Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Mar 17;78(Pt 4):404–408. doi: 10.1107/S205698902200278X

Crystal structure and Hirshfeld surface analysis of (E)-1-[2,2-di­bromo-1-(2-nitro­phen­yl)ethen­yl]-2-(4-fluoro­phen­yl)diazene

Sevim Türktekin Çelikesir a, Mehmet Akkurt a, Namiq Q Shikhaliyev b, Naila A Mammadova b, Gulnar T Suleymanova b, Victor N Khrustalev c,d, Ajaya Bhattarai e,*
PMCID: PMC8983971  PMID: 35492284

The packing of the title compound features C—H⋯O hydrogen bonds, C—F⋯π inter­actions, aromatic π–π stacking and short Br⋯O contacts.

Keywords: crystal structure, C—F⋯π inter­action, π–π stacking inter­action, Hirshfeld surface analysis

Abstract

In the title compound, C14H8Br2FN3O2, the nitro-substituted benzene ring and the 4-fluoro­phenyl ring form a dihedral angle of 65.73 (7)°. In the crystal, mol­ecules are linked into chains by C—H⋯O hydrogen bonds running parallel to the c-axis direction. The crystal packing is consolidated by C—F⋯π inter­actions and π–π stacking inter­actions, and short Br⋯O [2.9828 (13) Å] contacts are observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (17.4%), O⋯H/H⋯O (16.3%), Br⋯H/H⋯Br (15.5%), Br⋯C/C⋯Br (10.1%) and F⋯H/H⋯F (8.1%) contacts.

Chemical context

Azo dyes are chemical compounds with the general formula R—N=N—R′, where R and R′ can be either aryl, hetrocycle or alkyl functional groups. They find many applications such as mol­ecular switches, optical data storage, anti­microbial agent, colour-changing materials, non-linear optics, mol­ecular recognition, dye-sensitized solar cells, liquid crystals, catalysis, etc. (see, for example, Kopylovich et al., 2012; MacLeod et al., 2012; Viswanathan et al., 2019). Both E/Z isomerization and azo-to-hydrazo tautomerization of azo dyes is an important feature in the synthesis and design of new functional materials (Mahmudov et al., 2012, 2020; Mizar et al., 2012). On the other hand, the attachment of non-covalent bond-donor or acceptor centres to the azo dyes can be used as a synthetic strategy for the improvement of the functional properties of this class of organic compounds (Gurbanov et al., 2020a ,b ). graphic file with name e-78-00404-scheme1.jpg

As part of our ongoing work in this area we have attached –F, –Br and –NO2 functional groups and aryl rings to the —N=N— moiety, leading to the title compound, C14H8Br2FN3O2, and determined its crystal structure.

Structural commentary

As shown in Fig. 1, the mol­ecular conformation of the title compound is not planar, the nitro-substituted benzene ring and the 4-fluoro­phenyl ring forming a dihedral angle of 65.73 (7)°. There is a slight twist about the C1=C2 double bond with the dihedral angle between C1/Br1/Br2 and C2/C3/N2 being 3.35 (15)°, perhaps to minimize steric repulsion between Br2 and H8. Considered together, the N3/N2/C2/C1/Br1/Br2 moiety subtends dihedral angles of 70.40 (7) and 14.14 (7)° with the C3–C8 and C9–C14 rings, respectively. In the mol­ecule, the aromatic ring and olefin synthon adopt a trans-configuration with respect to the N=N double bond and are almost coplanar with a C2—N2=N3—C9 torsion angle of −178.50 (11)°. All of the other bond lengths and angles in the title compound are similar to those in the related azo compounds reported in the Database survey.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into chains propagating parallel to the c axis (Table 1; Fig. 2). The crystal packing is consolidated by weak C—F⋯π [F1⋯Cg1(x, 1 − y, − Inline graphic  + z) = 3.4095 (12) Å; C—F⋯Cg1 = 136.95 (9)°] inter­actions and weak aromatic π–π stacking [Cg2⋯Cg2(1 − x, y, Inline graphic  − z) = 3.9694 (9) Å], where Cg1 and Cg2 are the centroids of the C3–C8 and C9–C14 rings, respectively (Fig. 2). In addition, short bromine–oxygen contacts [Br2⋯O2( Inline graphic  − x, Inline graphic  + y, z) = 2.9828 (13) Å; van der Waals contact distance = 3.37 Å] are observed.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.51 3.3244 (18) 144

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

View of the C—H⋯O, C—F⋯π and π–π stacking inter­actions in the title compound.

Hirshfeld surface analysis

CrystalExplorer17 (Turner et al., 2017) was used to calculate the Hirshfeld surfaces for the title compound and generate the two-dimensional fingerprint plots. On the d norm surface, red, white, and blue regions indicate contacts with distances shorter, longer, and roughly equal to the van der Waals radii for the title compound (Fig. 3, Tables 1 and 2).

Figure 3.

Figure 3

The three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.24 to 1.44 a.u.

Table 2. Summary of short inter­atomic contacts (Å) in the title salt.

Contact Distance Symmetry operation
H8⋯Br1 2.99 1 − x, y, Inline graphic  − z
O1⋯H11 2.68 Inline graphic  − x, Inline graphic  + y, z
Br1⋯Br2 3.6164 x, 2 − y, − Inline graphic  + z
H7⋯Br2 3.19 1 − x, 2 − y, 1 − z
H13⋯F1 2.82 1 − x, 1 − y, −z
F1⋯H10 2.67 x, 1 − y, − Inline graphic  + z
O1⋯H6 2.51 Inline graphic  − x, Inline graphic  − y, − Inline graphic  + z
O2⋯H8 2.77 Inline graphic  + x, Inline graphic  − y, 1 − z
H7⋯H6 2.47 1 − x, y, Inline graphic  − z

The overall two-dimensional fingerprint plot (Fig. 4 a) and those delineated into H⋯H, O⋯H/H⋯O, Br⋯H/H⋯Br, Br⋯C/C⋯Br and F⋯H/H⋯F contacts (McKinnon et al., 2007) are illustrated in Fig. 4 bf, respectively. The most important inter­action is H⋯H, contributing 17.4% to the overall surface, which is reflected in Fig. 4 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at d e = d i = 1.15 Å. The reciprocal O⋯H/H⋯O inter­actions appear as two symmetrical broad wings with d e + d i ≃ 2.40 Å and contribute 16.3% to the Hirshfeld surface (Fig. 4 c). In the Br⋯H/H⋯Br fingerprint plot, there are two symmetrical wings with d e + d i ≃ 2.85 Å and they contribute 15.5% to the Hirshfeld surface (Fig. 4 d). The pair of characteristic wings in the fingerprint plot delin­eated into Br⋯C/C⋯Br contacts (Fig. 8e; 10.1% contribution to the Hirshfeld surface), have the tips at d e + d i ≃ 3.80 Å, while for F⋯H/H⋯F contacts (Fig. 4 f; 8.1% contribution to the Hirshfeld surface), they have the tips at d e + d i ≃ 2.60 Å. The remaining contributions from the other different inter­atomic contacts to the Hirshfeld surfaces are listed in Table 3. The dominance of H-atom contacts suggest that van der Waals inter­actions play the major role in establishing the crystal packing for the title compound (Hathwar et al., 2015).

Figure 4.

Figure 4

The full two-dimensional fingerprint plot (a) for the title compound and those delineated into (b) H⋯H (17.4%), (c) O⋯H/H⋯O (16.3%), (d) Br⋯H/H⋯Br (15.5%), (e) Br⋯C/C⋯Br (10.1%) and (f) F⋯H/H⋯F (8.1%) inter­actions.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt.

Contact Percentage contribution
H⋯H 17.4
O⋯H/H⋯O 16.3
Br⋯H/H⋯Br 15.5
Br.·C/C⋯Br 10.1
F⋯H/H⋯F 8.1
C⋯H/H⋯C 7.0
N⋯H/H⋯N 5.5
C⋯C 4.7
Br.·O/O⋯Br 4.2
F⋯C/C⋯F 3.5
Br⋯Br 3.1
N⋯C/C⋯N 1.4
Br⋯F/F⋯Br 1.1
N⋯N 0.9
O⋯C/C⋯O 0.1
F⋯O/O⋯F 0.6
F⋯N/N⋯F 0.5

Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene unit gave 26 hits. Seven compounds are closely related to the title compound, viz. CSD refcode GUPHIL (I) (Özkaraca et al., 2020), HONBUK (II) (Akkurt et al., 2019), HONBOE (III) (Akkurt et al., 2019), HODQAV (IV) (Shikhaliyev et al., 2019), XIZREG (V) (Atioğlu et al., 2019), LEQXOX (VI) (Shikhaliyev et al., 2018) and LEQXIR (VII) (Shikhaliyev et al., 2018).

In the crystal of (I), mol­ecules are linked into inversion dimers via short halogen–halogen contacts [Cl1⋯Cl1 = 3.3763 (9) Å C16—Cl1⋯Cl1 = 141.47 (7)°] compared to the van der Waals radius sum of 3.50 Å for two chlorine atoms. No other directional contacts could be identified and the shortest aromatic-ring-centroid separation is greater than 5.25 Å. In the crystals of (II) and (III), the aromatic rings form dihedral angles of 64.1 (2) and 60.9 (2)°, respectively. Mol­ecules are linked through weak X⋯Cl contacts [X = Cl for (II) and Br for (III)], C—H⋯Cl and C—Cl⋯π inter­actions into sheets lying parallel to the ab plane. In the crystal of (IV), the planes of the benzene rings make a dihedral angle of 56.13 (13)°. Mol­ecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In (V), the benzene rings form a dihedral angle of 63.29 (8)°. Mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In the crystals of (VI) and (VII), the dihedral angles between the aromatic rings are 60.31 (14) and 56.18 (12) °, respectively. In (VI) C—H⋯N and short Cl⋯Cl contacts are observed and in (VII), C—H⋯N and C—H⋯O hydrogen bonds and short Cl⋯O contacts occur.

Synthesis and crystallization

A 20 ml screw-neck vial was charged with DMSO (10 ml), (E)-1-(4-fluoro­phen­yl)-2-(2-nitro­benzyl­idene)hydrazine (1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1–3h (until TLC analysis showed complete consumption of corresponding Schiff base) the reaction mixture was poured into a ∼0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with di­chloro­methane (3 × 20 ml). The combined organic phase was washed with water (3 × 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Light-orange solid (52%); m.p. 377 K. Analysis calculated for C14H8Br2FN3O2 (M = 429.04): C 39.19, H 1.88, N 9.79; found: C 39.14, H 1.87, N 9.73%. 1H NMR (300MHz, CDCl3) δ 7.86–7.14 (8H, Ar–H). 13C NMR (75MHz, CDCl3) δ 165.02, 163.23, 163.01, 149.72, 133.01, 132.10, 129.70, 124.98, 124.87, 124.80, 124.29, 116.07, 115.91, 86.88. ESI–MS: m/z: 430.02 [M + H]+.

Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically [C—H = 0.95 Å] and refined using a riding model with U iso(H) = 1.2U eq(C).

Table 4. Experimental details.

Crystal data
Chemical formula C14H8Br2FN3O2
M r 429.05
Crystal system, space group Orthorhombic, P b c n
Temperature (K) 100
a, b, c (Å) 14.8700 (4), 15.2915 (4), 13.1030 (4)
V3) 2979.42 (14)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.46
Crystal size (mm) 0.59 × 0.26 × 0.20
 
Data collection
Diffractometer Bruker AXS D8 QUEST Photon III detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.047, 0.115
No. of measured, independent and observed [I > 2σ(I)] reflections 87568, 5429, 4773
R int 0.041
(sin θ/λ)max−1) 0.758
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.023, 0.057, 1.06
No. of reflections 5429
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.83, −0.46

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902200278X/hb8012sup1.cif

e-78-00404-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902200278X/hb8012Isup2.hkl

e-78-00404-Isup2.hkl (432.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698902200278X/hb8012Isup3.cml

CCDC reference: 2158375

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, NAM and GTS; X-ray analysis, STÇ, VNK and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, NQS, NAM and GTS; supervision, NQS, MA and AB.

supplementary crystallographic information

Crystal data

C14H8Br2FN3O2 Dx = 1.913 Mg m3
Mr = 429.05 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbcn Cell parameters from 9970 reflections
a = 14.8700 (4) Å θ = 2.5–34.3°
b = 15.2915 (4) Å µ = 5.46 mm1
c = 13.1030 (4) Å T = 100 K
V = 2979.42 (14) Å3 Block, light orange
Z = 8 0.59 × 0.26 × 0.20 mm
F(000) = 1664

Data collection

Bruker AXS D8 QUEST Photon III detector diffractometer 5429 independent reflections
Radiation source: fine-focus sealed X-Ray tube 4773 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 7.31 pixels mm-1 θmax = 32.6°, θmin = 2.5°
φ and ω shutterless scans h = −22→22
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −23→23
Tmin = 0.047, Tmax = 0.115 l = −19→19
87568 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0274P)2 + 1.6564P] where P = (Fo2 + 2Fc2)/3
5429 reflections (Δ/σ)max = 0.005
199 parameters Δρmax = 0.83 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.62265 (2) 0.95963 (2) 0.16792 (2) 0.02193 (4)
Br2 0.64744 (2) 1.02154 (2) 0.39424 (2) 0.02154 (4)
F1 0.61074 (8) 0.42468 (7) 0.03550 (8) 0.0350 (2)
O1 0.79994 (8) 0.81157 (8) 0.37024 (8) 0.0279 (2)
O2 0.82768 (8) 0.70323 (8) 0.47212 (9) 0.0279 (2)
N1 0.78022 (8) 0.76388 (8) 0.44249 (9) 0.0204 (2)
N2 0.61421 (8) 0.77830 (8) 0.26409 (9) 0.0173 (2)
N3 0.61871 (8) 0.70235 (8) 0.30197 (9) 0.0180 (2)
C1 0.62788 (9) 0.92776 (9) 0.30578 (10) 0.0172 (2)
C2 0.62325 (9) 0.84437 (9) 0.33887 (9) 0.0163 (2)
C3 0.62473 (9) 0.82188 (9) 0.44946 (10) 0.0160 (2)
C4 0.69718 (9) 0.78201 (9) 0.49868 (10) 0.0167 (2)
C5 0.69526 (10) 0.75800 (9) 0.60064 (10) 0.0198 (2)
H5 0.745761 0.730610 0.631466 0.024*
C6 0.61793 (10) 0.77479 (10) 0.65687 (10) 0.0216 (3)
H6 0.615605 0.760257 0.727309 0.026*
C7 0.54428 (10) 0.81279 (10) 0.60985 (10) 0.0221 (3)
H7 0.491119 0.823434 0.648092 0.026*
C8 0.54741 (10) 0.83559 (9) 0.50689 (10) 0.0195 (2)
H8 0.495992 0.860845 0.475544 0.023*
C9 0.61222 (9) 0.63404 (9) 0.22921 (10) 0.0173 (2)
C10 0.62860 (10) 0.55039 (9) 0.26748 (11) 0.0214 (3)
H10 0.640277 0.542361 0.338142 0.026*
C11 0.62783 (11) 0.47892 (10) 0.20219 (13) 0.0253 (3)
H11 0.639299 0.421601 0.226931 0.030*
C12 0.60996 (11) 0.49353 (11) 0.10055 (12) 0.0245 (3)
C13 0.59060 (10) 0.57525 (10) 0.06081 (11) 0.0224 (3)
H13 0.577105 0.582364 −0.009565 0.027*
C14 0.59139 (10) 0.64622 (9) 0.12606 (10) 0.0194 (2)
H14 0.577851 0.703011 0.101002 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02940 (8) 0.02164 (7) 0.01475 (6) −0.00253 (5) −0.00260 (5) 0.00271 (5)
Br2 0.02785 (8) 0.01832 (7) 0.01843 (6) −0.00056 (5) 0.00111 (5) −0.00383 (5)
F1 0.0542 (7) 0.0220 (5) 0.0287 (5) 0.0035 (5) −0.0047 (4) −0.0101 (4)
O1 0.0232 (5) 0.0403 (6) 0.0201 (5) 0.0021 (5) 0.0046 (4) 0.0009 (4)
O2 0.0267 (5) 0.0279 (6) 0.0292 (6) 0.0120 (5) −0.0039 (4) −0.0073 (4)
N1 0.0184 (5) 0.0245 (6) 0.0183 (5) 0.0033 (5) −0.0014 (4) −0.0066 (4)
N2 0.0197 (5) 0.0170 (5) 0.0152 (5) 0.0005 (4) 0.0008 (4) −0.0012 (4)
N3 0.0200 (5) 0.0178 (5) 0.0161 (5) 0.0002 (4) 0.0002 (4) −0.0008 (4)
C1 0.0205 (6) 0.0179 (6) 0.0134 (5) 0.0009 (5) 0.0000 (4) −0.0017 (4)
C2 0.0170 (5) 0.0182 (6) 0.0136 (5) 0.0015 (5) 0.0003 (4) −0.0012 (4)
C3 0.0185 (6) 0.0154 (5) 0.0140 (5) 0.0012 (5) −0.0003 (4) −0.0006 (4)
C4 0.0181 (6) 0.0160 (5) 0.0161 (5) 0.0014 (5) −0.0004 (4) −0.0026 (4)
C5 0.0236 (6) 0.0192 (6) 0.0166 (5) 0.0031 (5) −0.0031 (5) −0.0001 (4)
C6 0.0278 (7) 0.0218 (6) 0.0151 (5) 0.0021 (5) 0.0006 (5) 0.0022 (5)
C7 0.0235 (7) 0.0262 (7) 0.0165 (6) 0.0037 (5) 0.0046 (5) 0.0027 (5)
C8 0.0192 (6) 0.0229 (6) 0.0162 (5) 0.0036 (5) 0.0011 (4) 0.0022 (5)
C9 0.0183 (6) 0.0173 (6) 0.0162 (5) 0.0002 (5) 0.0001 (4) −0.0007 (4)
C10 0.0258 (7) 0.0192 (6) 0.0191 (6) 0.0013 (5) −0.0022 (5) 0.0009 (5)
C11 0.0321 (8) 0.0180 (6) 0.0259 (7) 0.0029 (6) −0.0028 (6) −0.0009 (5)
C12 0.0289 (7) 0.0213 (6) 0.0232 (7) 0.0004 (6) −0.0013 (5) −0.0063 (5)
C13 0.0273 (7) 0.0225 (7) 0.0175 (6) −0.0003 (6) −0.0012 (5) −0.0027 (5)
C14 0.0224 (6) 0.0189 (6) 0.0168 (5) −0.0006 (5) 0.0001 (5) 0.0001 (4)

Geometric parameters (Å, º)

Br1—C1 1.8725 (13) C6—C7 1.384 (2)
Br2—C1 1.8667 (13) C6—H6 0.9500
F1—C12 1.3546 (17) C7—C8 1.3942 (18)
O1—N1 1.2304 (17) C7—H7 0.9500
O2—N1 1.2284 (16) C8—H8 0.9500
N1—C4 1.4641 (18) C9—C10 1.3953 (19)
N2—N3 1.2647 (16) C9—C14 1.3992 (19)
N2—C2 1.4138 (17) C10—C11 1.388 (2)
N3—C9 1.4175 (17) C10—H10 0.9500
C1—C2 1.3486 (19) C11—C12 1.376 (2)
C2—C3 1.4895 (18) C11—H11 0.9500
C3—C8 1.3900 (19) C12—C13 1.384 (2)
C3—C4 1.3958 (18) C13—C14 1.382 (2)
C4—C5 1.3859 (18) C13—H13 0.9500
C5—C6 1.390 (2) C14—H14 0.9500
C5—H5 0.9500
O2—N1—O1 123.62 (13) C6—C7—H7 119.7
O2—N1—C4 117.94 (13) C8—C7—H7 119.7
O1—N1—C4 118.41 (12) C3—C8—C7 120.92 (13)
N3—N2—C2 112.28 (11) C3—C8—H8 119.5
N2—N3—C9 114.15 (11) C7—C8—H8 119.5
C2—C1—Br2 122.32 (10) C10—C9—C14 120.52 (13)
C2—C1—Br1 123.65 (10) C10—C9—N3 114.96 (12)
Br2—C1—Br1 113.92 (7) C14—C9—N3 124.52 (12)
C1—C2—N2 117.24 (12) C11—C10—C9 119.93 (14)
C1—C2—C3 122.03 (12) C11—C10—H10 120.0
N2—C2—C3 120.71 (12) C9—C10—H10 120.0
C8—C3—C4 117.01 (12) C12—C11—C10 118.05 (14)
C8—C3—C2 118.66 (12) C12—C11—H11 121.0
C4—C3—C2 124.19 (12) C10—C11—H11 121.0
C5—C4—C3 123.04 (13) F1—C12—C11 118.75 (14)
C5—C4—N1 116.88 (12) F1—C12—C13 117.83 (13)
C3—C4—N1 120.08 (12) C11—C12—C13 123.42 (14)
C4—C5—C6 118.63 (13) C14—C13—C12 118.34 (13)
C4—C5—H5 120.7 C14—C13—H13 120.8
C6—C5—H5 120.7 C12—C13—H13 120.8
C7—C6—C5 119.75 (12) C13—C14—C9 119.68 (13)
C7—C6—H6 120.1 C13—C14—H14 120.2
C5—C6—H6 120.1 C9—C14—H14 120.2
C6—C7—C8 120.61 (13)
C2—N2—N3—C9 −178.50 (11) C3—C4—C5—C6 −0.4 (2)
Br2—C1—C2—N2 −175.87 (9) N1—C4—C5—C6 179.45 (13)
Br1—C1—C2—N2 0.19 (18) C4—C5—C6—C7 1.6 (2)
Br2—C1—C2—C3 5.92 (19) C5—C6—C7—C8 −1.0 (2)
Br1—C1—C2—C3 −178.02 (10) C4—C3—C8—C7 2.0 (2)
N3—N2—C2—C1 173.96 (13) C2—C3—C8—C7 177.74 (13)
N3—N2—C2—C3 −7.80 (18) C6—C7—C8—C3 −0.9 (2)
C1—C2—C3—C8 75.95 (18) N2—N3—C9—C10 172.10 (13)
N2—C2—C3—C8 −102.20 (16) N2—N3—C9—C14 −7.8 (2)
C1—C2—C3—C4 −108.63 (17) C14—C9—C10—C11 2.6 (2)
N2—C2—C3—C4 73.22 (18) N3—C9—C10—C11 −177.28 (14)
C8—C3—C4—C5 −1.4 (2) C9—C10—C11—C12 −0.5 (2)
C2—C3—C4—C5 −176.84 (13) C10—C11—C12—F1 178.69 (15)
C8—C3—C4—N1 178.78 (12) C10—C11—C12—C13 −1.7 (3)
C2—C3—C4—N1 3.3 (2) F1—C12—C13—C14 −178.71 (14)
O2—N1—C4—C5 26.58 (18) C11—C12—C13—C14 1.6 (2)
O1—N1—C4—C5 −151.37 (13) C12—C13—C14—C9 0.5 (2)
O2—N1—C4—C3 −153.54 (13) C10—C9—C14—C13 −2.6 (2)
O1—N1—C4—C3 28.51 (19) N3—C9—C14—C13 177.24 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1i 0.95 2.51 3.3244 (18) 144

Symmetry code: (i) −x+3/2, −y+3/2, z+1/2.

Funding Statement

This work was funded by Science Development Foundation of the President of Azerbaijan grant EIF-BGM-4-RFTF-1/2017-21/13/4.

References

  1. Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
  2. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
  3. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  7. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  8. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  9. Kopylovich, M. N., Mac Leod, T. C. O., Haukka, M., Amanullayeva, G. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). J. Inorg. Biochem. 115, 72–77. [DOI] [PubMed]
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. MacLeod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.
  12. Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.
  13. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
  14. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  15. Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
  16. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020). Acta Cryst. E76, 1251–1254. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  20. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  21. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  23. Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902200278X/hb8012sup1.cif

e-78-00404-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902200278X/hb8012Isup2.hkl

e-78-00404-Isup2.hkl (432.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698902200278X/hb8012Isup3.cml

CCDC reference: 2158375

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES