Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Mar 31;78(Pt 4):449–452. doi: 10.1107/S2056989022002973

Crystal structure of N-(1H-indol-2-yl­methyl­idene)-4-meth­oxy­aniline

Masatsugu Taneda a,*, Masato Nishi a, Koji Kubono b, Yukiyasu Kashiwagi c, Taisuke Matsumoto d
PMCID: PMC8983973  PMID: 35492277

The mol­ecule of the title compound contains an essentially planar indole ring system and a phenyl ring. In the crystal, the mol­ecules are linked by a weak inter­molecular C—H⋯O hydrogen bond and C—H⋯π inter­actions, forming a two-dimensional network structure.

Keywords: crystal structure, indole, Schiff base, bidentate ligand, C—H⋯π inter­actions

Abstract

The mol­ecule of the title compound, C16H14N2O, contains an essentially planar indole ring system and a phenyl ring. In the crystal, the mol­ecules are linked by a weak inter­molecular C—H⋯O hydrogen bond and C—H⋯π inter­actions, forming a one-dimensional column structure along the b-axis direction. These columns are linked by other C—H⋯π inter­actions, forming a two-dimensional network structure.

Chemical context

Indole and its derivatives are useful starting compounds to derive pharmaceutical (Nalli et al., 2020) and biological materials (Arumugam et al., 2021). Indole can function as a hydrogen-bond donor because of the high acidity of the hydrogen atom at position 1. The introduction of a hydrogen-bond acceptor to position 2 of the indole ring forms a five-to-seven-membered intra­molecular hydrogen-bonded ring (Nosenko, et al., 2008). In this work, a Schiff base including an indole ring, N-(indol-2-yl­methyl­idene)-4-meth­oxy­aniline, was newly synthesized. Similar Schiff bases such as salicyl­idene­amines often function as bidentate ligands (Wang et al., 2018). Whereas salicyl­idene­amines form intra­molecular hydrogen bonds between coordination site atoms, such intra­molecular inter­actions are absent from the crystal structure of the title compound. We report herein on its mol­ecular and crystal structure. graphic file with name e-78-00449-scheme1.jpg

Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1. The C=N double bond adopts an E configuration. The indole moiety is almost planar with an r.m.s. deviation of 0.009 (1) Å. The bond lengths and angles in the title mol­ecule are normal and agree with those in other indole imine compounds (IWIGUS; Suresh et al., 2016; KEVLON; Ho et al., 2006). The dihedral angle between the indole system and the benzene ring is 9.89 (5)°. In the related compound IWIGUS, the dihedral angles between the indole system and the benzene ring disordered over two sets of sites are widened to 81.8 (3) and 85.2 (3)° due to two isopropyl substituents in the benzene ring. There is no intra­molecular hydrogen bond in the title compound, because the N2—H2⋯N3 angle is as small as 94.4 (10)°; however, the N2⋯N3 distance is 2.8633 (16) Å, and the N2—C4—C12—N3 torsion angle is 3.94 (19)°. Although no intra­molecular hydrogen bond is observed, a broad peak assigned for the N—H proton is seen in the 1H NMR spectrum of the title compound in a CDCl3 medium and this suggests that the compound forms an intra­molecular hydrogen bond in solution (see Synthesis and crystallization).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.

Supra­molecular features

The title compound contains an N—H group, which is a hydrogen-bond donor, and an imino group, which is a hydrogen-bond acceptor, but neither of them forms an inter­molecular hydrogen bond in the crystal. Compounds containing a similar indol-2-yl­methyl­idene-aniline fragment with a cis-conformation of the C—C single bond between the N atoms often form dimers by inter­molecular N—H⋯N hydrogen bonds (see Database survey). However, in the crystal the mol­ecules of the title compound are linked by a weak inter­molecular C10—H10⋯O1i hydrogen bond and C—H⋯π inter­actions [C17—H17⋯Cg1i and C19—H19CCg2i; Cg1 is the centroid of the N2/C4–C6/C11 ring and Cg2 is the centroid of the C6–C11 ring; symmetry code: (i) Inline graphic  − x, Inline graphic  + y, Inline graphic  − z], forming columns along the b-axis direction (Fig. 2, Table 1). Besides this, the mol­ecules belonging to different columns are joined by other C—H⋯π inter­actions [C14—H14⋯Cg1ii and C15—H15⋯Cg2ii; symmetry code: (ii) Inline graphic  − x, − Inline graphic  + y, Inline graphic  − z] (Fig. 3, Table 1). As a result, the inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions form a two-dimensional network structure (Fig. 4).

Figure 2.

Figure 2

One-dimensional column structure in the crystal of the title compound viewed along the a axis. The C—H⋯O hydrogen bonds and the C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N2/C4–C6/C11 and C6–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.58 3.2479 (16) 129
C14—H14⋯Cg1ii 0.93 2.81 3.6006 (14) 143
C15—H15⋯Cg2ii 0.93 2.79 3.5153 (14) 136
C17—H17⋯Cg1i 0.93 2.89 3.5718 (14) 131
C19—H19CCg2i 0.96 2.97 3.7716 (16) 142

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 3.

Figure 3

Part of the crystal structure of the title compound showing the formation of ribbons along the b-axis direction. The C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.

Figure 4.

Figure 4

A packing diagram of the title compound viewed along the c axis, showing the two-dimensional network. The C—H⋯O hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines. H atoms not involved in these inter­actions are omitted for clarity.

Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of May 2021; Groom et al., 2016) using ConQuest (Bruno et al., 2002) for indole derivatives gave 5272 hits, and for the (1H-indol-2-yl)methanimine skeleton gave 86 hits. Among these, the imino N atom bonded to an H atom gave one hit, to an N atom gave 24 hits, and to a C atom gave 61 hits. A search for the indol-2-yl­methyl­idene-aniline fragment gave 30 hits, and those containing a (1H-indol-2-yl)methyl­idene-aniline fragment with a cis-conformation of the C—C single bond gave seven hits. These seven compounds include five examples of dimers linked by complementary N—H⋯N hydrogen bonds (FORJAA; Li et al., 2019; IWIGUS; Suresh et al., 2016; KEZCUQ; Ariyasu et al., 2016; VACKES; Gadekar et al., 2016; WAGCEP; Tian et al., 2016), one example of a one-dimensional-chain structure (UWUSAI; Kalalbandi & Seetharamappa, 2016), and one example of a monomer protected from hydrogen bonding by steric hindrance (KEVLON; Ho et al., 2006). These structures contain inter­molecular or intra­molecular hydrogen bonds involving the N—H or the imino groups. Of these structures, the compounds most closely related to the title compound are N-(2,6-diiso­propyl­phen­yl)-1-(1H-indol-2-yl)methanimine (IWIGUS; Suresh et al., 2016), 4,6-dimeth­oxy-3-methyl-2,7-bis­[(phenyl­imino)­meth­yl]indole (KEVLON; Ho et al., 2006) and 2-(phenyl-N-oxido­imino­meth­yl)-3-phenyl­amino­indole (CIP­WED; Greci & Sgarabotto, 1984). In the crystal of IWIGUS, which features a large dihedral angle between the indole and benzene rings, two neighbouring mol­ecules are associated through pairs of N—H⋯N inter­molecular hydrogen bonds, forming a centrosymmetric dimer. The crystal structure of an indol-2-yl­methyl­idene-aniline compound without a hydrogen bond between the N—H and imino groups has not yet been reported. In an almost planar mol­ecule without a bulky substituent such as the tile compound, the formation of a dimer by inter­molecular N—H⋯N hydrogen bonding is probably not appropriate for the crystal packing.

Synthesis and crystallization

Indole-2-carbaldehyde (145 mg, 1.00 mmol) and p-anisidine (148 mg, 1.20 mmol) were dissolved in toluene (20 mL), and the solution was refluxed under inert gas for 6 h, followed by evaporation. The residue was purified by recrystallization from a solvent mixture of acetone and n-hexane (1:1), and the title compound was then obtained (212 mg, 0.848 mmol, 84.8%) as a pale-red powder. The recrystallization of the title compound from a mixture of acetone and methanol afforded single crystals suitable for X-ray structure analysis. 1H NMR (CDCl3, 400 MHz) δ = 3.84 (s, 3H, OCH3), 6.93–6.97 (m, 3H, ArH), 7.13 (td, 1H, Jortho = 7.5 Hz, Jmeta = 1.0 Hz, ArH), 7.25–7.31 (m, 3H, ArH), 7.40 (dd, 1H, Jortho = 8.3 Hz, Jmeta = 0.9 Hz, ArH), 7.66 (d, 1H, Jortho = 8.0 Hz, ArH), 8.48 (s, 1H, N=CH), 9.25 (br, 1H, NH). HR–MS (m/z): calculated for [C16H15N2O]+, m/z = 251.1179; found, 251.1192.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atom attached to N2 was located in a difference-Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.96 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C16H14N2O
M r 250.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 123
a, b, c (Å) 5.87685 (19), 7.5999 (3), 28.4578 (11)
β (°) 90.604 (3)
V3) 1270.95 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku AFC10 Saturn70 area detector
Absorption correction Multi-scan CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.608, 0.992
No. of measured, independent and observed [F 2 > 2.0σ(F 2)] reflections 11128, 2907, 2525
R int 0.056
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.127, 1.05
No. of reflections 2907
No. of parameters 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.29

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SIR92 (Altomare et al., 1993), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and CrystalStructure (Rigaku, 2019).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022002973/yk2166sup1.cif

e-78-00449-sup1.cif (355KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002973/yk2166Isup2.hkl

e-78-00449-Isup2.hkl (232.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022002973/yk2166Isup3.cml

CCDC reference: 2159620

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C16H14N2O F(000) = 528.00
Mr = 250.29 Dx = 1.308 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.87685 (19) Å Cell parameters from 6329 reflections
b = 7.5999 (3) Å θ = 2.8–30.8°
c = 28.4578 (11) Å µ = 0.08 mm1
β = 90.604 (3)° T = 123 K
V = 1270.95 (8) Å3 Prism, colourless
Z = 4 0.30 × 0.20 × 0.10 mm

Data collection

Rigaku AFC10 Saturn70 area detector diffractometer 2907 independent reflections
Radiation source: rotating anode X-ray generator, micromax007 2525 reflections with F2 > 2.0σ(F2)
Multi-layer mirror optics monochromator Rint = 0.056
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 2.8°
ω scans h = −7→7
Absorption correction: multi-scan CrysAlisPro; Rigaku OD, 2018) k = −8→9
Tmin = 0.608, Tmax = 0.992 l = −36→35
11128 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3253P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2907 reflections Δρmax = 0.39 e Å3
178 parameters Δρmin = −0.29 e Å3
0 restraints Extinction correction: SHELXL
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.259 (14)
Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.06455 (16) 0.60985 (13) 0.93970 (3) 0.0292 (3)
N2 0.57779 (18) 0.68608 (14) 0.66418 (4) 0.0237 (3)
N3 0.40410 (18) 0.64748 (14) 0.75724 (4) 0.0248 (3)
C4 0.7005 (2) 0.61479 (16) 0.70151 (4) 0.0240 (3)
C5 0.9058 (2) 0.55340 (17) 0.68542 (5) 0.0249 (3)
H5 1.0199 0.5007 0.7034 0.030*
C6 0.9115 (2) 0.58536 (16) 0.63609 (4) 0.0221 (3)
C7 1.0717 (2) 0.55168 (17) 0.60070 (5) 0.0253 (3)
H7 1.2079 0.4950 0.6079 0.030*
C8 1.0237 (2) 0.60388 (17) 0.55530 (5) 0.0272 (3)
H8 1.1287 0.5822 0.5318 0.033*
C9 0.8174 (2) 0.68975 (17) 0.54398 (5) 0.0266 (3)
H9 0.7899 0.7250 0.5131 0.032*
C10 0.6548 (2) 0.72278 (17) 0.57776 (4) 0.0253 (3)
H10 0.5182 0.7780 0.5701 0.030*
C11 0.7037 (2) 0.67011 (16) 0.62387 (4) 0.0219 (3)
C12 0.6095 (2) 0.60207 (17) 0.74822 (4) 0.0245 (3)
H12 0.7019 0.5599 0.7724 0.029*
C13 0.3193 (2) 0.62794 (16) 0.80344 (4) 0.0231 (3)
C14 0.4210 (2) 0.52631 (17) 0.83908 (5) 0.0264 (3)
H14 0.5511 0.4612 0.8327 0.032*
C15 0.3296 (2) 0.52215 (17) 0.88355 (5) 0.0266 (3)
H15 0.3993 0.4548 0.9069 0.032*
C16 0.1332 (2) 0.61828 (16) 0.89388 (4) 0.0233 (3)
C17 0.0233 (2) 0.71292 (17) 0.85845 (5) 0.0253 (3)
H17 −0.1111 0.7729 0.8645 0.030*
C18 0.1179 (2) 0.71653 (17) 0.81370 (5) 0.0247 (3)
H18 0.0446 0.7798 0.7900 0.030*
C19 −0.1427 (3) 0.6969 (2) 0.95149 (5) 0.0367 (4)
H19A −0.1793 0.6722 0.9836 0.044*
H19B −0.2632 0.6554 0.9313 0.044*
H19C −0.1247 0.8215 0.9474 0.044*
H2 0.438 (3) 0.737 (2) 0.6678 (5) 0.032 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0294 (5) 0.0304 (5) 0.0279 (5) 0.0010 (4) 0.0024 (4) −0.0028 (4)
N2 0.0196 (5) 0.0258 (6) 0.0258 (5) 0.0019 (4) −0.0007 (4) −0.0004 (4)
N3 0.0257 (5) 0.0218 (6) 0.0270 (6) −0.0006 (4) −0.0012 (4) 0.0001 (4)
C4 0.0223 (6) 0.0226 (6) 0.0270 (7) −0.0032 (5) −0.0028 (5) −0.0007 (5)
C5 0.0216 (6) 0.0242 (6) 0.0288 (7) −0.0008 (5) −0.0046 (5) 0.0014 (5)
C6 0.0194 (6) 0.0180 (6) 0.0289 (7) −0.0027 (4) −0.0030 (5) −0.0015 (5)
C7 0.0192 (6) 0.0228 (6) 0.0339 (7) 0.0008 (5) −0.0006 (5) −0.0029 (5)
C8 0.0247 (6) 0.0259 (7) 0.0310 (7) −0.0034 (5) 0.0029 (5) −0.0056 (5)
C9 0.0289 (6) 0.0249 (7) 0.0258 (6) −0.0022 (5) −0.0032 (5) −0.0005 (5)
C10 0.0235 (6) 0.0238 (6) 0.0283 (7) 0.0021 (5) −0.0040 (5) 0.0000 (5)
C11 0.0194 (6) 0.0189 (6) 0.0273 (6) −0.0015 (5) −0.0009 (4) −0.0023 (5)
C12 0.0237 (6) 0.0239 (7) 0.0259 (6) −0.0032 (5) −0.0042 (5) −0.0007 (5)
C13 0.0221 (6) 0.0200 (6) 0.0270 (6) −0.0023 (5) −0.0017 (5) −0.0005 (5)
C14 0.0216 (6) 0.0242 (7) 0.0335 (7) 0.0047 (5) 0.0029 (5) 0.0042 (5)
C15 0.0250 (6) 0.0243 (7) 0.0305 (7) 0.0019 (5) −0.0022 (5) 0.0053 (5)
C16 0.0239 (6) 0.0192 (6) 0.0266 (6) −0.0043 (5) −0.0009 (5) −0.0025 (5)
C17 0.0206 (6) 0.0212 (6) 0.0340 (7) 0.0012 (5) −0.0017 (5) −0.0023 (5)
C18 0.0227 (6) 0.0222 (6) 0.0289 (7) 0.0009 (5) −0.0054 (5) 0.0016 (5)
C19 0.0341 (8) 0.0398 (9) 0.0364 (8) 0.0040 (6) 0.0069 (6) −0.0064 (7)

Geometric parameters (Å, º)

O1—C16 1.3705 (15) C9—H9 0.9300
O1—C19 1.4287 (17) C10—C11 1.3989 (17)
N2—C11 1.3769 (16) C10—H10 0.9300
N2—C4 1.3876 (16) C12—H12 0.9300
N2—H2 0.912 (17) C13—C18 1.3950 (17)
N3—C12 1.2840 (17) C13—C14 1.4035 (18)
N3—C13 1.4189 (17) C14—C15 1.3803 (18)
C4—C5 1.3768 (18) C14—H14 0.9300
C4—C12 1.4413 (18) C15—C16 1.4000 (18)
C5—C6 1.4252 (18) C15—H15 0.9300
C5—H5 0.9300 C16—C17 1.3918 (18)
C6—C7 1.4094 (18) C17—C18 1.3950 (18)
C6—C11 1.4205 (17) C17—H17 0.9300
C7—C8 1.3781 (19) C18—H18 0.9300
C7—H7 0.9300 C19—H19A 0.9600
C8—C9 1.4111 (18) C19—H19B 0.9600
C8—H8 0.9300 C19—H19C 0.9600
C9—C10 1.3852 (19)
C16—O1—C19 117.50 (11) C10—C11—C6 121.79 (12)
C11—N2—C4 108.89 (10) N3—C12—C4 121.67 (12)
C11—N2—H2 128.4 (10) N3—C12—H12 119.2
C4—N2—H2 122.7 (10) C4—C12—H12 119.2
C12—N3—C13 119.83 (11) C18—C13—C14 118.05 (12)
C5—C4—N2 109.15 (11) C18—C13—N3 116.78 (11)
C5—C4—C12 128.24 (12) C14—C13—N3 125.17 (12)
N2—C4—C12 122.51 (11) C15—C14—C13 120.54 (12)
C4—C5—C6 107.42 (11) C15—C14—H14 119.7
C4—C5—H5 126.3 C13—C14—H14 119.7
C6—C5—H5 126.3 C14—C15—C16 120.68 (12)
C7—C6—C11 119.10 (12) C14—C15—H15 119.7
C7—C6—C5 134.07 (12) C16—C15—H15 119.7
C11—C6—C5 106.83 (11) O1—C16—C17 125.06 (12)
C8—C7—C6 119.08 (12) O1—C16—C15 115.28 (11)
C8—C7—H7 120.5 C17—C16—C15 119.65 (12)
C6—C7—H7 120.5 C16—C17—C18 119.03 (12)
C7—C8—C9 120.94 (12) C16—C17—H17 120.5
C7—C8—H8 119.5 C18—C17—H17 120.5
C9—C8—H8 119.5 C13—C18—C17 121.91 (11)
C10—C9—C8 121.49 (12) C13—C18—H18 119.0
C10—C9—H9 119.3 C17—C18—H18 119.0
C8—C9—H9 119.3 O1—C19—H19A 109.5
C9—C10—C11 117.58 (12) O1—C19—H19B 109.5
C9—C10—H10 121.2 H19A—C19—H19B 109.5
C11—C10—H10 121.2 O1—C19—H19C 109.5
N2—C11—C10 130.50 (11) H19A—C19—H19C 109.5
N2—C11—C6 107.71 (11) H19B—C19—H19C 109.5
C11—N2—C4—C5 0.24 (14) C5—C6—C11—C10 179.05 (11)
C11—N2—C4—C12 −176.34 (11) C13—N3—C12—C4 178.13 (11)
N2—C4—C5—C6 −0.69 (14) C5—C4—C12—N3 −171.94 (13)
C12—C4—C5—C6 175.63 (12) N2—C4—C12—N3 3.94 (19)
C4—C5—C6—C7 −179.42 (14) C12—N3—C13—C18 165.19 (12)
C4—C5—C6—C11 0.87 (14) C12—N3—C13—C14 −15.23 (19)
C11—C6—C7—C8 0.81 (18) C18—C13—C14—C15 −3.23 (19)
C5—C6—C7—C8 −178.88 (13) N3—C13—C14—C15 177.21 (12)
C6—C7—C8—C9 −0.08 (19) C13—C14—C15—C16 0.4 (2)
C7—C8—C9—C10 −0.8 (2) C19—O1—C16—C17 3.66 (18)
C8—C9—C10—C11 0.89 (19) C19—O1—C16—C15 −176.29 (12)
C4—N2—C11—C10 −179.44 (13) C14—C15—C16—O1 −177.25 (11)
C4—N2—C11—C6 0.32 (14) C14—C15—C16—C17 2.80 (19)
C9—C10—C11—N2 179.59 (12) O1—C16—C17—C18 177.07 (11)
C9—C10—C11—C6 −0.14 (19) C15—C16—C17—C18 −2.98 (18)
C7—C6—C11—N2 179.51 (11) C14—C13—C18—C17 3.04 (19)
C5—C6—C11—N2 −0.73 (13) N3—C13—C18—C17 −177.36 (11)
C7—C6—C11—C10 −0.71 (19) C16—C17—C18—C13 0.05 (19)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the N2/C4–C6/C11 and C6–C11 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C10—H10···O1i 0.93 2.58 3.2479 (16) 129
C14—H14···Cg1ii 0.93 2.81 3.6006 (14) 143
C15—H15···Cg2ii 0.93 2.79 3.5153 (14) 136
C17—H17···Cg1i 0.93 2.89 3.5718 (14) 131
C19—H19C···Cg2i 0.96 2.97 3.7716 (16) 142

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2.

Funding Statement

This work was funded by Cooperative Research Program of Network Joint Research Center for Materials and Devices grant 20212018; Japan Society for the Promotion of Science grant JP21K02520.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Ariyasu, K., Miyatake, R., Kumai, Y., Ohta, A. & Oda, M. (2016). Am. J. Org. Chem. 6, 93–101.
  3. Arumugam, N., Almansour, A. I., Kumar, R. S., Yeswanthkumar, S., Padmanaban, R., Arun, Y., Kansız, S., Dege, N., Manohar, T. S. & Venketesh, S. (2021). J. Mol. Struct. 1225, 129165–129166.
  4. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  5. Gadekar, S. C., Reddy, B. K., Panchal, S. P. & Anand, V. G. (2016). Chem. Commun. 52, 4565–4568. [DOI] [PubMed]
  6. Greci, L. & Sgarabotto, P. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1281–1284.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Ho, J. H. H., Black, D. St C., Messerle, B. A., Clegg, J. K. & Turner, P. T. (2006). Organometallics, 25, 5800–5810.
  9. Kalalbandi, V. K. A. & Seetharamappa, J. (2016). Synth. Commun. 46, 626–635.
  10. Li, J., Wang, Z.-B., Xu, Y., Lu, X.-C., Zhu, S.-R. & Liu, L. (2019). Chem. Commun. 55, 12072–12075. [DOI] [PubMed]
  11. Nalli, M., Armijos Rivera, J. I., Masci, D., Coluccia, A., Badia, R., Riveira-Muñoz, E., Brambilla, A., Cinquina, E., Turriziani, O., Falasca, F., Catalano, M., Limatola, C., Esté, J. A., Maga, G., Silvestri, R., Crespan, E. & La Regina, G. (2020). Eur. J. Med. Chem. 208, 112696–112718. [DOI] [PubMed]
  12. Nosenko, Y., Wiosna-Sałyga, G., Kunitski, M., Petkova, I., Singh, A., Buma, W. J., Thummel, R. P., Brutschy, B. & Waluk, J. (2008). Angew. Chem. Int. Ed. 47, 6037–6040. [DOI] [PubMed]
  13. Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  14. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  17. Suresh, D., Ferreira, B., Lopes, P. S., Gomes, C. S. B., Krishnamoorthy, P., Charas, A., Vila-Viçosa, D., Morgado, J., Calhorda, M. J., Maçanita, A. L. & Gomes, P. T. (2016). Dalton Trans. 45, 15603–15620. [DOI] [PubMed]
  18. Tian, Y., Tian, L., Li, C., Jia, X. & Li, J. (2016). Org. Lett. 18, 840–843. [DOI] [PubMed]
  19. Wang, Z., Li, T., Xing, S. & Zhu, B. (2018). Org. Biomol. Chem. 16, 5021–5026. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989022002973/yk2166sup1.cif

e-78-00449-sup1.cif (355KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002973/yk2166Isup2.hkl

e-78-00449-Isup2.hkl (232.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022002973/yk2166Isup3.cml

CCDC reference: 2159620

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES