The title heterobimetallic silver(I)–vanadium(V) oxide-fluoride compound is built on the {Ag2(VO2F2)2(tr)4} secondary building unit supported by 1,2,4-triazole ligands [4-benzyl-(4H-1,2,4-triazol-4-yl)].
Keywords: silver(I); vanadium(V) oxofluoride; 1,2,4-triazole; Hirshfeld surface analysis; crystal structure
Abstract
The crystal structure of the title compound, [Ag2(VO2F2)2(C9H9N3)4], is presented. The molecular complex is based on the heterobimetallic AgI—VV fragment {AgI 2(VVO2F2)2(tr)4} supported by four 1,2,4-triazole ligands [4-benzyl-(4H-1,2,4-triazol-4-yl)]. The triazole functional group demonstrates homo- and heterometallic connectivity (Ag—Ag and Ag—V) of the metal centers through the [–NN–] double and single bridges, respectively. The vanadium atom possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N] with the Reedijk structural parameter τ = 0.59. In the crystal, C—H⋯O and C—H⋯F hydrogen bonds as well as C—H⋯π contacts are observed involving the organic ligands and the vanadium oxofluoride anions. A Hirshfeld surface analysis of the hydrogen-bonding interactions is also described.
Chemical context
There is considerable interest in the chemistry of organic–inorganic hybrids, including the vanadium oxide–fluoride (VOF) matrix, which is motivated by the numerous potential applications in catalysis, magnetism, optics, etc. (Dolbecq et al., 2010 ▸; Monakhov et al., 2015 ▸). Incorporation of silver(I) in VOF solid can afford materials such as Ag4V2O6F2 (Sorensen et al., 2005 ▸; Albrecht et al., 2009 ▸) and Ag3VO2F4 (Chamberlain et al., 2010 ▸), which are attractive candidates for solid-state battery technologies. The formation of AgI–VOF heterobimetallic secondary building units (SBUs) in coordination compounds remains a non-trivial challenge. The 1,2,4-triazole heterocycle, as a functional group, demonstrates a favorable coordination affinity towards AgI cations, connecting them into polynuclear units (Aromí et al., 2011 ▸). At the same time, it possesses a hidden capability to bind two different metal ions through a short –NN– bridge, usually CuII–tr–MoVI (Tian et al., 2011 ▸; Lysenko et al., 2016 ▸; Senchyk et al., 2017 ▸; Zhu et al., 2012 ▸) but there are some other rare examples including CuI–tr–VIV (Sharga et al., 2010 ▸) and AgI–tr–MoVI (Tian et al., 2017 ▸). This may be realized in the case of constructing SBUs with a terminal N
1-triazole function that has an open site accessible to coordination. We demonstrated this principle in the self-association of AgI–VOF heterobimetallic coordination compounds based on {AgI
2(VVO2F2)2(tr)4} SBUs with bi-1,2,4-triazole ligands with different geometries (Senchyk et al., 2012 ▸). Such units seem to be very favorable and stable, and form even in the presence of a heterobifunctional 1,2,4-triazole-carboxylate ligand (Senchyk et al., 2019 ▸). In the present contribution we extend the library of AgI–VOF compounds, adding the title complex [Ag2(VO2F2)2(tr-CH2Ph)4] (I), which has the ligand 4-benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH2Ph).
Structural commentary
Compound I crystallizes in the monoclinic space group P21/c. Its asymmetric unit contains one AgI cation, one [VVO2F2]− anion and two organic ligands (tr-CH2Ph), which, after inversion across a center of symmetry, form the molecular tetranuclear cluster {AgI 2(VVO2F2)2(tr-CH2Ph)4} (Fig. 1 ▸). Two 1,2,4-triazole ligands bridge two adjacent silver atoms [the Ag⋯Agi distance is 4.2497 (5) Å; symmetry code (i) −x, −y + 1, −z], while the other two link Ag and V centers [the Ag⋯V distance is 3.8044 (6) Å]. Thus, the coordination environment of the AgI cation can be described as [AgN3O] with typical Ag—N(triazole) bond lengths [in the range of 2.197 (2) – 2.390 (3) Å] and a slightly elongated Ag—O bond [2.562 (2) Å] (Table 1 ▸). The VV atom possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N] with V—F [1.828 (2) and 1.8330 (18) Å], two short V—O [1.632 (2) and 1.660 (2) Å] and elongated V—N [2.203 (2) Å] bonds (Table 1 ▸). The geometry of the vanadium oxofluoride polyhedra is characterized by the Reedijk structural parameter τ (Addison et al., 1984 ▸) of 0.59 (for a square-pyramidal geometry, τ = 0 and for trigonal–bipyramidal, τ = 1). A bond-valence-sum calculation for the {VO2F2N} polyhedra confirms the +5 oxidation state for the vanadium atom.
Figure 1.
The molecular structure of compound I, showing the atom-labeling scheme [symmetry code: (i) −x, −y + 1, −z]. Displacement ellipsoids are drawn at the 30% probability level.
Table 1. Selected geometric parameters (Å, °).
| Ag1—N5i | 2.197 (2) | V1—O2 | 1.660 (2) |
| Ag1—N1 | 2.233 (2) | V1—F1 | 1.828 (2) |
| Ag1—N4 | 2.390 (3) | V1—F2 | 1.8330 (18) |
| Ag1—O1 | 2.562 (2) | V1—N2 | 2.203 (2) |
| V1—O1 | 1.632 (2) | ||
| N5i—Ag1—N1 | 140.62 (9) | O1—V1—F2 | 117.63 (10) |
| N5i—Ag1—N4 | 102.45 (9) | O2—V1—F2 | 132.25 (10) |
| N1—Ag1—N4 | 112.90 (9) | F1—V1—F2 | 86.76 (10) |
| N5i—Ag1—O1 | 129.87 (8) | O1—V1—N2 | 87.14 (10) |
| N1—Ag1—O1 | 75.28 (8) | O2—V1—N2 | 88.78 (11) |
| N4—Ag1—O1 | 79.39 (8) | F1—V1—N2 | 167.32 (10) |
| O1—V1—O2 | 108.04 (11) | F2—V1—N2 | 80.59 (9) |
| O1—V1—F1 | 99.57 (11) | V1—O1—Ag1 | 128.89 (11) |
| O2—V1—F1 | 99.21 (13) |
Symmetry code: (i)
.
Supramolecular features
Since the organic ligand contains a hydrophobic benzyl tail, the crystal structure of I involves no solvate water molecules. Thus, the only hydrogen bonds observed are of the type C—H⋯O, C—H⋯F and C—H⋯π contacts (Figs. 2 ▸ and 3 ▸, Table 2 ▸). The central 1,2,4-triazole unit, which bridges two Ag ions, displays intramolecular C10—H10⋯O2 [3.082 (4) Å] and intermolecular C11—H11⋯F1v [2.935 (4) Å, symmetry code (v) −x + 1, −y + 1, −z] hydrogen-bond contacts. The other triazole group, which provides the heterometallic Ag–V linkage, forms bifurcated C—H⋯O and C—H⋯F contacts with vanadium oxofluoride anions of neighboring molecular complexes. Additionally, methylene –CH2– fragments show directed C—H⋯O and C—H⋯F contacts to the VOF fragments. The phenyl rings are here oriented towards each other in an edge-to-face C—H⋯π interaction mode.
Figure 2.
Projection on the bc plane showing the crystal packing of compound I. Vanadium oxofluoride anions are shown as polyhedra. [Atoms are colored as follows: silver – cyan, vanadium – dark green, oxygen – red, fluorine – green, nitrogen – blue, carbon – gray, hydrogen – white.]
Figure 3.
Hydrogen-bonding arrangement in the structure of I showing C—H⋯O and C—H⋯F contacts [symmetry codes: (ii) x − 1, y, z; (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 1, −y + 1, −z; (vi) x, −y +
, z −
.]. Phenyl groups are omitted for clarity.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1⋯O2ii | 0.93 | 2.44 | 3.289 (4) | 153 |
| C1—H1⋯F2iii | 0.93 | 2.63 | 3.108 (4) | 113 |
| C2—H2⋯F1iv | 0.93 | 2.07 | 2.935 (4) | 154 |
| C2—H2⋯F2iv | 0.93 | 2.60 | 3.304 (4) | 133 |
| C3—H3A⋯O1iii | 0.97 | 2.73 | 3.465 (4) | 133 |
| C3—H3B⋯F2iii | 0.97 | 2.37 | 3.006 (4) | 123 |
| C10—H10⋯O2 | 0.93 | 2.16 | 3.082 (4) | 170 |
| C11—H11⋯F1v | 0.93 | 2.07 | 2.935 (4) | 153 |
| C12—H12A⋯O1v | 0.97 | 2.65 | 3.388 (2) | 133 |
| C16—H16⋯O2vi | 0.93 | 2.42 | 3.339 (9) | 172 |
| C18—H18⋯O1v | 0.93 | 2.83 | 3.589 (15) | 139 |
Symmetry codes: (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
Supramolecular interactions in the title structure were studied through Hirshfeld surface analysis (Spackman & Byrom, 1997 ▸; McKinnon et al., 2004 ▸; Hirshfeld, 1977 ▸; Spackman & McKinnon, 2002 ▸), performed with CrystalExplorer17 (Turner et al., 2017 ▸), taking into account only the major contribution of the disordered group. The Hirshfeld surface, mapped over d norm using a fixed color scale of −0.488 (red) to 1.385 (blue) a.u. visualizes the set of shortest intermolecular contacts (Fig. 4 ▸). All of them correspond to the hydrogen-bond interactions, which fall into three categories. The strongest hydrogen bonds to F-atom acceptors are reflected by the most prominent red spots (−0.469 to −0.488 a.u.), whereas a group of medium intensity spots (−0.182 to −0.261 a.u.) identify weaker C—H⋯O bonds with the terminal oxide O2. However, even more distal interactions with the bridging oxide O1 are still distinguishable on the surface, in the form of very diffuse, less intense spots (−0.066 to −0.142 a.u.).
Figure 4.
The Hirshfeld surface of the title compound mapped over d norm in the color range −0.488 (red) to 1.385 (blue) a.u., in the environment of the closest neighbor [symmetry code: −x + 1, −y + 1, −z], with the red spots indicating different kinds of intermolecular interactions.
The contribution of different kinds of interatomic contacts to the Hirshfeld surface is shown in the fingerprint plots in Fig. 5 ▸. A significant fraction of the E⋯H/H⋯E (E = C, N, O, F) contacts (in total 60.1%) suggests the dominant role of the hydrogen-bond interactions. The strongest ones (E = O, F) have a similar nature and they are reflected by pairs of spikes pointing to the lower left of the plot. However, the contribution from the contacts with F-atom acceptors is higher (15.6% for F⋯H/H⋯F and 11.6% for O⋯H/H⋯O) and they are also essentially shorter, as indicated by different lengths of the spikes (the shortest contacts are F⋯H = 2.0 and O⋯H = 2.2 Å). One may suppose that the preferable sites for hydrogen bonding of the vanadium oxofluoride groups are the F atoms. This is consistent with the results of Hirshfeld analysis for the [VOF5]2− anion 4,4′-(propane-1,3-diyl)bis(4H-1,2,4-triazol-1-ium) salt (Senchyk et al., 2020 ▸).
Figure 5.
Two-dimensional fingerprint plots for the title compound, and those delineated into the principal contributions of H⋯H, C⋯H/H⋯C, F⋯H/H⋯F, O⋯H/H⋯O, N⋯H/H⋯N, C⋯C, C⋯N/N⋯C and Ag⋯H/H⋯Ag contacts. Other observed contacts are N⋯N (0.4%), C⋯F/F⋯C (0.1%) and C⋯O/O⋯C (0.1%).
The plots indicate close resemblance of the N⋯H/H⋯N (10.7%) and C⋯H/H⋯C (22.2%) contacts, which appear as pairs of nearly identical, very diffuse and short features (N⋯H = 2.9 and C⋯H = 2.9 Å). Both of them correspond to edge-to-face stacking or C—H⋯π interactions involving either the phenyl or triazole rings. The contribution from mutual π–π interactions of the latter delivers minor fractions of the C⋯C, N⋯N and C⋯N/N⋯C contacts, which account in total for only 2.6%. The shortest contact of this series [C⋯N = 3.5 Å] exceeds the sum of the van der Waals radii [3.25 Å] and π–π interactions are not associated with red spots of the d norm surface. A comparable contribution is due to the distal anagostic contacts Ag⋯H/H⋯Ag (2.9%) with the polarized methylene H atoms. There are no mutual π–π interactions involving phenyl rings, which are responsible for larger fractions of the C⋯C contacts in the case of polycyclic species (Spackman & McKinnon, 2002 ▸).
Database survey
A structure survey was carried out in the Cambridge Structural Database (CSD version 5.43, update of November 2021; Groom et al., 2016 ▸) for 4-benzyl-(4H-1,2,4-triazol-4-yl) and it revealed five hits for coordination compounds based on this ligand. There are no examples of AgI compounds, only two FeII complexes [FAYQAA (Pittala et al., 2017a ▸) and XASVEV (Pittala et al., 2017b ▸)] and three CuII–POM complexes [YUGLIX and YUGLOD (Tian et al., 2015 ▸) and ZUXLAI (Zhang et al., 2020 ▸)]. Moreover, there are no examples of heterometallic connection through an –NN– triazole bridge for the 4-benzyl-(4H-1,2,4-triazol-4-yl) ligand.
Synthesis and crystallization
4-Benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH2Ph) was synthesized by refluxing benzylamine (5.35 g, 50.0 mmol) and dimethylformamide azine (17.75 g, 125.0 mmol) in the presence of toluenesulfonic acid monohydrate (0.86 g, 5.0 mmol) as a catalyst in DMF (30.0 ml).
Compound I was prepared under hydrothermal conditions. A mixture of AgOAc (16.7 mg, 0.100 mmol), tr-CH2Ph (20.7 mg, 0.130 mmol), V2O5 (9.1 mg, 0.050 mmol) and 5 mL of water with aqueous HF (50%, 150 µL, 4.33 mmol) was added into a Teflon vessel. Then the components were heated at 423 K for 24 h and slowly cooled to room temperature over 50 h, yielding light-yellow prisms of I (yield 33.4 mg, 61%).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. For one of the organic ligands, the benzyl linkage (C12–C18) is unequally disordered over two overlapping positions with refined partial contribution factors of 0.68 (3) and 0.32 (3). The major part of the disorder was freely refined anisotropically, while atoms of the minor contributor were refined anisotropically with a restrained geometry for the phenyl ring, rigid-bond restraints applied to the –CH2C6H5 linkage and similarity restraints applied to the closely separated contributions of C12 and C12A, C13 and C13A. H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å (CH) and 0.97 Å (CH2) and with U iso(H) = 1.2U eq(C).
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | [Ag2V2F4O4(C9H9N3)4] |
| M r | 1094.39 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 296 |
| a, b, c (Å) | 7.5484 (2), 21.2439 (6), 12.5910 (4) |
| β (°) | 90.910 (2) |
| V (Å3) | 2018.81 (10) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.48 |
| Crystal size (mm) | 0.27 × 0.14 × 0.12 |
| Data collection | |
| Diffractometer | Bruker APEXII area-detector |
| Absorption correction | multi-scan (SADABS; Bruker, 2008 ▸) |
| T min, T max | 0.657, 0.856 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 22923, 5125, 3468 |
| R int | 0.044 |
| (sin θ/λ)max (Å−1) | 0.676 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.038, 0.078, 1.02 |
| No. of reflections | 5125 |
| No. of parameters | 323 |
| No. of restraints | 65 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.58, −0.42 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001712/dj2039sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001712/dj2039Isup2.hkl
CCDC reference: 2151864
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| [Ag2V2F4O4(C9H9N3)4] | F(000) = 1088 |
| Mr = 1094.39 | Dx = 1.800 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.5484 (2) Å | Cell parameters from 4931 reflections |
| b = 21.2439 (6) Å | θ = 2.5–23.8° |
| c = 12.5910 (4) Å | µ = 1.48 mm−1 |
| β = 90.910 (2)° | T = 296 K |
| V = 2018.81 (10) Å3 | Block, colorless |
| Z = 2 | 0.27 × 0.14 × 0.12 mm |
Data collection
| Bruker APEXII area-detector diffractometer | 3468 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.044 |
| ω scans | θmax = 28.7°, θmin = 1.9° |
| Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→10 |
| Tmin = 0.657, Tmax = 0.856 | k = −26→28 |
| 22923 measured reflections | l = −16→14 |
| 5125 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.078 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0194P)2 + 2.1764P] where P = (Fo2 + 2Fc2)/3 |
| 5125 reflections | (Δ/σ)max = 0.001 |
| 323 parameters | Δρmax = 0.58 e Å−3 |
| 65 restraints | Δρmin = −0.42 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Ag1 | 0.00892 (3) | 0.49751 (2) | 0.16871 (2) | 0.04174 (9) | |
| V1 | 0.43103 (7) | 0.48341 (2) | 0.33615 (4) | 0.03165 (13) | |
| F1 | 0.6173 (3) | 0.42871 (13) | 0.32820 (16) | 0.0802 (8) | |
| F2 | 0.3957 (2) | 0.45217 (9) | 0.46985 (15) | 0.0471 (5) | |
| O1 | 0.3065 (3) | 0.45593 (10) | 0.23966 (17) | 0.0407 (5) | |
| O2 | 0.5296 (3) | 0.54823 (11) | 0.29314 (16) | 0.0424 (6) | |
| N1 | 0.0417 (3) | 0.54163 (12) | 0.32878 (19) | 0.0315 (6) | |
| N2 | 0.2025 (3) | 0.54132 (11) | 0.38181 (19) | 0.0301 (6) | |
| N3 | 0.0147 (3) | 0.59315 (11) | 0.47783 (18) | 0.0292 (6) | |
| N4 | 0.2055 (4) | 0.54025 (13) | 0.0405 (2) | 0.0386 (6) | |
| N5 | 0.1929 (3) | 0.54905 (12) | −0.06853 (19) | 0.0345 (6) | |
| N6 | 0.4464 (3) | 0.58619 (12) | −0.0125 (2) | 0.0342 (6) | |
| C1 | −0.0684 (4) | 0.57241 (14) | 0.3893 (2) | 0.0337 (7) | |
| H1 | −0.1876 | 0.5790 | 0.3732 | 0.040* | |
| C2 | 0.1821 (4) | 0.57219 (14) | 0.4702 (2) | 0.0328 (7) | |
| H2 | 0.2710 | 0.5788 | 0.5209 | 0.039* | |
| C3 | −0.0650 (4) | 0.62351 (15) | 0.5708 (2) | 0.0400 (8) | |
| H3A | −0.0579 | 0.5945 | 0.6301 | 0.048* | |
| H3B | −0.1896 | 0.6308 | 0.5552 | 0.048* | |
| C4 | 0.0174 (4) | 0.68457 (14) | 0.6044 (2) | 0.0308 (7) | |
| C5 | 0.0024 (5) | 0.73774 (17) | 0.5430 (3) | 0.0490 (9) | |
| H5 | −0.0493 | 0.7354 | 0.4756 | 0.059* | |
| C6 | 0.0646 (6) | 0.79525 (19) | 0.5816 (4) | 0.0696 (13) | |
| H6 | 0.0537 | 0.8314 | 0.5403 | 0.084* | |
| C7 | 0.1417 (6) | 0.7982 (2) | 0.6806 (5) | 0.0775 (15) | |
| H7 | 0.1817 | 0.8367 | 0.7068 | 0.093* | |
| C8 | 0.1607 (6) | 0.7456 (3) | 0.7410 (4) | 0.0752 (14) | |
| H8 | 0.2152 | 0.7479 | 0.8076 | 0.090* | |
| C9 | 0.0986 (5) | 0.68877 (19) | 0.7030 (3) | 0.0517 (10) | |
| H9 | 0.1118 | 0.6528 | 0.7444 | 0.062* | |
| C10 | 0.3594 (4) | 0.56283 (15) | 0.0704 (2) | 0.0385 (8) | |
| H10 | 0.4025 | 0.5627 | 0.1400 | 0.046* | |
| C11 | 0.3391 (4) | 0.57667 (15) | −0.0972 (2) | 0.0369 (7) | |
| H11 | 0.3652 | 0.5881 | −0.1665 | 0.044* | |
| C12 | 0.6224 (7) | 0.6171 (4) | −0.0050 (16) | 0.040 (3) | 0.68 (3) |
| H12A | 0.7076 | 0.5936 | −0.0462 | 0.048* | 0.68 (3) |
| H12B | 0.6633 | 0.6178 | 0.0684 | 0.048* | 0.68 (3) |
| C13 | 0.608 (2) | 0.6830 (4) | −0.0465 (10) | 0.0356 (18) | 0.68 (3) |
| C14 | 0.5342 (18) | 0.7259 (6) | 0.0216 (12) | 0.049 (2) | 0.68 (3) |
| H14 | 0.4990 | 0.7131 | 0.0887 | 0.058* | 0.68 (3) |
| C15 | 0.5119 (14) | 0.7881 (5) | −0.009 (2) | 0.068 (4) | 0.68 (3) |
| H15 | 0.4623 | 0.8171 | 0.0370 | 0.081* | 0.68 (3) |
| C16 | 0.5640 (18) | 0.8063 (5) | −0.1083 (18) | 0.065 (5) | 0.68 (3) |
| H16 | 0.5470 | 0.8478 | −0.1295 | 0.078* | 0.68 (3) |
| C17 | 0.639 (2) | 0.7654 (8) | −0.1755 (12) | 0.072 (4) | 0.68 (3) |
| H17 | 0.6767 | 0.7787 | −0.2417 | 0.086* | 0.68 (3) |
| C18 | 0.660 (2) | 0.7029 (7) | −0.1450 (11) | 0.057 (3) | 0.68 (3) |
| H18 | 0.7102 | 0.6743 | −0.1917 | 0.069* | 0.68 (3) |
| C12A | 0.6197 (12) | 0.6178 (8) | −0.026 (3) | 0.034 (4) | 0.32 (3) |
| H12C | 0.6862 | 0.5951 | −0.0794 | 0.041* | 0.32 (3) |
| H12D | 0.6862 | 0.6157 | 0.0400 | 0.041* | 0.32 (3) |
| C13A | 0.605 (4) | 0.6853 (8) | −0.060 (2) | 0.035 (4) | 0.32 (3) |
| C14A | 0.530 (3) | 0.7370 (10) | −0.0096 (18) | 0.038 (4) | 0.32 (3) |
| H14A | 0.4803 | 0.7324 | 0.0570 | 0.046* | 0.32 (3) |
| C15A | 0.530 (2) | 0.7955 (8) | −0.059 (2) | 0.048 (5) | 0.32 (3) |
| H15A | 0.4797 | 0.8300 | −0.0254 | 0.057* | 0.32 (3) |
| C16A | 0.604 (2) | 0.8023 (6) | −0.1587 (19) | 0.047 (4) | 0.32 (3) |
| H16A | 0.6038 | 0.8415 | −0.1917 | 0.056* | 0.32 (3) |
| C17A | 0.679 (3) | 0.7507 (8) | −0.2089 (17) | 0.044 (4) | 0.32 (3) |
| H17A | 0.7284 | 0.7553 | −0.2755 | 0.053* | 0.32 (3) |
| C18A | 0.679 (4) | 0.6922 (7) | −0.159 (2) | 0.039 (5) | 0.32 (3) |
| H18A | 0.7289 | 0.6576 | −0.1931 | 0.046* | 0.32 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ag1 | 0.04650 (15) | 0.04865 (17) | 0.02972 (13) | −0.00637 (12) | −0.01010 (10) | −0.00375 (12) |
| V1 | 0.0375 (3) | 0.0324 (3) | 0.0249 (3) | 0.0025 (2) | −0.0031 (2) | 0.0009 (2) |
| F1 | 0.0848 (17) | 0.121 (2) | 0.0337 (12) | 0.0688 (16) | −0.0171 (12) | −0.0150 (13) |
| F2 | 0.0453 (11) | 0.0559 (13) | 0.0398 (11) | −0.0063 (9) | −0.0038 (9) | 0.0181 (9) |
| O1 | 0.0490 (14) | 0.0397 (13) | 0.0330 (12) | 0.0045 (10) | −0.0085 (11) | −0.0072 (10) |
| O2 | 0.0326 (12) | 0.0692 (16) | 0.0253 (11) | −0.0118 (11) | −0.0045 (10) | 0.0048 (11) |
| N1 | 0.0264 (13) | 0.0414 (16) | 0.0264 (13) | −0.0014 (11) | −0.0060 (11) | −0.0052 (11) |
| N2 | 0.0282 (13) | 0.0329 (14) | 0.0290 (14) | 0.0001 (11) | −0.0083 (11) | −0.0044 (11) |
| N3 | 0.0341 (14) | 0.0300 (14) | 0.0235 (14) | −0.0013 (11) | −0.0001 (11) | −0.0039 (10) |
| N4 | 0.0502 (17) | 0.0411 (16) | 0.0242 (14) | −0.0115 (13) | −0.0049 (12) | 0.0053 (12) |
| N5 | 0.0402 (15) | 0.0408 (16) | 0.0223 (13) | −0.0068 (12) | −0.0028 (12) | −0.0022 (11) |
| N6 | 0.0363 (14) | 0.0373 (15) | 0.0287 (14) | −0.0043 (11) | −0.0056 (12) | 0.0021 (11) |
| C1 | 0.0256 (16) | 0.0412 (19) | 0.0341 (17) | 0.0004 (13) | −0.0084 (14) | −0.0044 (14) |
| C2 | 0.0309 (16) | 0.0373 (18) | 0.0300 (17) | 0.0005 (13) | −0.0085 (14) | −0.0051 (14) |
| C3 | 0.047 (2) | 0.0395 (19) | 0.0337 (18) | −0.0056 (15) | 0.0107 (16) | −0.0084 (15) |
| C4 | 0.0270 (16) | 0.0316 (17) | 0.0339 (17) | 0.0017 (13) | 0.0031 (13) | −0.0065 (13) |
| C5 | 0.046 (2) | 0.046 (2) | 0.055 (2) | −0.0040 (17) | −0.0043 (18) | 0.0073 (18) |
| C6 | 0.062 (3) | 0.037 (2) | 0.110 (4) | −0.004 (2) | 0.013 (3) | 0.009 (2) |
| C7 | 0.070 (3) | 0.062 (3) | 0.101 (4) | −0.024 (2) | 0.023 (3) | −0.043 (3) |
| C8 | 0.067 (3) | 0.105 (4) | 0.053 (3) | −0.028 (3) | 0.001 (2) | −0.034 (3) |
| C9 | 0.054 (2) | 0.062 (3) | 0.039 (2) | −0.0041 (19) | −0.0045 (18) | −0.0032 (18) |
| C10 | 0.052 (2) | 0.0395 (19) | 0.0239 (16) | −0.0072 (16) | −0.0098 (15) | 0.0055 (14) |
| C11 | 0.0428 (19) | 0.046 (2) | 0.0220 (16) | −0.0028 (16) | −0.0040 (14) | 0.0020 (14) |
| C12 | 0.036 (3) | 0.049 (3) | 0.036 (8) | −0.008 (3) | −0.010 (3) | 0.006 (3) |
| C13 | 0.031 (3) | 0.036 (3) | 0.040 (4) | −0.008 (3) | −0.008 (3) | −0.004 (3) |
| C14 | 0.046 (4) | 0.049 (5) | 0.052 (5) | 0.001 (4) | −0.003 (4) | −0.003 (4) |
| C15 | 0.046 (4) | 0.042 (5) | 0.115 (12) | 0.002 (3) | −0.008 (6) | −0.012 (6) |
| C16 | 0.052 (6) | 0.050 (5) | 0.093 (13) | −0.016 (4) | −0.022 (7) | 0.033 (6) |
| C17 | 0.080 (9) | 0.081 (9) | 0.053 (7) | −0.027 (7) | −0.009 (5) | 0.019 (6) |
| C18 | 0.066 (8) | 0.054 (5) | 0.052 (6) | −0.017 (5) | −0.005 (5) | −0.008 (5) |
| C12A | 0.037 (6) | 0.046 (5) | 0.020 (9) | 0.001 (5) | −0.009 (4) | 0.003 (4) |
| C13A | 0.035 (6) | 0.032 (5) | 0.037 (7) | −0.004 (5) | −0.005 (6) | −0.001 (5) |
| C14A | 0.034 (7) | 0.044 (8) | 0.036 (9) | −0.004 (5) | 0.001 (7) | 0.004 (6) |
| C15A | 0.061 (11) | 0.035 (8) | 0.048 (11) | 0.005 (7) | 0.004 (9) | −0.001 (7) |
| C16A | 0.045 (9) | 0.040 (7) | 0.055 (10) | −0.010 (6) | 0.002 (7) | 0.005 (7) |
| C17A | 0.047 (9) | 0.036 (7) | 0.050 (9) | −0.006 (5) | 0.005 (6) | 0.000 (6) |
| C18A | 0.048 (10) | 0.036 (7) | 0.032 (8) | −0.010 (6) | 0.004 (6) | 0.002 (5) |
Geometric parameters (Å, º)
| Ag1—N5i | 2.197 (2) | C7—H7 | 0.9300 |
| Ag1—N1 | 2.233 (2) | C8—C9 | 1.378 (6) |
| Ag1—N4 | 2.390 (3) | C8—H8 | 0.9300 |
| Ag1—O1 | 2.562 (2) | C9—H9 | 0.9300 |
| V1—O1 | 1.632 (2) | C10—H10 | 0.9300 |
| V1—O2 | 1.660 (2) | C11—H11 | 0.9300 |
| V1—F1 | 1.828 (2) | C12—C13 | 1.497 (5) |
| V1—F2 | 1.8330 (18) | C12—H12A | 0.9700 |
| V1—N2 | 2.203 (2) | C12—H12B | 0.9700 |
| N1—C1 | 1.311 (4) | C13—C18 | 1.374 (9) |
| N1—N2 | 1.376 (3) | C13—C14 | 1.375 (8) |
| N2—C2 | 1.303 (4) | C14—C15 | 1.386 (11) |
| N3—C1 | 1.345 (4) | C14—H14 | 0.9300 |
| N3—C2 | 1.345 (4) | C15—C16 | 1.371 (12) |
| N3—C3 | 1.473 (4) | C15—H15 | 0.9300 |
| N4—C10 | 1.306 (4) | C16—C17 | 1.344 (13) |
| N4—N5 | 1.387 (3) | C16—H16 | 0.9300 |
| N5—C11 | 1.306 (4) | C17—C18 | 1.390 (11) |
| N5—Ag1i | 2.197 (2) | C17—H17 | 0.9300 |
| N6—C10 | 1.339 (4) | C18—H18 | 0.9300 |
| N6—C11 | 1.344 (4) | C12A—C13A | 1.497 (6) |
| N6—C12A | 1.484 (5) | C12A—H12C | 0.9700 |
| N6—C12 | 1.484 (5) | C12A—H12D | 0.9700 |
| C1—H1 | 0.9300 | C13A—C14A | 1.3900 |
| C2—H2 | 0.9300 | C13A—C18A | 1.3900 |
| C3—C4 | 1.497 (4) | C14A—C15A | 1.3900 |
| C3—H3A | 0.9700 | C14A—H14A | 0.9300 |
| C3—H3B | 0.9700 | C15A—C16A | 1.3900 |
| C4—C5 | 1.372 (5) | C15A—H15A | 0.9300 |
| C4—C9 | 1.378 (4) | C16A—C17A | 1.3900 |
| C5—C6 | 1.393 (5) | C16A—H16A | 0.9300 |
| C5—H5 | 0.9300 | C17A—C18A | 1.3900 |
| C6—C7 | 1.369 (6) | C17A—H17A | 0.9300 |
| C6—H6 | 0.9300 | C18A—H18A | 0.9300 |
| C7—C8 | 1.358 (7) | ||
| N5i—Ag1—N1 | 140.62 (9) | C7—C8—C9 | 119.6 (4) |
| N5i—Ag1—N4 | 102.45 (9) | C7—C8—H8 | 120.2 |
| N1—Ag1—N4 | 112.90 (9) | C9—C8—H8 | 120.2 |
| N5i—Ag1—O1 | 129.87 (8) | C8—C9—C4 | 120.9 (4) |
| N1—Ag1—O1 | 75.28 (8) | C8—C9—H9 | 119.6 |
| N4—Ag1—O1 | 79.39 (8) | C4—C9—H9 | 119.6 |
| O1—V1—O2 | 108.04 (11) | N4—C10—N6 | 110.8 (3) |
| O1—V1—F1 | 99.57 (11) | N4—C10—H10 | 124.6 |
| O2—V1—F1 | 99.21 (13) | N6—C10—H10 | 124.6 |
| O1—V1—F2 | 117.63 (10) | N5—C11—N6 | 110.5 (3) |
| O2—V1—F2 | 132.25 (10) | N5—C11—H11 | 124.8 |
| F1—V1—F2 | 86.76 (10) | N6—C11—H11 | 124.8 |
| O1—V1—N2 | 87.14 (10) | N6—C12—C13 | 109.3 (8) |
| O2—V1—N2 | 88.78 (11) | N6—C12—H12A | 109.8 |
| F1—V1—N2 | 167.32 (10) | C13—C12—H12A | 109.8 |
| F2—V1—N2 | 80.59 (9) | N6—C12—H12B | 109.8 |
| V1—O1—Ag1 | 128.89 (11) | C13—C12—H12B | 109.8 |
| C1—N1—N2 | 106.4 (2) | H12A—C12—H12B | 108.3 |
| C1—N1—Ag1 | 132.19 (19) | C18—C13—C14 | 118.9 (7) |
| N2—N1—Ag1 | 121.35 (18) | C18—C13—C12 | 125.6 (13) |
| C2—N2—N1 | 107.3 (2) | C14—C13—C12 | 115.5 (13) |
| C2—N2—V1 | 127.4 (2) | C13—C14—C15 | 120.4 (8) |
| N1—N2—V1 | 124.36 (18) | C13—C14—H14 | 119.8 |
| C1—N3—C2 | 105.0 (2) | C15—C14—H14 | 119.8 |
| C1—N3—C3 | 127.7 (3) | C16—C15—C14 | 119.2 (9) |
| C2—N3—C3 | 126.7 (3) | C16—C15—H15 | 120.4 |
| C10—N4—N5 | 106.5 (2) | C14—C15—H15 | 120.4 |
| C10—N4—Ag1 | 120.2 (2) | C17—C16—C15 | 121.4 (8) |
| N5—N4—Ag1 | 133.30 (19) | C17—C16—H16 | 119.3 |
| C11—N5—N4 | 106.8 (2) | C15—C16—H16 | 119.3 |
| C11—N5—Ag1i | 128.7 (2) | C16—C17—C18 | 119.4 (8) |
| N4—N5—Ag1i | 122.94 (19) | C16—C17—H17 | 120.3 |
| C10—N6—C11 | 105.4 (3) | C18—C17—H17 | 120.3 |
| C10—N6—C12A | 134.8 (15) | C13—C18—C17 | 120.7 (9) |
| C11—N6—C12A | 119.7 (15) | C13—C18—H18 | 119.7 |
| C10—N6—C12 | 124.3 (8) | C17—C18—H18 | 119.7 |
| C11—N6—C12 | 130.2 (7) | N6—C12A—C13A | 113.8 (16) |
| N1—C1—N3 | 110.7 (3) | N6—C12A—H12C | 108.8 |
| N1—C1—H1 | 124.6 | C13A—C12A—H12C | 108.8 |
| N3—C1—H1 | 124.6 | N6—C12A—H12D | 108.8 |
| N2—C2—N3 | 110.6 (3) | C13A—C12A—H12D | 108.8 |
| N2—C2—H2 | 124.7 | H12C—C12A—H12D | 107.7 |
| N3—C2—H2 | 124.7 | C14A—C13A—C18A | 120.0 |
| N3—C3—C4 | 115.5 (3) | C14A—C13A—C12A | 131.1 (18) |
| N3—C3—H3A | 108.4 | C18A—C13A—C12A | 108.9 (19) |
| C4—C3—H3A | 108.4 | C13A—C14A—C15A | 120.0 |
| N3—C3—H3B | 108.4 | C13A—C14A—H14A | 120.0 |
| C4—C3—H3B | 108.4 | C15A—C14A—H14A | 120.0 |
| H3A—C3—H3B | 107.5 | C16A—C15A—C14A | 120.0 |
| C5—C4—C9 | 119.0 (3) | C16A—C15A—H15A | 120.0 |
| C5—C4—C3 | 121.6 (3) | C14A—C15A—H15A | 120.0 |
| C9—C4—C3 | 119.2 (3) | C15A—C16A—C17A | 120.0 |
| C4—C5—C6 | 120.1 (4) | C15A—C16A—H16A | 120.0 |
| C4—C5—H5 | 120.0 | C17A—C16A—H16A | 120.0 |
| C6—C5—H5 | 120.0 | C18A—C17A—C16A | 120.0 |
| C7—C6—C5 | 119.6 (4) | C18A—C17A—H17A | 120.0 |
| C7—C6—H6 | 120.2 | C16A—C17A—H17A | 120.0 |
| C5—C6—H6 | 120.2 | C17A—C18A—C13A | 120.0 |
| C8—C7—C6 | 120.8 (4) | C17A—C18A—H18A | 120.0 |
| C8—C7—H7 | 119.6 | C13A—C18A—H18A | 120.0 |
| C6—C7—H7 | 119.6 | ||
| O2—V1—O1—Ag1 | −74.41 (17) | Ag1—N4—C10—N6 | −178.0 (2) |
| F1—V1—O1—Ag1 | −177.46 (15) | C11—N6—C10—N4 | −0.4 (4) |
| F2—V1—O1—Ag1 | 91.19 (15) | C12A—N6—C10—N4 | 178.8 (12) |
| N2—V1—O1—Ag1 | 13.37 (14) | C12—N6—C10—N4 | 178.0 (6) |
| C1—N1—N2—C2 | −0.7 (3) | N4—N5—C11—N6 | 0.1 (4) |
| Ag1—N1—N2—C2 | 177.7 (2) | Ag1i—N5—C11—N6 | −165.5 (2) |
| C1—N1—N2—V1 | 168.9 (2) | C10—N6—C11—N5 | 0.2 (4) |
| Ag1—N1—N2—V1 | −12.7 (3) | C12A—N6—C11—N5 | −179.2 (10) |
| C10—N4—N5—C11 | −0.4 (4) | C12—N6—C11—N5 | −178.1 (7) |
| Ag1—N4—N5—C11 | 177.9 (2) | C10—N6—C12—C13 | −120.7 (10) |
| C10—N4—N5—Ag1i | 166.2 (2) | C11—N6—C12—C13 | 57.3 (15) |
| Ag1—N4—N5—Ag1i | −15.5 (4) | N6—C12—C13—C18 | −101.7 (13) |
| N2—N1—C1—N3 | 1.3 (3) | N6—C12—C13—C14 | 77.8 (15) |
| Ag1—N1—C1—N3 | −176.8 (2) | C18—C13—C14—C15 | 0.4 (10) |
| C2—N3—C1—N1 | −1.4 (3) | C12—C13—C14—C15 | −179.1 (13) |
| C3—N3—C1—N1 | −172.8 (3) | C13—C14—C15—C16 | 0.1 (13) |
| N1—N2—C2—N3 | −0.2 (3) | C14—C15—C16—C17 | −1.3 (15) |
| V1—N2—C2—N3 | −169.37 (19) | C15—C16—C17—C18 | 1.8 (15) |
| C1—N3—C2—N2 | 1.0 (3) | C14—C13—C18—C17 | 0.0 (10) |
| C3—N3—C2—N2 | 172.5 (3) | C12—C13—C18—C17 | 179.5 (15) |
| C1—N3—C3—C4 | −128.2 (3) | C16—C17—C18—C13 | −1.1 (13) |
| C2—N3—C3—C4 | 62.2 (4) | C10—N6—C12A—C13A | −113 (2) |
| N3—C3—C4—C5 | 68.5 (4) | C11—N6—C12A—C13A | 66 (3) |
| N3—C3—C4—C9 | −116.6 (3) | N6—C12A—C13A—C14A | 62 (4) |
| C9—C4—C5—C6 | −1.7 (5) | N6—C12A—C13A—C18A | −117 (2) |
| C3—C4—C5—C6 | 173.3 (3) | C18A—C13A—C14A—C15A | 0.0 |
| C4—C5—C6—C7 | 0.5 (6) | C12A—C13A—C14A—C15A | −179 (3) |
| C5—C6—C7—C8 | 0.9 (7) | C13A—C14A—C15A—C16A | 0.0 |
| C6—C7—C8—C9 | −1.1 (7) | C14A—C15A—C16A—C17A | 0.0 |
| C7—C8—C9—C4 | −0.1 (7) | C15A—C16A—C17A—C18A | 0.0 |
| C5—C4—C9—C8 | 1.5 (5) | C16A—C17A—C18A—C13A | 0.0 |
| C3—C4—C9—C8 | −173.6 (4) | C14A—C13A—C18A—C17A | 0.0 |
| N5—N4—C10—N6 | 0.5 (4) | C12A—C13A—C18A—C17A | 179 (2) |
Symmetry code: (i) −x, −y+1, −z.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1···O2ii | 0.93 | 2.44 | 3.289 (4) | 153 |
| C1—H1···F2iii | 0.93 | 2.63 | 3.108 (4) | 113 |
| C2—H2···F1iv | 0.93 | 2.07 | 2.935 (4) | 154 |
| C2—H2···F2iv | 0.93 | 2.60 | 3.304 (4) | 133 |
| C3—H3A···O1iii | 0.97 | 2.73 | 3.465 (4) | 133 |
| C3—H3B···F2iii | 0.97 | 2.37 | 3.006 (4) | 123 |
| C10—H10···O2 | 0.93 | 2.16 | 3.082 (4) | 170 |
| C11—H11···F1v | 0.93 | 2.07 | 2.935 (4) | 153 |
| C12—H12A···O1v | 0.97 | 2.65 | 3.388 (2) | 133 |
| C16—H16···O2vi | 0.93 | 2.42 | 3.339 (9) | 172 |
| C18—H18···O1v | 0.93 | 2.83 | 3.589 (15) | 139 |
Symmetry codes: (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z; (vi) x, −y+3/2, z−1/2.
Funding Statement
This work was funded by National Research Foundation of Ukraine grant Project No. 2020.20/0071.
References
- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Albrecht, T. A., Sauvage, F., Bodenez, V., Tarascon, J.-M. & Poeppelmeier, K. R. (2009). Chem. Mater. 21, 3017–3020.
- Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chamberlain, J. M., Albrecht, T. A., Lesage, J., Sauvage, F., Stern, C. L. & Poeppelmeier, K. R. (2010). Cryst. Growth Des. 10, 4868–4873.
- Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.
- Lysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2016). Inorg. Chem. 55, 239–250. [DOI] [PubMed]
- McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
- Monakhov, K. Yu., Bensch, W. & Kögerler, P. (2015). Chem. Soc. Rev. 44, 8443–8483. [DOI] [PubMed]
- Pittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017a). Chem. Commun. 53, 8356–8359. [DOI] [PubMed]
- Pittala, N., Thétiot, F., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017b). Chem. Mater. 29, 490–494. [DOI] [PubMed]
- Senchyk, G. A., Bukhan’ko, V. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernega, A. N., Karbowiak, M. & Domasevitch, K. V. (2012). Inorg. Chem. 51, 8025–8033. [DOI] [PubMed]
- Senchyk, G. A., Lysenko, A. B., Domasevitch, K. V., Erhart, O., Henfling, S., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2017). Inorg. Chem. 56, 12952–12966. [DOI] [PubMed]
- Senchyk, G. A., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2020). Acta Cryst. E76, 780–784. [DOI] [PMC free article] [PubMed]
- Senchyk, G. A., Lysenko, A. B., Rusanov, E. B. & Domasevitch, K. V. (2019). Acta Cryst. E75, 808–811. [DOI] [PMC free article] [PubMed]
- Sharga, O. V., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2010). Acta Cryst. C66, m269–m272. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Sorensen, E. M., Izumi, H. K., Vaughey, J. T., Stern, C. L. & Poeppelmeier, K. R. (2005). J. Am. Chem. Soc. 127, 6347–6352. [DOI] [PubMed]
- Spackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215–220.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Tian, A., Liu, X., Ying, J., Zhu, D., Wang, X. & Peng, J. (2011). CrystEngComm, 13, 6680–6686.
- Tian, A., Ni, H., Ji, X., Tian, Y., Liu, G. & Ying, J. (2017). RSC Adv. 7, 30573–30581.
- Tian, A.-X., Ning, Y.-L., Ying, J., Liu, G.-C., Hou, X., Li, T.-J. & Wang, X.-L. (2015). CrystEngComm, 17, 5569–5578.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://crystalexplorer.scb.uwa.edu.au/
- Zhang, B., Ying, J., Zhang, X., Wang, C. & Tian, A. (2020). New J. Chem. 44, 18074–18083.
- Zhu, M., Su, S.-Q., Song, X.-Z., Hao, Z.-M., Song, S.-Y. & Zhang, H.-J. (2012). Dalton Trans. 41, 13267–13270. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001712/dj2039sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001712/dj2039Isup2.hkl
CCDC reference: 2151864
Additional supporting information: crystallographic information; 3D view; checkCIF report





