Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Mar 31;78(Pt 4):453–457. doi: 10.1107/S2056989022003450

Crystal structure and Hirshfeld surface analysis of 5-(5-phenyl-1,2-oxazol-3-yl)-1,3,4-thia­diazol-2-amine

Evgeniya V Nikitina a, Sevim Türktekin Çelikesir b, Mehmet Akkurt b, Sergey K Petkevich c, Ekaterina A Akishina c, Victor N Khrustalev a,d, Sixberth Mlowe e,*
PMCID: PMC8983972  PMID: 35492272

In the crystal, the mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds, forming double layers parallel to the (001) plane. The layers are connected by van der Waals inter­actions, generating a three-dimensional supra­molecular structure.

Keywords: crystal structure, hydrogen bonds, C—H⋯π inter­actions, π–π stacking inter­actions, Hirshfeld surface analysis

Abstract

The title compound, C11H8N4OS, crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, the N—H⋯N and C—H⋯N hydrogen bonds connect the mol­ecules, generating double layers parallel to the (001) plane. The layers are joined by C—H⋯π inter­actions to form a three-dimensional supra­molecular structure.

Chemical context

Compounds with the five-membered isoxazole, iso­thia­zole and 1,3,4-thia­diazole heterocycles possess high potential for biological activity and are privileged scaffolds for the development of pharmaceutical agents (Das & Chanda, 2021; Kletskov et al., 2020; Khalilullah et al., 2014; Yadigarov et al., 2009; Safavora et al., 2019; Zubkov et al., 2014). In particular, isoxazoles are able to enhance the action of ‘first-line’ anti­tumor substances, which makes it possible to reduce their therapeutic doses and thus reduce toxic side effects (Khalilov et al., 2021; Kulchitsky et al., 2012; Naghiyev et al., 2020). The combination of the pharmacophore fragments of isoxazole and thia­diazole in one mol­ecule increases the variability of its binding to the key sites of enzymes regulating the biological action. The presence of an amino group additionally increases the biopotential of the mol­ecule, and the introduction of an aromatic fragment makes it possible to implement binding with a biotarget by π-stacking (Shixaliyev et al., 2014, 2018; Mahmudov et al., 2011, 2013; Gurbanov et al., 2017, 2018a ,b ). To assess the biological potential of a mol­ecule in silico and the mol­ecular docking procedure, which is widely used for the development of new pharmaceuticals, information about the structures of promising mol­ecules is needed. All this initiated our research on the synthesis of 5-(5-phenyl­isoxazol-3-yl)-1,3,4-thia­diazol-2-amine (1) and the further determination of the accurate structure of its mol­ecule. The synthesis and structure of the compound has not published before. There are many approaches for building a thia­diazole heterocycle based on the use of carb­oxy­lic acids (Bhinge et al., 2015; Nayak et al., 2014), carbonyl chlorides (Sun et al., 2001; Kudelko et al., 2020), aldehydes (Shivakumara et al., 2019; Wang et al., 2019), etc. We chose here a method based on the transformation of carbo­nitriles (as shown in the scheme) as the shortest and most convenient way to achieve this purpose (Sakthivel et al., 2016; et al.; Abdelhamid et al., 2011). Its efficacy has recently been demonstrated by one of us (Petkevich et al., 2021). The synthetic procedure involves the inter­action of 5-phenyl­isoxazole-3-carbo­nitrile with thio­semicarbazide. The starting 5-phenyl­isoxazole-3-carbo­nitrile was obtained according to the previously described method (Kulchitsky et al., 2012; Bumagin et al., 2018). graphic file with name e-78-00453-scheme1.jpg

Structural commentary

The title compound 1 crystallizes in the ortho­rhom­bic space group Pca21, with two independent mol­ecules (I with S1 and II with S2) in the asymmetric unit (Fig. 1). The oxazole (O1/N2/C3/C4/C5 and O12/N13/C14/C15/C16) and thia­diazole (S1/N3/N4/C1/C2 and S2/N14/N15/C12/C13) rings are essentially planar and inclined to one another by 18.8 (3) and 14.6 (3)° in mol­ecules I and II, respectively. The phenyl rings (C6–C11 and C17–C22) make dihedral angles of 24.6 (3) and 26.8 (3)° with the oxazole rings in mol­ecules I and II, respectively. Fig. 2 shows the overlay of mol­ecules I and II in the asymmetric unit, with an r.m.s. deviation of 0.087 Å. The C—N bond distances to the amino N atom of 1.330 (6) and 1.328 (6) Å, respectively, in mol­ecules I and II indicate strong conjugation of the amino groups with the thia­diazole π-systems.

Figure 1.

Figure 1

View of the two independent mol­ecules, I and II, in the asymmetric unit of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.

Figure 2.

Figure 2

Overlay image of two independent mol­ecules in the asymmetric unit of the title compound.

Supra­molecular features

In the crystal, mol­ecules are linked by N—H⋯N and C—H⋯N hydrogen bonds (Table 1, Figs. 3 and 4), forming double layers of cross-linked mol­ecules parallel to the (001) plane. The mol­ecules within a layer are further linked by π–π stacking inter­actions between the thia­diazole rings [Cg1⋯Cg4(x, y, z) = 3.636 (3) Å, slippage = 1.283 Å, where Cg1 and Cg4 are the centroids of the rings S1/N3/N4/C1/C2 and S2/N14/N15/C12/C13, respectively]. The layers are linked by van der Waals inter­actions (Table 2), forming a three-dimensional supra­molecular structure (Fig. 5).

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 and Cg6 are the centroids of the S2/N14/N15/C12/C13 and C17–C22 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N14i 0.88 2.10 2.974 (6) 172
N1—H1B⋯N4ii 0.88 2.20 3.071 (5) 169
N12—H12A⋯N3iii 0.88 2.06 2.933 (6) 174
N12—H12B⋯N15iv 0.88 2.24 3.108 (5) 170
C4—H4⋯N2iv 0.95 2.56 3.363 (6) 142
C15—H15⋯N13ii 0.95 2.46 3.323 (6) 151
C8—H8⋯Cg6v 0.95 2.98 3.774 (6) 142
C22—H22⋯Cg4i 0.95 2.95 3.648 (6) 132

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Figure 3.

Figure 3

A view of the inter­molecular N—H⋯N and C—H⋯N inter­actions in the crystal structure of the title compound projected along the a axis.

Figure 4.

Figure 4

A view of the inter­molecular N—H⋯N and C—H⋯N inter­actions in the crystal structure of the title compound projected along the b axis.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
S1⋯H12B 3.10 Inline graphic  + x, 1 − y, z
N2⋯H4 2.56 Inline graphic  + x, 1 − y, z
N3⋯H12A 2.06 x, −1 + y, z
H1B⋯S2 3.09 Inline graphic  + x, −y, z
H1B⋯N4 2.20 Inline graphic  + x, −y, z
C2⋯N14 3.437 (7) x, y, z
C4⋯H10 3.05 x, −1 + y, z
C7⋯H20 2.91 1 − x, −y, Inline graphic  + z
H10⋯H19 2.49 1 − x, 1 − y, Inline graphic  + z
H8⋯C18 2.87 Inline graphic  − x, 1 + y, Inline graphic  + z
H9⋯H21 2.59 Inline graphic  − x, 2 + y, Inline graphic  + z
N13⋯H15 2.46 Inline graphic  + x, −y, z
H12B⋯N15 2.24 Inline graphic  + x, 1 − y, z
C13⋯H22 2.91 x, 1 + y, z
C19⋯H22 2.94 Inline graphic  + x, −1 − y, z

Figure 5.

Figure 5

A view of the layer structure formed by inter­molecular N—H⋯N, C—H⋯N, C—H⋯π and π–π inter­actions in the crystal structure of the title compound projected along the b axis.

Hirshfeld surface analysis

Crystal Explorer 17 (Turner et al., 2017) was used to construct Hirshfeld surfaces for both independent mol­ecules in the asymmetric unit of the title compound. The d norm mappings for mol­ecule I were performed in the range of −0.5418 to 1.2328 a.u., and for mol­ecule II in the range of −0.5446 to 1.1988 a.u. On the d norm surfaces, bold red circles show the locations of N—H⋯N inter­actions. Smaller red spots are caused by C—H⋯N inter­actions (Fig. 6 a,b for mol­ecule I and Fig. 6 c,d for mol­ecule II).

Figure 6.

Figure 6

Front (a) and back (b) views of the three-dimensional Hirshfeld surface for mol­ecule I. Front (c) and back (d) views of the three-dimensional Hirshfeld surface for mol­ecule II. Some inter­molecular N—H⋯N and C—H⋯N inter­actions are shown as dashed lines.

Fingerprint plots (Fig. 7) reveal that while H⋯H (26.6% for mol­ecule I and 25.3% for mol­ecule II) inter­actions make the largest contributions to the surface contacts (Table 2), N⋯H/H⋯N (24.1% for I and 24.1% for II) and C⋯H/H⋯C (19.3% for I and 21.0% for II) contacts are also significant. The contributions of other, less noteworthy contacts are listed in Table 3. The environments of mol­ecules I and II are quite similar, as indicated in Table 3.

Figure 7.

Figure 7

The two-dimensional fingerprint plots for mol­ecules I and II of the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N and (d) C⋯H/H⋯C inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact mol­ecule I mol­ecule II
H⋯H 26.6 25.3
N⋯H/H⋯N 24.1 24.1
C⋯H/H⋯C 19.3 21.0
S⋯C/C⋯S 6.7 5.5
O⋯H/H⋯O 6.0 5.5
S⋯H/H⋯S 5.9 6.9
N⋯C/C⋯N 4.5 5.3
O⋯C/C⋯O 2.5 2.6
C⋯C 1.3 0.9
O⋯N/N⋯O 1.1 1.0
N⋯N 1.0 0.9
S⋯N/N⋯S 0.9 0.8
S⋯O/O⋯S 0.1 0.1

Database survey

The only hit related to the title compound found in a search of the Cambridge Structural Database (CSD, Version 5.42; May 2021; Groom et al., 2016) was 1-{[3-(thio­phen-2-yl)-4,5-di­hydro-1,2-oxazol-5-yl]meth­yl}-1H-indole-2,3-dione (NAQQOO: Rayni et al., 2017). In the structure of NAQQOO, the indole ring system is almost planar as expected. The dihedral angle between this plane and that of the thio­phene ring is 2.01 (2)°. The mean plane of the isoxazole ring is inclined by 19.78 (14) and 20.83 (12)° to the thio­phene and indoline mean planes, respectively. In the crystal, the combin­ation of C—H⋯O hydrogen bonds forms stepped layers two mol­ecules thick, or slabs, which are oriented parallel to ( Inline graphic 03). These layers are associated through offset π-stacking inter­actions, involving inversion-related indole rings in adjacent layers [inter­planar distance of 3.479 (1) Å], forming a supra­molecular three-dimensional structure.

Synthesis and crystallization

5-(5-Phenyl­isoxazol-3-yl)-1,3,4-thia­diazol-2-amine:

Thio­semicarbazide (1.0 g, 11 mmol) was added at r.t to a solution of 5-phenyl­isoxazole-3-carbo­nitrile (1.70 g, 10 mmol) in CF3CO2H (10 mL), and the resulting mixture was heated under reflux for 6 h. After cooling, the mixture was poured into water (150 mL) and basified with 25% aqueous ammonia to pH ∼8. The precipitate was filtered off, washed with warm H2O (3 × 30 mL) and dried under reduced pressure over P2O5. The obtained solid product was recrystallized from MeOH giving light-yellow cubic crystals, yield 2.37 g (97%), m.p. = 501–503 K. IR (KBr), ν (cm−1): 3413, 3278, 3147, 3125, 2927, 1615, 1592, 1575, 1508, 1450, 1436, 1417, 1323, 1220, 1140, 1068, 947, 931, 817, 763, 686, 661, 629, 575. 1H NMR (DMSO-d 6, 500 MHz, 301 K): δ = 7.51–7.58 (m, 4H, 3HAr + 1H-isox), 7.80 (br.s, 2H, NH2), 7.92–7.98 (m, 2HAr). 13C NMR (DMSO-d 6, 125 MHz, 301 K): δ = 98.53 (CH-isox), 126.45 (2CHAr), 129.89 (2CHAr), 131.47 (1CHAr), 126.90, 145.57, 157.67, 170.46, 170.76 (5C). Mass-spectrum, m/z (I rel, %): 267 [M+Na]+ (5), 245 [M+H]+ (100). Elemental analysis calculated for C11H8N4OS (%): C 54.09, H 3.30, N 22.94, S 13.12; found (%): C 54.21, H 3.11, N 22.99, S 13.18.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically (N—H = 0.88 Å, C—H = 0.95 Å) and refined using a riding model with U iso(H) = 1.2U eq(N, C).

Table 4. Experimental details.

Crystal data
Chemical formula C11H8N4OS
M r 244.27
Crystal system, space group Orthorhombic, P c a21
Temperature (K) 100
a, b, c (Å) 11.142 (2), 7.2555 (15), 27.333 (6)
V3) 2209.6 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.24 × 0.18 × 0.02
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.924, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 37296, 6442, 4347
R int 0.110
(sin θ/λ)max−1) 0.703
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.125, 1.03
No. of reflections 6442
No. of parameters 307
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.34
Absolute structure Flack x determined using 1699 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.44 (7)

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022003450/yk2168sup1.cif

e-78-00453-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022003450/yk2168Isup2.hkl

e-78-00453-Isup2.hkl (512.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022003450/yk2168Isup3.cml

CCDC reference: 2162503

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows: Conceptualization, EVN, MA and SM; synthesis, EVN, EKP, SKP and EAA; X-ray analysis, STÇ, VNK and MA; writing (review and editing of the manuscript), EVN, STÇ, MA and SM; funding acquisition, EVN, SKP, EAA and SM; supervision, MA, SKP and SM.

supplementary crystallographic information

Crystal data

C11H8N4OS Dx = 1.469 Mg m3
Mr = 244.27 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 5781 reflections
a = 11.142 (2) Å θ = 2.8–28.1°
b = 7.2555 (15) Å µ = 0.28 mm1
c = 27.333 (6) Å T = 100 K
V = 2209.6 (8) Å3 Plate, yellow
Z = 8 0.24 × 0.18 × 0.02 mm
F(000) = 1008

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer 4347 reflections with I > 2σ(I)
φ and ω scans Rint = 0.110
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 30.0°, θmin = 2.8°
Tmin = 0.924, Tmax = 0.985 h = −15→15
37296 measured reflections k = −10→10
6442 independent reflections l = −38→38

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + 1.1115P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
6442 reflections Δρmax = 0.32 e Å3
307 parameters Δρmin = −0.34 e Å3
1 restraint Absolute structure: Flack x determined using 1699 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: difference Fourier map Absolute structure parameter: 0.44 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.55238 (9) 0.15104 (17) 0.56580 (4) 0.0346 (3)
O1 0.4133 (3) 0.6622 (5) 0.63143 (14) 0.0407 (8)
N1 0.5629 (3) −0.1735 (6) 0.51880 (17) 0.0411 (11)
H1A 0.5313 −0.2668 0.5028 0.049*
H1B 0.6408 −0.1700 0.5241 0.049*
N2 0.4659 (3) 0.5198 (6) 0.60417 (16) 0.0404 (10)
N3 0.3753 (3) −0.0298 (6) 0.52886 (16) 0.0368 (10)
N4 0.3268 (3) 0.1278 (6) 0.54882 (15) 0.0363 (9)
C1 0.4931 (4) −0.0378 (7) 0.53495 (18) 0.0337 (11)
C2 0.4066 (3) 0.2358 (7) 0.56877 (18) 0.0324 (10)
C3 0.3784 (4) 0.4041 (7) 0.59427 (18) 0.0325 (10)
C4 0.2667 (4) 0.4653 (7) 0.61365 (18) 0.0339 (10)
H4 0.1905 0.4077 0.6107 0.041*
C5 0.2934 (4) 0.6234 (7) 0.63716 (19) 0.0353 (11)
C6 0.2228 (4) 0.7554 (7) 0.66463 (18) 0.0381 (11)
C7 0.1161 (4) 0.6999 (7) 0.68654 (19) 0.0400 (11)
H7 0.0917 0.5746 0.6847 0.048*
C8 0.0454 (5) 0.8268 (9) 0.7110 (2) 0.0547 (16)
H8 −0.0272 0.7883 0.7261 0.066*
C9 0.0801 (6) 1.0089 (10) 0.7136 (2) 0.0622 (17)
H9 0.0305 1.0958 0.7299 0.075*
C10 0.1865 (6) 1.0655 (9) 0.6926 (2) 0.0586 (16)
H10 0.2103 1.1910 0.6949 0.070*
C11 0.2591 (5) 0.9399 (7) 0.66806 (19) 0.0435 (12)
H11 0.3325 0.9788 0.6538 0.052*
S2 0.25267 (9) 0.34769 (16) 0.43188 (5) 0.0345 (3)
O12 0.3748 (3) −0.1645 (5) 0.36528 (14) 0.0414 (8)
N12 0.2466 (3) 0.6713 (6) 0.47918 (16) 0.0401 (10)
H12A 0.2801 0.7631 0.4952 0.048*
H12B 0.1686 0.6711 0.4740 0.048*
N13 0.3275 (3) −0.0167 (6) 0.39175 (17) 0.0406 (10)
N14 0.4322 (3) 0.5220 (6) 0.46910 (15) 0.0354 (9)
N15 0.4782 (3) 0.3622 (5) 0.44954 (15) 0.0336 (9)
C12 0.3137 (4) 0.5330 (7) 0.46289 (18) 0.0325 (11)
C13 0.3977 (3) 0.2571 (7) 0.42917 (19) 0.0324 (10)
C14 0.4201 (4) 0.0858 (7) 0.40348 (19) 0.0339 (11)
C15 0.5296 (4) 0.0103 (7) 0.38637 (18) 0.0355 (11)
H15 0.6085 0.0576 0.3907 0.043*
C16 0.4959 (4) −0.1445 (7) 0.36254 (19) 0.0348 (10)
C17 0.5587 (4) −0.2878 (7) 0.33530 (18) 0.0354 (11)
C18 0.6693 (4) −0.2494 (8) 0.31302 (18) 0.0403 (12)
H18 0.7024 −0.1289 0.3145 0.048*
C19 0.7299 (5) −0.3898 (8) 0.2886 (2) 0.0487 (14)
H19 0.8046 −0.3646 0.2733 0.058*
C20 0.6826 (5) −0.5652 (9) 0.2866 (2) 0.0519 (14)
H20 0.7252 −0.6607 0.2704 0.062*
C21 0.5732 (5) −0.6019 (8) 0.3082 (2) 0.0492 (14)
H21 0.5400 −0.7223 0.3063 0.059*
C22 0.5121 (5) −0.4653 (7) 0.3324 (2) 0.0422 (12)
H22 0.4372 −0.4923 0.3474 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0126 (4) 0.0464 (6) 0.0447 (7) −0.0005 (4) −0.0026 (4) −0.0051 (6)
O1 0.0207 (14) 0.047 (2) 0.055 (2) −0.0023 (14) 0.0010 (14) −0.0061 (18)
N1 0.0154 (16) 0.047 (3) 0.061 (3) 0.0009 (17) −0.0043 (17) −0.011 (2)
N2 0.0187 (18) 0.049 (3) 0.053 (3) −0.0012 (17) 0.0002 (17) −0.006 (2)
N3 0.0159 (17) 0.047 (2) 0.048 (3) −0.0013 (16) −0.0018 (16) −0.002 (2)
N4 0.0162 (17) 0.050 (3) 0.043 (2) 0.0009 (17) −0.0030 (15) 0.0001 (19)
C1 0.0166 (19) 0.047 (3) 0.037 (3) −0.0025 (18) 0.0005 (18) 0.000 (2)
C2 0.0130 (16) 0.048 (3) 0.036 (3) 0.0006 (17) −0.0018 (18) 0.003 (2)
C3 0.0170 (19) 0.044 (3) 0.036 (3) −0.0025 (18) −0.0032 (17) 0.003 (2)
C4 0.0175 (19) 0.045 (3) 0.039 (3) −0.0010 (19) −0.0010 (18) 0.001 (2)
C5 0.0191 (19) 0.050 (3) 0.037 (3) −0.0005 (18) −0.0018 (19) 0.006 (2)
C6 0.031 (2) 0.049 (3) 0.034 (3) 0.006 (2) −0.0073 (19) 0.000 (2)
C7 0.028 (2) 0.059 (3) 0.033 (3) 0.008 (2) −0.005 (2) −0.001 (2)
C8 0.038 (3) 0.086 (5) 0.040 (3) 0.012 (3) 0.002 (2) −0.004 (3)
C9 0.062 (4) 0.071 (4) 0.053 (4) 0.020 (3) 0.003 (3) −0.021 (3)
C10 0.064 (4) 0.056 (4) 0.056 (4) 0.005 (3) −0.002 (3) −0.012 (3)
C11 0.044 (3) 0.048 (3) 0.039 (3) 0.003 (2) −0.003 (2) −0.003 (2)
S2 0.0129 (4) 0.0473 (6) 0.0433 (6) −0.0003 (5) −0.0025 (4) −0.0049 (6)
O12 0.0193 (15) 0.049 (2) 0.056 (2) −0.0022 (14) −0.0014 (15) −0.0103 (18)
N12 0.0158 (17) 0.051 (3) 0.053 (3) 0.0013 (17) −0.0033 (16) −0.013 (2)
N13 0.0206 (19) 0.048 (3) 0.054 (3) 0.0026 (18) −0.0004 (18) −0.007 (2)
N14 0.0158 (17) 0.047 (2) 0.044 (2) −0.0001 (15) −0.0025 (15) −0.0051 (19)
N15 0.0155 (16) 0.044 (2) 0.041 (2) −0.0003 (15) −0.0010 (14) −0.0016 (18)
C12 0.0150 (19) 0.043 (3) 0.039 (3) −0.0015 (18) −0.0035 (17) 0.000 (2)
C13 0.0147 (16) 0.044 (3) 0.039 (3) −0.0014 (17) −0.0005 (18) 0.005 (2)
C14 0.0138 (18) 0.046 (3) 0.041 (3) 0.0009 (18) −0.0021 (17) 0.004 (2)
C15 0.0135 (18) 0.051 (3) 0.042 (3) 0.0038 (19) −0.0004 (18) 0.002 (2)
C16 0.0163 (19) 0.051 (3) 0.037 (2) 0.0032 (19) −0.0007 (17) 0.005 (2)
C17 0.025 (2) 0.048 (3) 0.033 (3) 0.003 (2) −0.0036 (19) 0.004 (2)
C18 0.021 (2) 0.056 (3) 0.044 (3) 0.005 (2) −0.0004 (18) 0.004 (2)
C19 0.033 (3) 0.070 (4) 0.042 (3) 0.014 (2) 0.008 (2) 0.009 (3)
C20 0.051 (3) 0.061 (4) 0.044 (3) 0.018 (3) 0.003 (3) −0.002 (3)
C21 0.052 (4) 0.050 (3) 0.045 (3) 0.002 (3) 0.003 (3) 0.000 (3)
C22 0.035 (3) 0.052 (3) 0.039 (3) 0.001 (2) −0.001 (2) 0.000 (2)

Geometric parameters (Å, º)

S1—C1 1.739 (5) S2—C12 1.729 (5)
S1—C2 1.739 (4) S2—C13 1.746 (4)
O1—C5 1.374 (5) O12—C16 1.359 (5)
O1—N2 1.402 (5) O12—N13 1.398 (5)
N1—C1 1.330 (6) N12—C12 1.328 (6)
N1—H1A 0.8800 N12—H12A 0.8800
N1—H1B 0.8800 N12—H12B 0.8800
N2—C3 1.315 (6) N13—C14 1.312 (6)
N3—C1 1.324 (5) N14—C12 1.334 (5)
N3—N4 1.377 (6) N14—N15 1.376 (5)
N4—C2 1.304 (6) N15—C13 1.302 (6)
C2—C3 1.441 (7) C13—C14 1.449 (7)
C3—C4 1.424 (6) C14—C15 1.417 (6)
C4—C5 1.348 (7) C15—C16 1.352 (7)
C4—H4 0.9500 C15—H15 0.9500
C5—C6 1.449 (7) C16—C17 1.458 (7)
C6—C7 1.391 (7) C17—C22 1.391 (7)
C6—C11 1.402 (7) C17—C18 1.402 (7)
C7—C8 1.384 (7) C18—C19 1.393 (7)
C7—H7 0.9500 C18—H18 0.9500
C8—C9 1.378 (9) C19—C20 1.379 (8)
C8—H8 0.9500 C19—H19 0.9500
C9—C10 1.379 (9) C20—C21 1.380 (8)
C9—H9 0.9500 C20—H20 0.9500
C10—C11 1.391 (8) C21—C22 1.373 (7)
C10—H10 0.9500 C21—H21 0.9500
C11—H11 0.9500 C22—H22 0.9500
C1—S1—C2 86.9 (2) C12—S2—C13 87.1 (2)
C5—O1—N2 108.4 (3) C16—O12—N13 108.7 (4)
C1—N1—H1A 120.0 C12—N12—H12A 120.0
C1—N1—H1B 120.0 C12—N12—H12B 120.0
H1A—N1—H1B 120.0 H12A—N12—H12B 120.0
C3—N2—O1 105.7 (4) C14—N13—O12 105.3 (4)
C1—N3—N4 112.0 (4) C12—N14—N15 111.7 (4)
C2—N4—N3 113.4 (4) C13—N15—N14 113.8 (4)
N3—C1—N1 124.7 (4) N12—C12—N14 124.0 (4)
N3—C1—S1 113.8 (4) N12—C12—S2 122.1 (3)
N1—C1—S1 121.5 (3) N14—C12—S2 113.9 (4)
N4—C2—C3 124.3 (4) N15—C13—C14 126.2 (4)
N4—C2—S1 113.9 (4) N15—C13—S2 113.5 (4)
C3—C2—S1 121.7 (3) C14—C13—S2 120.2 (3)
N2—C3—C4 111.9 (4) N13—C14—C15 112.2 (5)
N2—C3—C2 118.6 (4) N13—C14—C13 117.9 (4)
C4—C3—C2 129.4 (4) C15—C14—C13 129.8 (4)
C5—C4—C3 104.4 (4) C16—C15—C14 103.9 (4)
C5—C4—H4 127.8 C16—C15—H15 128.0
C3—C4—H4 127.8 C14—C15—H15 128.0
C4—C5—O1 109.6 (4) C15—C16—O12 109.8 (4)
C4—C5—C6 133.6 (4) C15—C16—C17 134.9 (4)
O1—C5—C6 116.8 (4) O12—C16—C17 115.4 (4)
C7—C6—C11 119.6 (5) C22—C17—C18 119.2 (5)
C7—C6—C5 119.7 (5) C22—C17—C16 120.6 (5)
C11—C6—C5 120.6 (5) C18—C17—C16 120.1 (5)
C8—C7—C6 120.1 (5) C19—C18—C17 119.2 (5)
C8—C7—H7 119.9 C19—C18—H18 120.4
C6—C7—H7 119.9 C17—C18—H18 120.4
C9—C8—C7 120.2 (6) C20—C19—C18 120.6 (5)
C9—C8—H8 119.9 C20—C19—H19 119.7
C7—C8—H8 119.9 C18—C19—H19 119.7
C8—C9—C10 120.4 (6) C19—C20—C21 119.9 (5)
C8—C9—H9 119.8 C19—C20—H20 120.0
C10—C9—H9 119.8 C21—C20—H20 120.0
C9—C10—C11 120.3 (6) C22—C21—C20 120.4 (6)
C9—C10—H10 119.8 C22—C21—H21 119.8
C11—C10—H10 119.8 C20—C21—H21 119.8
C10—C11—C6 119.4 (5) C21—C22—C17 120.7 (5)
C10—C11—H11 120.3 C21—C22—H22 119.7
C6—C11—H11 120.3 C17—C22—H22 119.7
C5—O1—N2—C3 0.5 (5) C16—O12—N13—C14 0.4 (5)
C1—N3—N4—C2 0.8 (6) C12—N14—N15—C13 0.3 (6)
N4—N3—C1—N1 −179.2 (5) N15—N14—C12—N12 178.6 (5)
N4—N3—C1—S1 −0.2 (5) N15—N14—C12—S2 −0.7 (5)
C2—S1—C1—N3 −0.2 (4) C13—S2—C12—N12 −178.6 (5)
C2—S1—C1—N1 178.7 (5) C13—S2—C12—N14 0.7 (4)
N3—N4—C2—C3 −176.7 (5) N14—N15—C13—C14 176.6 (5)
N3—N4—C2—S1 −1.0 (6) N14—N15—C13—S2 0.3 (6)
C1—S1—C2—N4 0.7 (4) C12—S2—C13—N15 −0.5 (4)
C1—S1—C2—C3 176.5 (4) C12—S2—C13—C14 −177.1 (4)
O1—N2—C3—C4 0.7 (6) O12—N13—C14—C15 −0.9 (6)
O1—N2—C3—C2 −176.3 (4) O12—N13—C14—C13 176.6 (4)
N4—C2—C3—N2 −166.4 (5) N15—C13—C14—N13 169.7 (5)
S1—C2—C3—N2 18.2 (7) S2—C13—C14—N13 −14.2 (7)
N4—C2—C3—C4 17.1 (9) N15—C13—C14—C15 −13.3 (9)
S1—C2—C3—C4 −158.3 (4) S2—C13—C14—C15 162.9 (4)
N2—C3—C4—C5 −1.7 (6) N13—C14—C15—C16 1.1 (6)
C2—C3—C4—C5 174.9 (5) C13—C14—C15—C16 −176.1 (5)
C3—C4—C5—O1 2.0 (6) C14—C15—C16—O12 −0.7 (6)
C3—C4—C5—C6 −180.0 (5) C14—C15—C16—C17 178.6 (6)
N2—O1—C5—C4 −1.7 (6) N13—O12—C16—C15 0.2 (6)
N2—O1—C5—C6 179.9 (4) N13—O12—C16—C17 −179.2 (4)
C4—C5—C6—C7 24.7 (9) C15—C16—C17—C22 152.5 (6)
O1—C5—C6—C7 −157.4 (4) O12—C16—C17—C22 −28.2 (7)
C4—C5—C6—C11 −153.3 (6) C15—C16—C17—C18 −25.4 (9)
O1—C5—C6—C11 24.5 (7) O12—C16—C17—C18 154.0 (5)
C11—C6—C7—C8 0.9 (8) C22—C17—C18—C19 −0.2 (7)
C5—C6—C7—C8 −177.2 (5) C16—C17—C18—C19 177.7 (5)
C6—C7—C8—C9 0.3 (8) C17—C18—C19—C20 −0.4 (8)
C7—C8—C9—C10 −1.2 (10) C18—C19—C20—C21 1.0 (9)
C8—C9—C10—C11 0.8 (10) C19—C20—C21—C22 −1.1 (9)
C9—C10—C11—C6 0.4 (9) C20—C21—C22—C17 0.5 (9)
C7—C6—C11—C10 −1.2 (8) C18—C17—C22—C21 0.1 (8)
C5—C6—C11—C10 176.8 (5) C16—C17—C22—C21 −177.8 (5)

Hydrogen-bond geometry (Å, º)

Cg4 and Cg6 are the centroids of the S2/N14/N15/C12/C13 and C17–C22 rings, respectively

D—H···A D—H H···A D···A D—H···A
N1—H1A···N14i 0.88 2.10 2.974 (6) 172
N1—H1B···N4ii 0.88 2.20 3.071 (5) 169
N12—H12A···N3iii 0.88 2.06 2.933 (6) 174
N12—H12B···N15iv 0.88 2.24 3.108 (5) 170
C4—H4···N2iv 0.95 2.56 3.363 (6) 142
C15—H15···N13ii 0.95 2.46 3.323 (6) 151
C8—H8···Cg6v 0.95 2.98 3.774 (6) 142
C22—H22···Cg4i 0.95 2.95 3.648 (6) 132

Symmetry codes: (i) x, y−1, z; (ii) x+1/2, −y, z; (iii) x, y+1, z; (iv) x−1/2, −y+1, z; (v) −x+1/2, y+1, z+1/2.

Funding Statement

This work was funded by Russian Foundation for Basic Research grant 19–53-04002, Bel_mol_a to E. V. Nikitina; Belarusian Republican Foundation for Fundamental Research grant X20PM-056 to E. V. Nikitina.

References

  1. Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
  2. Bhinge, S. D., Chature, V. & Sonawane, L. V. (2015). Pharm. Chem. J. 49, 367–372.
  3. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bumagin, N. A., Kletskov, A. V., Petkevich, S. K., Kolesnik, I. A., Lyakhov, A. S., Ivashkevich, L. S., Baranovsky, A. V., Kurman, P. V. & Potkin, V. I. (2018). Tetrahedron, 74, 3578–3588.
  6. Das, S. & Chanda, K. (2021). RSC Adv. 11, 32680–32705. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018a). Aust. J. Chem. 71, 190–194.
  10. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018b). Inorg. Chim. Acta, 471, 130–136.
  11. Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.
  12. Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
  13. Khalilullah, H., Khan, M. U., Mahmood, D., Akhtar, J. & Osman, G. (2014). Int. J. Pharm. Pharm. Sci. 6, 8–15.
  14. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  15. Kletskov, A. V., Bumagin, N. A., Zubkov, F. I., Grudinin, D. G. & Potkin, V. I. (2020). Synthesis, 52, 159–188.
  16. Kudelko, A., Olesiejuk, M., Luczynski, M., Swiatkowski, M., Sieranski, T. & Kruszynski, R. (2020). Molecules, 25, 2822. [DOI] [PMC free article] [PubMed]
  17. Kulchitsky, V. A., Potkin, V. I., Zubenko, Y. S., Chernov, A. N., Talabaev, M. V., Demidchik, Y. E., Petkevich, S. K., Kazbanov, V. V., Gurinovich, T. A., Roeva, M. O., Grigoriev, D. G., Kletskov, A. V. & Kalunov, V. N. (2012). Med. Chem. 8, 22–32. [DOI] [PubMed]
  18. Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
  19. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.
  20. Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. [DOI] [PMC free article] [PubMed]
  21. Nayak, A. S. & Madhav, N. V. (2014). Acta Chim. Pharm. Indica, 4, 63–67.
  22. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  23. Petkevich, S. K., Zhukovskaya, N. A., Dikusar, E. A., Akishina, E. A., Kurman, P. V., Nikitina, E. V., Zaytsev, V. P. & Potkin, V. I. (2021). Chem. Heterocycl. Compd, 57, 594–598.
  24. Rayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170315.
  25. Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.
  26. Sakthivel, P., Ilangovan, A. & Kaushik, M. P. (2016). Eur. J. Med. Chem. 122, 302–318. [DOI] [PubMed]
  27. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  28. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  29. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  30. Shivakumara, N. & Krishna, P. M. (2019). Curr. Chem. Lett. 8, 157–168.
  31. Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
  32. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  33. Sun, X.-W., Hui, X.-P., Chu, C.-H. & Zhang, Z.-Y. (2001). Indian J. Chem. Sect. B, 40, 15–19.
  34. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  35. Wang, J., Tang, X. & Yi, L. (2019). Pharmacology, 103, 273–281. [DOI] [PubMed]
  36. Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.
  37. Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022003450/yk2168sup1.cif

e-78-00453-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022003450/yk2168Isup2.hkl

e-78-00453-Isup2.hkl (512.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022003450/yk2168Isup3.cml

CCDC reference: 2162503

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES