1—C9 119.5 (4) C23—C24—H24 118.4
C9—N1—Cu1 111.1 (3) N1—C9—C10 108.4 (4)
O7—C41—O8 125.8 (4) N1—C9—H9A 110.0
O7—C41—C42 118.0 (4) N1—C9—H9B 110.0
O8—C41—C42 116.1 (4) C10—C9—H9A 110.0
C26—N3—Cu3 128.5 (3) C10—C9—H9B 110.0
C26—N3—C28 121.0 (4) H9A—C9—H9B 108.4
C28—N3—Cu3 110.0 (3) O6—C38—C33 126.0 (4)
H9C—O9—H9D 104.5 O6—C38—C37 115.9 (4)
C11—N2—Cu2 109.6 (3) C37—C38—C33 118.1 (4)
C12—N2—Cu2 129.1 (3) C38—C33—C31 123.0 (4)
C12—N2—C11 121.3 (4) C34—C33—C31 119.3 (4)
C30—N4—Cu4 111.4 (3) C34—C33—C38 117.6 (5)
C31—N4—Cu4 127.9 (3) C6—C5—H5 118.7
C31—N4—C30 120.3 (4) C4—C5—C6 122.6 (5)
O10—C39—O11 127.6 (4) C4—C5—H5 118.7
O10—C39—C40 117.2 (4) C39—C40—H40A 109.5
O11—C39—C40 115.2 (4) C39—C40—H40B 109.5
O3—C19—C14 125.2 (4) C39—C40—H40C 109.5
O3—C19—C18 116.8 (4) H40A—C40—H40B 109.5
C18—C19—C14 117.9 (4) H40A—C40—H40C 109.5
N3—C26—C27 120.4 (4) H40B—C40—H40C 109.5
N3—C26—C25 121.6 (4) C31—C32—H32A 109.5
C25—C26—C27 118.0 (4) C31—C32—H32B 109.5
C17—C16—H16 120.8 C31—C32—H32C 109.5
C15—C16—H16 120.8 H32A—C32—H32B 109.5
C15—C16—C17 118.3 (4) H32A—C32—H32C 109.5
O4—C20—C25 125.8 (4) H32B—C32—H32C 109.5
O4—C20—C21 116.8 (4) C33—C34—H34 118.5
C21—C20—C25 117.4 (4) C35—C34—C33 122.9 (5)
H13A—C13—H13B 109.5 C35—C34—H34 118.5
H13A—C13—H13C 109.5 C5—C4—H4 120.3
H13B—C13—H13C 109.5 C5—C4—C3 119.5 (5)
C12—C13—H13A 109.5 C3—C4—H4 120.3
C12—C13—H13B 109.5 C19—C18—H18 118.8
C12—C13—H13C 109.5 C17—C18—C19 122.5 (4)
C26—C27—H27A 109.5 C17—C18—H18 118.8
C26—C27—H27B 109.5 C1—C2—H2 119.0
C26—C27—H27C 109.5 C3—C2—C1 122.0 (5)
H27A—C27—H27B 109.5 C3—C2—H2 119.0
H27A—C27—H27C 109.5 C4—C3—H3 119.9
H27B—C27—H27C 109.5 C2—C3—C4 120.2 (5)
C19—C14—C12 123.5 (4) C2—C3—H3 119.9
C15—C14—C19 117.5 (4) C20—C21—H21 118.9
C15—C14—C12 119.0 (4) C22—C21—C20 122.2 (5)
C20—C25—C26 122.2 (4) C22—C21—H21 118.9
C24—C25—C26 119.4 (4) C41—C42—H42A 109.5
C24—C25—C20 118.4 (4) C41—C42—H42B 109.5
C16—C17—H17 119.9 C41—C42—H42C 109.5
C18—C17—C16 120.3 (4) H42A—C42—H42B 109.5
C18—C17—H17 119.9 H42A—C42—H42C 109.5
N3—C28—H28A 110.4 H42B—C42—H42C 109.5
N3—C28—H28B 110.4 C34—C35—H35 120.3
N3—C28—C29 106.5 (3) C34—C35—C36 119.3 (5)
H28A—C28—H28B 108.6 C36—C35—H35 120.3
C29—C28—H28A 110.4 C35—C36—H36 119.9
C29—C28—H28B 110.4 C37—C36—C35 120.2 (5)
O5—C29—C28 108.0 (3) C37—C36—H36 119.9
O5—C29—H29 109.3 C38—C37—H37 119.1
O5—C29—C30 108.4 (4) C36—C37—C38 121.8 (5)
C28—C29—H29 109.3 C36—C37—H37 119.1
Cu2—O2—C10—C11 50.9 (4) N2—C11—C10—O2 −47.4 (5)
Cu2—O2—C10—C9 172.0 (3) N2—C11—C10—C9 −166.7 (4)
Cu2—O3—C19—C14 −2.5 (7) N4—Cu4—O6—C38 7.3 (4)
Cu2—O3—C19—C18 178.5 (3) N4—C31—C33—C38 −0.5 (7)
Cu2—O11—C39—O10 −4.0 (8) N4—C31—C33—C34 179.5 (4)
Cu2—O11—C39—C40 175.8 (3) C19—C14—C12—N2 1.8 (7)
Cu2—O8—C41—O7 −90.7 (5) C19—C14—C12—C13 −178.8 (4)
Cu2—O8—C41—C42 85.7 (4) C19—C14—C15—C16 1.5 (7)
Cu2—N2—C11—C10 21.0 (4) C26—N3—C28—C29 −158.3 (4)
Cu2—N2—C12—C13 178.5 (3) C26—C25—C24—C23 −178.9 (4)
Cu2—N2—C12—C14 −2.0 (6) C16—C17—C18—C19 0.2 (8)
Cu1—O5—C29—C28 −66.2 (4) C20—C25—C24—C23 0.7 (7)
Cu1—O5—C29—C30 56.0 (4) C27—C26—C25—C20 −167.5 (4)
Cu1—O2—C10—C11 −166.2 (3) C27—C26—C25—C24 12.0 (6)
Cu1—O2—C10—C9 −45.1 (4) C14—C19—C18—C17 1.3 (7)
Cu1—O10—C39—O11 −22.5 (8) C25—C20—C21—C22 0.3 (7)
Cu1—O10—C39—C40 157.7 (4) C17—C16—C15—C14 0.1 (7)
Cu1—O1—C1—C6 −4.2 (7) C28—N3—C26—C27 −2.4 (6)
Cu1—O1—C1—C2 174.4 (3) C28—N3—C26—C25 177.3 (4)
Cu1—N1—C7—C6 8.2 (6) C28—C29—C30—N4 160.4 (4)
Cu1—N1—C7—C8 −171.3 (3) C11—N2—C12—C13 0.8 (6)
Cu1—N1—C9—C10 −18.5 (4) C11—N2—C12—C14 −179.7 (4)
Cu3—O5—C29—C28 44.4 (4) C11—C10—C9—N1 159.8 (4)
Cu3—O5—C29—C30 166.7 (3) C6—C1—C2—C3 −0.8 (7)
Cu3—O4—C20—C25 −14.1 (7) C6—C5—C4—C3 −1.3 (8)
Cu3—O4—C20—C21 167.4 (3) C7—N1—C9—C10 169.2 (4)
Cu3—O8—C41—O7 36.9 (7) C7—C6—C1—O1 −1.4 (7)
Cu3—O8—C41—C42 −146.7 (4) C7—C6—C1—C2 −179.9 (4)
Cu3—N3—C26—C27 168.8 (3) C7—C6—C5—C4 −179.0 (5)
Cu3—N3—C26—C25 −11.5 (6) C1—C6—C7—N1 −0.8 (7)
Cu3—N3—C28—C29 29.0 (4) C1—C6—C7—C8 178.7 (4)
Cu4—O5—C29—C28 −172.1 (3) C1—C6—C5—C4 1.1 (7)
Cu4—O5—C29—C30 −49.8 (4) C1—C2—C3—C4 0.6 (8)
Cu4—O7—C41—O8 7.7 (7) C12—N2—C11—C10 −160.9 (4)
Cu4—O7—C41—C42 −168.7 (3) C12—C14—C15—C16 179.9 (4)
Cu4—O6—C38—C33 −3.7 (7) C15—C16—C17—C18 −1.0 (7)
Cu4—O6—C38—C37 175.7 (3) C15—C14—C12—N2 −176.6 (4)
Cu4—N4—C30—C29 −13.5 (4) C15—C14—C12—C13 2.9 (6)
Cu4—N4—C31—C33 7.3 (6) C30—N4—C31—C33 178.8 (4)
Cu4—N4—C31—C32 −172.6 (3) C30—N4—C31—C32 −1.1 (6)
O5—Cu1—O1—C1 −98.9 (4) C31—N4—C30—C29 173.8 (4)
O5—C29—C30—N4 41.0 (5) C31—C33—C34—C35 −178.8 (5)
O2—C10—C9—N1 41.1 (5) C22—C23—C24—C25 −0.2 (7)
O10—Cu1—O1—C1 177.7 (4) C23—C22—C21—C20 0.2 (8)
O7—Cu4—O6—C38 171.5 (4) C9—N1—C7—C6 179.0 (4)
O3—C19—C14—C12 0.6 (7) C9—N1—C7—C8 −0.5 (6)
O3—C19—C14—C15 178.9 (4) C38—C33—C34—C35 1.3 (8)
O3—C19—C18—C17 −179.6 (4) C33—C38—C37—C36 0.6 (8)
O4—C20—C25—C26 0.4 (7) C33—C34—C35—C36 −1.2 (9)
O4—C20—C25—C24 −179.2 (4) C5—C6—C7—N1 179.4 (4)
O4—C20—C21—C22 178.9 (4) C5—C6—C7—C8 −1.2 (6)
O1—C1—C2—C3 −179.4 (5) C5—C6—C1—O1 178.5 (4)
O6—C38—C33—C31 −1.5 (7) C5—C6—C1—C2 0.0 (7)
O6—C38—C33—C34 178.4 (4) C5—C4—C3—C2 0.5 (8)
O6—C38—C37—C36 −178.8 (5) C32—C31—C33—C38 179.4 (4)
O11—Cu2—O3—C19 −159.8 (4) C32—C31—C33—C34 −0.5 (7)
O8—Cu2—O3—C19 117.8 (4) C34—C35—C36—C37 0.8 (9)
O8—Cu3—O4—C20 −161.1 (4) C18—C19—C14—C12 179.6 (4)
N1—Cu1—O1—C1 8.0 (4) C18—C19—C14—C15 −2.1 (6)
N3—Cu3—O4—C20 12.3 (4) C21—C20—C25—C26 178.9 (4)
N3—C26—C25—C20 12.8 (6) C21—C20—C25—C24 −0.7 (6)
N3—C26—C25—C24 −167.7 (4) C21—C22—C23—C24 −0.3 (7)
N3—C28—C29—O5 −47.9 (4) C35—C36—C37—C38 −0.5 (9)
N3—C28—C29—C30 −167.5 (4) C37—C38—C33—C31 179.1 (4)
N2—Cu2—O3—C19 1.9 (4) C37—C38—C33—C34 −0.9 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O9—H9C···O4 0.85 2.08 2.894 (5) 159
O9—H9C···O8 0.85 2.56 3.158 (5) 128
O9—H9D···O3 0.85 2.08 2.928 (5) 175
C28—H28A···O1 0.97 2.58 3.427 (6) 146
C29—H29···O1i 0.98 2.60 3.424 (5) 142
C10—H10···O6ii 0.98 2.51 3.351 (6) 144
C8—H8A···O9iii 0.96 2.44 3.372 (6) 163
C9—H9B···O6 0.97 2.65 3.521 (6) 150
C32—H32A···O9iii 0.96 2.38 3.304 (6) 162
C42—H42A···O11i 0.96 2.66 3.256 (7) 121

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) −x+3/2, y+1/2, −z+1/2.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Aly, M. M. (1999). J. Coord. Chem. 47, 505–521.
  3. Asadi, Z., Golchin, M., Eigner, V., Dusek, M. & Amirghofran, Z. (2018). J. Photochem. Photobiol. Chem. 361, 93–104.
  4. Banerjee, A. & Chattopadhyay, S. (2019). Polyhedron, 159, 1–11.
  5. Banerjee, S., Nandy, M., Sen, S., Mandal, S., Rosair, G. M., Slawin, A. M. Z., Gómez García, C. J., Clemente-Juan, J. M., Zangrando, E., Guidolin, N. & Mitra, S. (2011). Dalton Trans. 40, 1652–1661. [DOI] [PubMed]
  6. Basak, S., Sen, S., Rosair, G., Desplanches, C., Garribba, E. & Mitra, S. (2009). Aust. J. Chem. 62, 366–375.
  7. Biswas, R., Diaz, C., Bauzá, A., Frontera, A. & Ghosh, A. (2013). Dalton Trans. 42, 12274–12283. [DOI] [PubMed]
  8. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Das, A., Goswami, S. & Ghosh, A. (2018). New J. Chem. 42, 19377–19389.
  10. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  11. Ferguson, A., Parkin, A. & Murrie, M. (2006). Dalton Trans. pp. 3627–3628. [DOI] [PubMed]
  12. Fernandes, C., Neves, A., Vencato, I., Bortoluzzi, A. J., Drago, V., Weyhermüller, T. & Rentschler, E. (2000). Chem. Lett. 29, 540–541.
  13. Gheorghe, R., Ionita, G. A., Maxim, C., Caneschi, A., Sorace, L. & Andruh, M. (2019). Polyhedron, 171, 269–278.
  14. Ghosh, A. K., Bauzá, A., Bertolasi, V., Frontera, A. & Ray, D. (2013). Polyhedron, 53, 32–39.
  15. Ghosh, A. K., Clérac, R., Mathonière, C. & Ray, D. (2013). Polyhedron, 54, 196–200.
  16. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  17. Haldar, S., Patra, A., Vijaykumar, G., Carrella, L. & Bera, M. (2016). Polyhedron, 117, 542–551.
  18. Hari, N., Ghosh, S. & Mohanta, S. (2019). Inorg. Chim. Acta, 491, 34–41.
  19. Kébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Acta Cryst. E77, 708–713. [DOI] [PMC free article] [PubMed]
  20. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  21. Liu, S., Wang, S., Cao, F., Fu, H., Li, D. & Dou, J. (2012). RSC Adv. 2, 1310–1313.
  22. Lukov, V. V., Shcherbakov, I. N., Levchenkov, S. I., Popov, L. D. & Pankov, I. V. (2017). Russ. J. Coord. Chem. 43, 1–20.
  23. Mamour, S., Mayoro, D., Elhadj Ibrahima, T., Mohamed, G., Aliou Hamady, B. & Ellena, J. (2018). Acta Cryst. E74, 642–645. [DOI] [PMC free article] [PubMed]
  24. Manna, S., Zangrando, E., Puschmann, H. & Manna, S. C. (2019). Polyhedron, 162, 285–292.
  25. Maurya, M. R., Bisht, M., Chaudhary, N., Avecilla, F., Kumar, U. & Hsu, H.-F. (2013). Polyhedron, 54, 180–188.
  26. Mitra, M., Maji, A. K., Ghosh, B. K., Raghavaiah, P., Ribas, J. & Ghosh, R. (2014). Polyhedron, 67, 19–26.
  27. Monfared, H. H., Sanchiz, J., Kalantari, Z. & Janiak, C. (2009). Inorg. Chim. Acta, 362, 3791–3795.
  28. Nesterova, O. V., Bondarenko, O. E., Pombeiro, A. J. L. & Nesterov, D. S. (2020). Dalton Trans. 49, 4710–4724. [DOI] [PubMed]
  29. Osypiuk, D., Cristóvão, B. & Bartyzel, A. (2020). Crystals, 10, 1004.
  30. Patra, A., Haldar, S., Kumar, G. V., Carrella, L., Ghosh, A. K. & Bera, M. (2015). Inorg. Chim. Acta, 436, 195–204.
  31. Popov, L. D., Levchenkov, S. I., Shcherbakov, I. N., Lukov, V. V., Suponitsky, K. Y. & Kogan, V. A. (2012). Inorg. Chem. Commun. 17, 1–4.
  32. Sall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Acta Cryst. E75, 1069–1075. [DOI] [PMC free article] [PubMed]
  33. Sanyal, R., Ketkov, S., Purkait, S., Mautner, F. A., Zhigulin, G. & Das, D. (2017). New J. Chem. 41, 8586–8597.
  34. Sarr, M., Diop, M., Thiam, I. E., Gaye, M., Barry, A. H., Alvarez, N. & Ellena, J. (2018a). Eur. J. Chem. 9, 67–73.
  35. Sarr, M., Diop, M., Thiam, E. I., Gaye, M., Barry, A. H., Orton, J. B. & Coles, S. J. (2018b). Acta Cryst. E74, 1862–1866. [DOI] [PMC free article] [PubMed]
  36. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  37. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  38. Shit, S., Nandy, M., Rosair, G., Fallah, M. S. E., Ribas, J., Garribba, E. & Mitra, S. (2013). Polyhedron, 52, 963–969.
  39. Siluvai, G. S. & Murthy, N. N. (2009). Polyhedron, 28, 2149–2156.
  40. Singh, Y. P., Patel, R. N., Singh, Y., Choquesillo-Lazarte, D. & Butcher, R. J. (2017). Dalton Trans. 46, 2803–2820. [DOI] [PubMed]
  41. Song, Y., Gamez, P., Roubeau, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). Eur. J. Inorg. Chem. pp. 2924–2928.
  42. Xie, Q.-W., Chen, X., Hu, K.-Q., Wang, Y.-T., Cui, A.-L. & Kou, H.-Z. (2012). Polyhedron, 38, 213–217.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022002225/ex2053sup1.cif

e-78-00349-sup1.cif (730.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002225/ex2053Isup3.hkl

e-78-00349-Isup3.hkl (954.8KB, hkl)

CCDC reference: 2154581

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES