Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Mar 31;78(Pt 4):458–462. doi: 10.1107/S2056989022003346

Crystal structure of (E)-3-({6-[2-(4-chloro­phen­yl)ethen­yl]-3-oxo-2,3-di­hydro­pyridazin-4-yl}meth­yl)pyridin-1-ium chloride dihydrate

Said Daoui a, Emine Berrin Çınar b,*, Necmi Dege b, Noureddine Benchat a, Eiad Saif c,*, Khalid Karrouchi d
PMCID: PMC8983968  PMID: 35492268

Three intra­mol­ecular hydrogen bonds are observed in the title compound. In the crystal, mol­ecules are connected by C—H⋯Cl and N—H⋯O hydrogen bonds.

Keywords: crystal structure, pyridazine, pyridazinone derivative, hydrogen bonding, Hirshfeld surfaces

Abstract

In the title compound, C18H15ClN3O+·Cl·2H2O, three intra­mol­ecular hydrogen bonds are observed, N—H⋯O, O—H⋯Cl and O—H⋯O. In the crystal, mol­ecules are connected by C—H⋯Cl and N—H⋯O hydrogen bonds. Strong C—H⋯Cl, N—H⋯O, O—H⋯Cl and O—H⋯O hydrogen-bonding inter­actions are implied by the Hirshfeld surface analysis, which indicate that H⋯H contacts make the largest contribution to the overall crystal packing at 33.0%.

Chemical context

Pyridazine derivatives are an important class of heterocyclic chemicals that exhibit a wide range of biological actions. For example, their biological activity and anti­microbial properties have been researched extensively (Neumann et al., 2018). As a result, the pyridazine ring can be found in a range of commercial medicinal compounds, including Cadralazine and Hydralazine, Minaprine, Pipofezine and others (Abu-Hashem et al., 2020). Pyridazine derivatives can be found also in the backbones of several organic light-emitting diodes (OLEDs) (Liu et al., 2017), organic solar cells (OSCs) (Knall et al., 2021), chemosensors (Peng et al., 2020), tri­fluoro­acetic acid (TFA) sensors (Li et al., 2018), bioconjugates (Bahou et al., 2021), low carbon steel corrosion inhibitors (Khadiria et al., 2016), and several other materials. They have also been used as starting materials in organic synthesis (Llona-Minguez et al., 2017), acyl­ating agents (Kung et al., 2002), precursors for N-heterocyclic carbenes (NHCs) (Liu et al., 2012) and metallocarbene precursors. An overview of aryl­glyoxal monohydrates-based one-pot multi-component synthesis of potentially biologically active pyridazines is given by Mousavi (2022). graphic file with name e-78-00458-scheme1.jpg

Structural commentary

A perspective view of the title mol­ecule is shown in Fig. 1. The pyridazine and pyridine rings subtend a dihedral angle of 57.27 (5)°. The other two rings, pyridazine and chloro­benzene, are almost planar, making an angle of 8.54 (11)°. The lengths of the C=C [1.349 (3) Å], C=N [1.313 (2) Å], N—N [1.351 (2) Å] and C=O [1.237 (2) Å] bonds are comparable with values published for other pyridazinones (see the Database survey section). Three intra­mol­ecular hydrogen bonds are observed, N2—H2C⋯O2, O2—H2A⋯Cl2 and O2—H2B⋯O3 (Table 1).

Figure 1.

Figure 1

Perspective view and atom labelling of the mol­ecule. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cl2i 0.93 2.72 3.6387 (19) 168
C18—H18⋯Cl2ii 0.93 2.94 3.622 (2) 132
N3—H3⋯O2iii 0.80 (3) 2.35 (3) 2.965 (2) 135 (2)
N3—H3⋯O1iii 0.80 (3) 2.25 (3) 2.855 (2) 133 (3)
N2—H2C⋯O2 0.86 (2) 1.97 (2) 2.801 (2) 161 (2)
O2—H2A⋯Cl2 0.83 (2) 2.35 (2) 3.170 (2) 175 (3)
O2—H2B⋯O3 0.84 (2) 1.92 (2) 2.739 (3) 167 (3)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Supra­molecular features

The water mol­ecules and chloride anions are located in channels between the organic cations and are connected by O—H⋯O and O—H⋯Cl hydrogen bonds (Table 1) into chains, which are further connected via N—H⋯O and C—H⋯Cl hydrogen bonds into a three-dimensional supra­molecular architecture. Fig. 2 a shows a view of the hydrogen bonds along the b-axis direction. π–π inter­actions are present (Fig. 2 b) between the pyridazine rings [centroid–centroid distance = 3.4902 (12) Å], and also between the pyridine and benzene rings [3.7293 (13) and 3.8488 (13) Å], forming sheets.

Figure 2.

Figure 2

(a)View along the b axis of the unit cell showing the mol­ecular sheets. (b) π–π inter­actions.

Database survey

There are no direct precedents for the structure of the title compound in the crystallographic literature. A search of the Cambridge Structural Database (ConQuest version 2021.3.0; Groom et al., 2016) for the 2,3-di­hydro­pyridazin-4-yl moiety gave various hits, four of them for similar pyridazine compounds but with different substituents on the pyridazine ring: 5-(2-chloro­benz­yl)-6-methyl-3(2H)pyridazinone (ZAYJIS; Moreau et al., 1995), 2-{4-[(5-chloro- 1-benzo­furan-2-yl)meth­yl]-3-methyl-6- oxo-1,6-di­hydro­pyridazin-1-yl}acetate (XULSEE; Boukharsa et al., 2015) , 4-[3-(tri­fluoro­meth­yl)phen­yl]-5,6,7,8-tetra­hydro­cinnolin-3(2H)-one (GISZAK; Wang et al., 2008) and 5-(2-Chloro­benz­yl)-2-(2-hy­droxy­eth­yl)-6-methyl­pyridazin-3(2H)-one (IJEMOZ; Abourichaa et al., 2003). In ZAYJIS, the lengths of the C=C [1.343 (3) Å], C=N [1.301 (4) Å], N—N [1.357 (3) Å] and C=O [1.255 (3) Å] bonds in the pyridazinone ring are very similar to those in the title compound. In XULSEE, te Cl—C1 bond length is 1.742 (2) Å while in the pyridazine ring, the N1—N2 bond length is 1.365 (2) Å and O2=C2 is 1.228 (2) Å. In GISZAK, the N1—N2 bond is 1.343 (5) Å whereas the C8=O1 bond is 1.246 (5) Å. In IJEMOZ, the pyridazinone ring has a similar value for the N4—N5 bond of 1.367 (2) Å.

Hirshfeld surface analysis

To investigate the effect of the mol­ecular inter­actions on the crystal packing, the Hirshfeld surface (Fig. 3) and fingerprint plots of the organic cation were analysed (Turner et al., 2017). In Fig. 4 a, the circular depressions (deep red) on the Hirshfeld surface imply strong hydrogen-bonding inter­actions of types C—H⋯Cl, N—H⋯O, O—H⋯Cl and O—H⋯O. In the shape-index map (Fig. 4 b), the π–π inter­actions are indicated by the red and blue triangles. Fig. 4 c and Fig. 4 d show d i and d e surfaces and Fig. 4 e and 4f the curvedness and fragment path surfaces. Fig. 5 a shows the overall two-dimensional fingerprint plot. The fingerprint plot delineated into H⋯H contacts (33.0% contribution, Fig. 5 b) has a point with the tip at d e + d i = 2.05 Å. The pair of wings in the fingerprint plot defined into H⋯C/C⋯H contacts (19.3 percent contribution to the HS), Fig.5c, has a pair of thin edges at d e + d i ∼2.99 Å while the pair of wings for the H⋯Cl/Cl⋯H contacts (15.9% contribution, Fig. 5 d) are seen as two spikes with the points at d e + d i = 2.97 Å and d e + d i = 2.41 Å. The fingerprint plot for H⋯O/O⋯H contacts (11.5% contribution, Fig. 5 e) has two spikes with the tips at d e + d i = 2.11 Å and d e + d i = 1.83 Å. As seen in Fig. 5 f the C⋯C contacts (7.4%) have an arrow-shaped distribution of points with tips at d e + d i = 3.37 Å. The contributions of the N⋯H/H⋯N contacts to the Hirshfeld surface (5.8%) are less important (Fig. 5 g). Fig. 6 shows a pie chart of all inter­actions with their percentage contributions.

Figure 3.

Figure 3

Inter­molecular inter­actions with d norm surface.

Figure 4.

Figure 4

Graphical depictions of the mol­ecular Hirshfeld surfaces; (a) d norm, (b)shape-index, (c) d i, (d) d e,(e) curvedness and (f) fragment-path.

Figure 5.

Figure 5

Fingerprint plots of the inter­actions involving the organic cation. (a) All contributions and decomposed into the main contributions: (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Cl/Cl⋯H, (e) H⋯O/O⋯H, (f) C⋯C and (g) N⋯H/H⋯N inter­actions

Figure 6.

Figure 6

All inter­actions with percentage contributions.

Synthesis and crystallization

The title compound was synthesized according to a previously published procedure (Daoui et al., 2019, 2021). To a solution of (E)-6-(4-chloro­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one (0.23 g, 1 mmol) and nicotinaldehyde (0.107 g, 1 mmol) in 30 ml of ethanol, sodium ethano­ate (0.23 g, 2.8 mmol) was added. The mixture was refluxed for 3 h. The reaction mixture was cooled, diluted with cold water and acidified with concentrated hydro­chloric acid. The precipitate was filtered, washed with water, dried and recrystallized from ethanol. White single crystals were obtained by slow evaporation at room temperature, yield 86%; m.p. 453 K; FT–IR (KBr): ν 3322 (NH), 1651 (C=O), 1584 cm−1 (C=N); 1H NMR (300 MHz, DMSO-d 6) δ 13.20 (s, 1H, H-pyrid­yl) , 8.98 (d, J = 1.8 Hz, 1H, H-pyrid­yl), 8.83 (d, J = 5.6 Hz, 1H, H-pyrid­yl), 8.57 (dt, J = 8.1, 1.8 Hz, 1H, H-pyrid­yl), 8.05 (s, 1H, H-pyridazinone) 8.02 (dd, J = 8.1, 5.6 Hz, 1H, H-pyrid­yl), 7.65 (d, J = 8.4 Hz, 2H, H1, H-Ar), 7.45 (d, J = 8.4 Hz, 2H, H 4, H-Ar), 7.36 (d, J = 16.7 Hz, 1H, CH=CH), 7.08 (,d J = 16.7 Hz, 1H, CH=CH), 4.09 ppm (s, 2H, CH2); 13C NMR (75 MHz, DMSO-d 6) δ 160.43, 145.98, 143.89, 141.87, 140.05, 139.25, 137.97, 134.90, 132.84,130.85, 128.82, 128.62, 128.54, 126.80, 125.08, 32.33 ppm. ESI-MS: m/z = 324.08 [M+H]+.

Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and thereafter treated as riding. A torsional parameter was refined for the methyl group. The positions of N- and O-bound H atoms were refined freely (distances are in Table 1). For all H atoms, U iso(H) = 1.2 U eq(C,N,O).

Table 2. Experimental details.

Crystal data
Chemical formula C18H15ClN3O+·Cl·2H2O
M r 396.26
Crystal system, space group Monoclinic, I2/a
Temperature (K) 296
a, b, c (Å) 19.6562 (14), 7.5587 (3), 26.4903 (16)
β (°) 109.762 (5)
V3) 3704.0 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.68 × 0.41 × 0.16
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Numerical (X-RED32; Stoe & Cie, 2002)
T min, T max 0.818, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 13762, 5273, 3083
R int 0.064
(sin θ/λ)max−1) 0.702
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.050, 0.142, 0.98
No. of reflections 5273
No. of parameters 265
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.43

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXT2018/3 (Sheldrick, 2015a ), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2020), WinGX (Farrugia, 2012), SHELXL2018/3 (Sheldrick, 2015b ), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022003346/jq2014sup1.cif

e-78-00458-sup1.cif (470.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022003346/jq2014Isup2.hkl

e-78-00458-Isup2.hkl (420KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022003346/jq2014Isup3.cml

CCDC reference: 2161716

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer. The authors’ contributions are as follows. Conceptualization, SD, EBÇ, ND, and ES; methodology, KK, EBÇ, and ND; investigation, NB and ND; writing (original draft), EBÇ and SD; writing (review and editing of the manuscript), SD, NB, ES, KK and EBÇ; visualization, EBÇ, and KK; funding acquisition, ND; resources, ND and KK; supervision, SD and NB.

supplementary crystallographic information

Crystal data

C18H15ClN3O+·Cl·2H2O F(000) = 1648
Mr = 396.26 Dx = 1.421 Mg m3
Monoclinic, I2/a Mo Kα radiation, λ = 0.71073 Å
a = 19.6562 (14) Å Cell parameters from 18653 reflections
b = 7.5587 (3) Å θ = 1.6–30.3°
c = 26.4903 (16) Å µ = 0.37 mm1
β = 109.762 (5)° T = 296 K
V = 3704.0 (4) Å3 Prism, colorless
Z = 8 0.68 × 0.41 × 0.16 mm

Data collection

Stoe IPDS 2 diffractometer 5273 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3083 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.064
Detector resolution: 6.67 pixels mm-1 θmax = 29.9°, θmin = 1.6°
rotation method scans h = −21→27
Absorption correction: numerical (X-RED32; Stoe & Cie, 2002) k = −8→10
Tmin = 0.818, Tmax = 0.961 l = −36→36
13762 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: mixed
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0709P)2] where P = (Fo2 + 2Fc2)/3
5273 reflections (Δ/σ)max < 0.001
265 parameters Δρmax = 0.26 e Å3
2 restraints Δρmin = −0.43 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 0.43892 (4) 0.44826 (8) 0.29544 (2) 0.06204 (18)
Cl1 0.16095 (4) 0.93975 (11) 0.67565 (3) 0.0831 (2)
O2 0.51631 (9) 0.7860 (3) 0.36086 (6) 0.0569 (4)
O1 0.63332 (8) 0.6580 (2) 0.47656 (6) 0.0603 (4)
N2 0.52423 (9) 0.7727 (2) 0.46837 (7) 0.0440 (4)
N1 0.46811 (9) 0.8166 (2) 0.48443 (6) 0.0437 (4)
O3 0.47043 (12) 1.0366 (3) 0.28189 (9) 0.0724 (5)
N3 0.83161 (10) 0.6802 (3) 0.61940 (8) 0.0521 (4)
C11 0.58620 (10) 0.6148 (3) 0.54755 (7) 0.0414 (4)
C9 0.47235 (10) 0.7645 (3) 0.53269 (7) 0.0427 (4)
C12 0.58492 (10) 0.6822 (3) 0.49587 (7) 0.0434 (4)
C15 0.71539 (10) 0.5767 (3) 0.61025 (7) 0.0420 (4)
C6 0.34431 (11) 0.8182 (3) 0.61458 (8) 0.0470 (5)
C10 0.53148 (11) 0.6600 (3) 0.56490 (7) 0.0441 (4)
H10 0.5323 0.6223 0.5985 0.053*
C8 0.41189 (11) 0.8140 (3) 0.54971 (8) 0.0477 (5)
H8 0.3747 0.8785 0.5256 0.057*
C7 0.40518 (11) 0.7752 (3) 0.59642 (8) 0.0481 (5)
H7 0.4434 0.7136 0.6206 0.058*
C14 0.76951 (11) 0.6075 (3) 0.58944 (8) 0.0479 (5)
H14 0.7626 0.5772 0.5540 0.057*
C13 0.64570 (11) 0.4898 (3) 0.57732 (8) 0.0496 (5)
H13A 0.6554 0.4116 0.5515 0.060*
H13B 0.6288 0.4173 0.6009 0.060*
C5 0.34973 (12) 0.7804 (3) 0.66698 (9) 0.0540 (5)
H5 0.3919 0.7288 0.6898 0.065*
C16 0.72876 (12) 0.6223 (3) 0.66349 (8) 0.0514 (5)
H16 0.6936 0.6025 0.6792 0.062*
C18 0.84516 (12) 0.7257 (3) 0.67006 (9) 0.0577 (5)
H18 0.8892 0.7768 0.6897 0.069*
C3 0.23208 (13) 0.8927 (3) 0.65221 (9) 0.0566 (6)
C2 0.22442 (12) 0.9330 (3) 0.60014 (9) 0.0583 (6)
H2 0.1820 0.9840 0.5776 0.070*
C1 0.28082 (12) 0.8966 (3) 0.58179 (9) 0.0561 (5)
H1 0.2762 0.9252 0.5466 0.067*
C17 0.79392 (13) 0.6969 (3) 0.69313 (9) 0.0593 (6)
H17 0.8029 0.7274 0.7288 0.071*
C4 0.29405 (13) 0.8174 (3) 0.68616 (9) 0.0600 (6)
H4 0.2986 0.7917 0.7215 0.072*
H3 0.8616 (16) 0.701 (4) 0.6061 (11) 0.070 (8)*
H2C 0.5201 (13) 0.802 (3) 0.4362 (10) 0.053 (6)*
H2A 0.4937 (17) 0.700 (3) 0.3444 (12) 0.094 (11)*
H2B 0.5030 (16) 0.874 (3) 0.3409 (10) 0.079 (9)*
H3A 0.495 (3) 1.018 (6) 0.2630 (17) 0.127 (16)*
H3B 0.466 (2) 1.141 (6) 0.2847 (14) 0.095 (13)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0694 (4) 0.0648 (4) 0.0496 (3) 0.0006 (3) 0.0170 (2) 0.0021 (2)
Cl1 0.0642 (4) 0.1042 (6) 0.0982 (5) −0.0103 (4) 0.0502 (4) −0.0206 (4)
O2 0.0539 (9) 0.0660 (12) 0.0463 (8) 0.0028 (9) 0.0111 (7) 0.0035 (8)
O1 0.0471 (8) 0.0848 (12) 0.0534 (8) 0.0146 (8) 0.0229 (7) 0.0071 (8)
N2 0.0415 (8) 0.0494 (10) 0.0429 (8) 0.0012 (8) 0.0168 (7) 0.0023 (7)
N1 0.0375 (8) 0.0469 (10) 0.0463 (8) 0.0001 (7) 0.0138 (7) 0.0001 (7)
O3 0.0801 (14) 0.0676 (14) 0.0748 (12) 0.0046 (11) 0.0331 (10) 0.0102 (10)
N3 0.0397 (9) 0.0596 (12) 0.0591 (10) 0.0003 (9) 0.0195 (8) 0.0078 (8)
C11 0.0363 (9) 0.0416 (10) 0.0427 (9) −0.0032 (8) 0.0089 (7) −0.0017 (7)
C9 0.0394 (9) 0.0448 (11) 0.0431 (9) −0.0026 (9) 0.0128 (7) −0.0010 (8)
C12 0.0385 (9) 0.0455 (11) 0.0454 (9) −0.0018 (8) 0.0130 (8) −0.0034 (8)
C15 0.0373 (9) 0.0417 (11) 0.0445 (9) 0.0049 (8) 0.0107 (7) 0.0040 (7)
C6 0.0431 (10) 0.0513 (12) 0.0468 (10) −0.0051 (9) 0.0153 (8) −0.0065 (8)
C10 0.0424 (10) 0.0486 (12) 0.0396 (9) −0.0033 (9) 0.0116 (8) 0.0009 (8)
C8 0.0402 (10) 0.0529 (12) 0.0479 (10) 0.0024 (9) 0.0123 (8) −0.0003 (8)
C7 0.0390 (10) 0.0570 (13) 0.0463 (10) 0.0018 (9) 0.0119 (8) −0.0015 (8)
C14 0.0458 (11) 0.0560 (12) 0.0423 (9) 0.0039 (10) 0.0154 (8) 0.0037 (8)
C13 0.0397 (10) 0.0481 (12) 0.0552 (10) 0.0008 (9) 0.0085 (9) 0.0019 (9)
C5 0.0495 (11) 0.0632 (14) 0.0496 (11) −0.0041 (11) 0.0171 (9) −0.0003 (9)
C16 0.0483 (11) 0.0615 (13) 0.0473 (10) 0.0002 (10) 0.0200 (9) 0.0003 (9)
C18 0.0437 (11) 0.0615 (14) 0.0594 (12) −0.0045 (10) 0.0062 (9) 0.0012 (10)
C3 0.0494 (11) 0.0620 (14) 0.0662 (13) −0.0148 (11) 0.0297 (10) −0.0187 (10)
C2 0.0414 (11) 0.0720 (16) 0.0589 (12) −0.0006 (11) 0.0133 (9) −0.0128 (11)
C1 0.0500 (11) 0.0731 (15) 0.0453 (10) 0.0025 (11) 0.0163 (9) −0.0048 (10)
C17 0.0588 (13) 0.0703 (16) 0.0449 (10) −0.0028 (12) 0.0125 (10) −0.0049 (10)
C4 0.0611 (14) 0.0736 (16) 0.0527 (12) −0.0123 (12) 0.0290 (11) −0.0046 (10)

Geometric parameters (Å, º)

Cl1—C3 1.748 (2) C6—C1 1.389 (3)
O2—H2A 0.825 (18) C6—C7 1.469 (3)
O2—H2B 0.837 (18) C10—H10 0.9300
O1—C12 1.237 (2) C8—C7 1.321 (3)
N2—N1 1.351 (2) C8—H8 0.9300
N2—C12 1.354 (3) C7—H7 0.9300
N2—H2C 0.86 (2) C14—H14 0.9300
N1—C9 1.313 (2) C13—H13A 0.9700
O3—H3A 0.81 (5) C13—H13B 0.9700
O3—H3B 0.80 (4) C5—C4 1.382 (3)
N3—C18 1.322 (3) C5—H5 0.9300
N3—C14 1.329 (3) C16—C17 1.376 (3)
N3—H3 0.80 (3) C16—H16 0.9300
C11—C10 1.349 (3) C18—C17 1.361 (3)
C11—C12 1.453 (3) C18—H18 0.9300
C11—C13 1.503 (3) C3—C4 1.369 (4)
C9—C10 1.426 (3) C3—C2 1.370 (3)
C9—C8 1.455 (3) C2—C1 1.380 (3)
C15—C14 1.373 (3) C2—H2 0.9300
C15—C16 1.388 (3) C1—H1 0.9300
C15—C13 1.504 (3) C17—H17 0.9300
C6—C5 1.386 (3) C4—H4 0.9300
H2A—O2—H2B 107 (3) N3—C14—C15 120.65 (18)
N1—N2—C12 128.25 (16) N3—C14—H14 119.7
N1—N2—H2C 116.0 (16) C15—C14—H14 119.7
C12—N2—H2C 115.7 (16) C11—C13—C15 115.12 (17)
C9—N1—N2 116.31 (16) C11—C13—H13A 108.5
H3A—O3—H3B 109 (4) C15—C13—H13A 108.5
C18—N3—C14 122.87 (19) C11—C13—H13B 108.5
C18—N3—H3 118 (2) C15—C13—H13B 108.5
C14—N3—H3 119 (2) H13A—C13—H13B 107.5
C10—C11—C12 118.06 (18) C4—C5—C6 121.6 (2)
C10—C11—C13 123.32 (18) C4—C5—H5 119.2
C12—C11—C13 118.51 (17) C6—C5—H5 119.2
N1—C9—C10 121.28 (17) C17—C16—C15 120.08 (19)
N1—C9—C8 115.79 (17) C17—C16—H16 120.0
C10—C9—C8 122.88 (17) C15—C16—H16 120.0
O1—C12—N2 120.86 (17) N3—C18—C17 119.2 (2)
O1—C12—C11 124.57 (18) N3—C18—H18 120.4
N2—C12—C11 114.55 (16) C17—C18—H18 120.4
C14—C15—C16 117.37 (19) C4—C3—C2 121.6 (2)
C14—C15—C13 121.23 (17) C4—C3—Cl1 119.49 (17)
C16—C15—C13 121.36 (18) C2—C3—Cl1 118.91 (19)
C5—C6—C1 117.58 (18) C3—C2—C1 118.8 (2)
C5—C6—C7 119.16 (19) C3—C2—H2 120.6
C1—C6—C7 123.26 (18) C1—C2—H2 120.6
C11—C10—C9 121.28 (17) C2—C1—C6 121.6 (2)
C11—C10—H10 119.4 C2—C1—H1 119.2
C9—C10—H10 119.4 C6—C1—H1 119.2
C7—C8—C9 125.74 (19) C18—C17—C16 119.8 (2)
C7—C8—H8 117.1 C18—C17—H17 120.1
C9—C8—H8 117.1 C16—C17—H17 120.1
C8—C7—C6 127.5 (2) C3—C4—C5 118.8 (2)
C8—C7—H7 116.3 C3—C4—H4 120.6
C6—C7—H7 116.3 C5—C4—H4 120.6
C12—N2—N1—C9 −0.4 (3) C13—C15—C14—N3 −178.22 (19)
N2—N1—C9—C10 −3.0 (3) C10—C11—C13—C15 −100.2 (2)
N2—N1—C9—C8 179.47 (17) C12—C11—C13—C15 83.7 (2)
N1—N2—C12—O1 −177.03 (19) C14—C15—C13—C11 −92.5 (2)
N1—N2—C12—C11 4.6 (3) C16—C15—C13—C11 90.2 (2)
C10—C11—C12—O1 176.3 (2) C1—C6—C5—C4 0.5 (3)
C13—C11—C12—O1 −7.4 (3) C7—C6—C5—C4 −179.8 (2)
C10—C11—C12—N2 −5.4 (3) C14—C15—C16—C17 0.6 (3)
C13—C11—C12—N2 170.88 (18) C13—C15—C16—C17 178.0 (2)
C12—C11—C10—C9 2.6 (3) C14—N3—C18—C17 0.3 (4)
C13—C11—C10—C9 −173.49 (19) C4—C3—C2—C1 0.0 (4)
N1—C9—C10—C11 1.8 (3) Cl1—C3—C2—C1 179.66 (18)
C8—C9—C10—C11 179.15 (19) C3—C2—C1—C6 0.9 (4)
N1—C9—C8—C7 179.9 (2) C5—C6—C1—C2 −1.1 (3)
C10—C9—C8—C7 2.5 (3) C7—C6—C1—C2 179.2 (2)
C9—C8—C7—C6 −178.2 (2) N3—C18—C17—C16 −0.5 (4)
C5—C6—C7—C8 −174.2 (2) C15—C16—C17—C18 0.0 (4)
C1—C6—C7—C8 5.4 (4) C2—C3—C4—C5 −0.5 (4)
C18—N3—C14—C15 0.3 (3) Cl1—C3—C4—C5 179.77 (19)
C16—C15—C14—N3 −0.8 (3) C6—C5—C4—C3 0.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10···Cl2i 0.93 2.72 3.6387 (19) 168
C18—H18···Cl2ii 0.93 2.94 3.622 (2) 132
N3—H3···O2iii 0.80 (3) 2.35 (3) 2.965 (2) 135 (2)
N3—H3···O1iii 0.80 (3) 2.25 (3) 2.855 (2) 133 (3)
N2—H2C···O2 0.86 (2) 1.97 (2) 2.801 (2) 161 (2)
O2—H2A···Cl2 0.83 (2) 2.35 (2) 3.170 (2) 175 (3)
O2—H2B···O3 0.84 (2) 1.92 (2) 2.739 (3) 167 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) −x+3/2, y, −z+1.

Funding Statement

This work was funded by Funding for this research was provided by: Ondokuz May?is University under Project No. PYO.FEN.1906.19.001.

References

  1. Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041–o1042.
  2. Abu-Hashem, A. A., Fathy, U. & Gouda, M. A. (2020). J. Heterocycl. Chem. 57, 3461–3474.
  3. Bahou, C., Szijj, P. A., Spears, R. J., Wall, A., Javid, F., Sattikar, A., Love, E. A., Baker, J. R. & Chudasama, V. (2021). Bioconjugate Chem. 32, 672–679. [DOI] [PMC free article] [PubMed]
  4. Boukharsa, Y., El Ammari, L., Taoufik, J., Saadi, M. & Ansar, M. (2015). Acta Cryst. E71, o291–o292. [DOI] [PMC free article] [PubMed]
  5. Daoui, S., Baydere, C., El Kalai, F., Saddik, R., Dege, N., Karrouchi, K. & Benchat, N. (2019). Acta Cryst. E75, 1734–1737. [DOI] [PMC free article] [PubMed]
  6. Daoui, S., Cinar, E. B., Dege, N., Chelfi, T., El Kalai, F., Abudunia, A., Karrouchi, K. & Benchat, N. (2021). Acta Cryst. E77, 23–27. [DOI] [PMC free article] [PubMed]
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Khadiria, A., Saddik, R., Bekkouchea, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564.
  11. Knall, A. C., Rabensteiner, S., Hoefler, S. F., Reinfelds, M., Hobisch, M., Ehmann, H. M. A., Pastukhova, N., Pavlica, E., Bratina, G., Honzu, I., Wen, S., Yang, R., Trimmel, G. & Rath, T. (2021). New J. Chem. 45, 1001–1009.
  12. Kung, Y. J., Chung, H. A., Kim, J. J. & Yoon, Y. J. (2002). Synthesis, 6, 733–738.
  13. Li, M., Yuan, Y. & Chen, Y. (2018). ACS Appl. Mater. Interfaces. 10, 1237–1243. [DOI] [PubMed]
  14. Liu, S., Zhang, X., Ou, C., Wang, S., Yang, X., Zhou, X., Mi, B., Cao, D. & Gao, Z. (2017). ACS Appl. Mater. Interfaces. 9, 26242–26251. [DOI] [PubMed]
  15. Liu, X. & Chen, W. (2012). Organometallics, 31, 6614–6622.
  16. Llona-Minguez, S., Höglund, A., Ghassemian, A., Desroses, M., Calderón, J. M., Valerie, N. C. K., Witta, E., Almlöf, I., Koolmeister, T., Mateus, A., Cazares-Körner, C., Sanjiv, K., Homan, E., Loseva, O., Baranczewski, P., Darabi, M., Mehdizadeh, A., Fayezi, S., Jemth, A. S., Berglund, U. W., Sigmundsson, K., Lundbäck, T., Jensen, A. J., Artursson, P., Scobie, M. & Helleday, T. J. (2017). Med. Chem. 60, 4279–4292.
  17. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  18. Moreau, S., Metin, J., Coudert, P. & Couquelet, J. (1995). Acta Cryst. C51, 1834–1836.
  19. Mousavi, H. (2022). J. Mol. Struct. 1251, 131742–131771.
  20. Neumann, K., Gambardella, A., Lilienkampf, A. & Bradley, M. (2018). Chem. Sci. 9, 7198–7203. [DOI] [PMC free article] [PubMed]
  21. Peng, S., Lv, J., Liu, G., Fan, C. & Pu, S. (2020). Tetrahedron, 76, 131618–131627.
  22. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  23. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  24. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  25. Stoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  26. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.5. University of Western Australia. http://hirshfeldsurface.net.
  27. Wang, X., Zou, X.-M., Zhu, Y.-Q., Hu, X.-H. & Yang, H.-Z. (2008). Acta Cryst. E64, o464. [DOI] [PMC free article] [PubMed]
  28. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022003346/jq2014sup1.cif

e-78-00458-sup1.cif (470.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022003346/jq2014Isup2.hkl

e-78-00458-Isup2.hkl (420KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022003346/jq2014Isup3.cml

CCDC reference: 2161716

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES