Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Mar 15;78(Pt 4):399–403. doi: 10.1107/S2056989022001712

Crystal structure of tetra­kis­(μ-4-benzyl-4H-1,2,4-triazole-κ2 N 1:N 2)tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V)

Ganna A Senchyk a,*, Andrey B Lysenko a, Eduard B Rusanov b, Kostiantyn V Domasevitch a
PMCID: PMC8983979  PMID: 35492271

The title heterobimetallic silver(I)–vanadium(V) oxide-fluoride compound is built on the {Ag2(VO2F2)2(tr)4} secondary building unit supported by 1,2,4-triazole ligands [4-benzyl-(4H-1,2,4-triazol-4-yl)].

Keywords: silver(I); vanadium(V) oxofluoride; 1,2,4-triazole; Hirshfeld surface analysis; crystal structure

Abstract

The crystal structure of the title compound, [Ag2(VO2F2)2(C9H9N3)4], is presented. The mol­ecular complex is based on the heterobimetallic AgI—VV fragment {AgI 2(VVO2F2)2(tr)4} supported by four 1,2,4-triazole ligands [4-benzyl-(4H-1,2,4-triazol-4-yl)]. The triazole functional group demonstrates homo- and heterometallic connectivity (Ag—Ag and Ag—V) of the metal centers through the [–NN–] double and single bridges, respectively. The vanadium atom possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N] with the Reedijk structural parameter τ = 0.59. In the crystal, C—H⋯O and C—H⋯F hydrogen bonds as well as C—H⋯π contacts are observed involving the organic ligands and the vanadium oxofluoride anions. A Hirshfeld surface analysis of the hydrogen-bonding inter­actions is also described.

Chemical context

There is considerable inter­est in the chemistry of organic–inorganic hybrids, including the vanadium oxide–fluoride (VOF) matrix, which is motivated by the numerous potential applications in catalysis, magnetism, optics, etc. (Dolbecq et al., 2010; Monakhov et al., 2015). Incorporation of silver(I) in VOF solid can afford materials such as Ag4V2O6F2 (Sorensen et al., 2005; Albrecht et al., 2009) and Ag3VO2F4 (Chamberlain et al., 2010), which are attractive candidates for solid-state battery technologies. The formation of AgI–VOF heterobimetallic secondary building units (SBUs) in coordination compounds remains a non-trivial challenge. The 1,2,4-triazole heterocycle, as a functional group, demonstrates a favorable coordination affinity towards AgI cations, connecting them into polynuclear units (Aromí et al., 2011). At the same time, it possesses a hidden capability to bind two different metal ions through a short –NN– bridge, usually CuIItr–MoVI (Tian et al., 2011; Lysenko et al., 2016; Senchyk et al., 2017; Zhu et al., 2012) but there are some other rare examples including CuItr–VIV (Sharga et al., 2010) and AgItr–MoVI (Tian et al., 2017). This may be realized in the case of constructing SBUs with a terminal N 1-triazole function that has an open site accessible to coordination. We demonstrated this principle in the self-association of AgI–VOF heterobimetallic coordination compounds based on {AgI 2(VVO2F2)2(tr)4} SBUs with bi-1,2,4-triazole ligands with different geometries (Senchyk et al., 2012). Such units seem to be very favorable and stable, and form even in the presence of a heterobifunctional 1,2,4-triazole-carboxyl­ate ligand (Senchyk et al., 2019). In the present contribution we extend the library of AgI–VOF compounds, adding the title complex [Ag2(VO2F2)2(tr-CH2Ph)4] (I), which has the ligand 4-benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH2Ph). graphic file with name e-78-00399-scheme1.jpg

Structural commentary

Compound I crystallizes in the monoclinic space group P21/c. Its asymmetric unit contains one AgI cation, one [VVO2F2] anion and two organic ligands (tr-CH2Ph), which, after inversion across a center of symmetry, form the mol­ecular tetra­nuclear cluster {AgI 2(VVO2F2)2(tr-CH2Ph)4} (Fig. 1). Two 1,2,4-triazole ligands bridge two adjacent silver atoms [the Ag⋯Agi distance is 4.2497 (5) Å; symmetry code (i) −x, −y + 1, −z], while the other two link Ag and V centers [the Ag⋯V distance is 3.8044 (6) Å]. Thus, the coordination environment of the AgI cation can be described as [AgN3O] with typical Ag—N(triazole) bond lengths [in the range of 2.197 (2) – 2.390 (3) Å] and a slightly elongated Ag—O bond [2.562 (2) Å] (Table 1). The VV atom possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N] with V—F [1.828 (2) and 1.8330 (18) Å], two short V—O [1.632 (2) and 1.660 (2) Å] and elongated V—N [2.203 (2) Å] bonds (Table 1). The geometry of the vanadium oxofluoride polyhedra is characterized by the Reedijk structural parameter τ (Addison et al., 1984) of 0.59 (for a square-pyramidal geometry, τ = 0 and for trigonal–bipyramidal, τ = 1). A bond-valence-sum calculation for the {VO2F2N} polyhedra confirms the +5 oxidation state for the vanadium atom.

Figure 1.

Figure 1

The mol­ecular structure of compound I, showing the atom-labeling scheme [symmetry code: (i) −x, −y + 1, −z]. Displacement ellipsoids are drawn at the 30% probability level.

Table 1. Selected geometric parameters (Å, °).

Ag1—N5i 2.197 (2) V1—O2 1.660 (2)
Ag1—N1 2.233 (2) V1—F1 1.828 (2)
Ag1—N4 2.390 (3) V1—F2 1.8330 (18)
Ag1—O1 2.562 (2) V1—N2 2.203 (2)
V1—O1 1.632 (2)    
       
N5i—Ag1—N1 140.62 (9) O1—V1—F2 117.63 (10)
N5i—Ag1—N4 102.45 (9) O2—V1—F2 132.25 (10)
N1—Ag1—N4 112.90 (9) F1—V1—F2 86.76 (10)
N5i—Ag1—O1 129.87 (8) O1—V1—N2 87.14 (10)
N1—Ag1—O1 75.28 (8) O2—V1—N2 88.78 (11)
N4—Ag1—O1 79.39 (8) F1—V1—N2 167.32 (10)
O1—V1—O2 108.04 (11) F2—V1—N2 80.59 (9)
O1—V1—F1 99.57 (11) V1—O1—Ag1 128.89 (11)
O2—V1—F1 99.21 (13)    

Symmetry code: (i) Inline graphic .

Supra­molecular features

Since the organic ligand contains a hydro­phobic benzyl tail, the crystal structure of I involves no solvate water mol­ecules. Thus, the only hydrogen bonds observed are of the type C—H⋯O, C—H⋯F and C—H⋯π contacts (Figs. 2 and 3, Table 2). The central 1,2,4-triazole unit, which bridges two Ag ions, displays intra­molecular C10—H10⋯O2 [3.082 (4) Å] and inter­molecular C11—H11⋯F1v [2.935 (4) Å, symmetry code (v) −x + 1, −y + 1, −z] hydrogen-bond contacts. The other triazole group, which provides the heterometallic Ag–V linkage, forms bifurcated C—H⋯O and C—H⋯F contacts with vanadium oxofluoride anions of neighboring mol­ecular complexes. Additionally, methyl­ene –CH2– fragments show directed C—H⋯O and C—H⋯F contacts to the VOF fragments. The phenyl rings are here oriented towards each other in an edge-to-face C—H⋯π inter­action mode.

Figure 2.

Figure 2

Projection on the bc plane showing the crystal packing of compound I. Vanadium oxofluoride anions are shown as polyhedra. [Atoms are colored as follows: silver – cyan, vanadium – dark green, oxygen – red, fluorine – green, nitro­gen – blue, carbon – gray, hydrogen – white.]

Figure 3.

Figure 3

Hydrogen-bonding arrangement in the structure of I showing C—H⋯O and C—H⋯F contacts [symmetry codes: (ii) x − 1, y, z; (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 1, −y + 1, −z; (vi) x, −y +  Inline graphic , z −  Inline graphic .]. Phenyl groups are omitted for clarity.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2ii 0.93 2.44 3.289 (4) 153
C1—H1⋯F2iii 0.93 2.63 3.108 (4) 113
C2—H2⋯F1iv 0.93 2.07 2.935 (4) 154
C2—H2⋯F2iv 0.93 2.60 3.304 (4) 133
C3—H3A⋯O1iii 0.97 2.73 3.465 (4) 133
C3—H3B⋯F2iii 0.97 2.37 3.006 (4) 123
C10—H10⋯O2 0.93 2.16 3.082 (4) 170
C11—H11⋯F1v 0.93 2.07 2.935 (4) 153
C12—H12A⋯O1v 0.97 2.65 3.388 (2) 133
C16—H16⋯O2vi 0.93 2.42 3.339 (9) 172
C18—H18⋯O1v 0.93 2.83 3.589 (15) 139

Symmetry codes: (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Supra­molecular inter­actions in the title structure were studied through Hirshfeld surface analysis (Spackman & Byrom, 1997; McKinnon et al., 2004; Hirshfeld, 1977; Spackman & McKinnon, 2002), performed with CrystalExplorer17 (Turner et al., 2017), taking into account only the major contribution of the disordered group. The Hirshfeld surface, mapped over d norm using a fixed color scale of −0.488 (red) to 1.385 (blue) a.u. visualizes the set of shortest inter­molecular contacts (Fig. 4). All of them correspond to the hydrogen-bond inter­actions, which fall into three categories. The strongest hydrogen bonds to F-atom acceptors are reflected by the most prominent red spots (−0.469 to −0.488 a.u.), whereas a group of medium intensity spots (−0.182 to −0.261 a.u.) identify weaker C—H⋯O bonds with the terminal oxide O2. However, even more distal inter­actions with the bridging oxide O1 are still distinguishable on the surface, in the form of very diffuse, less intense spots (−0.066 to −0.142 a.u.).

Figure 4.

Figure 4

The Hirshfeld surface of the title compound mapped over d norm in the color range −0.488 (red) to 1.385 (blue) a.u., in the environment of the closest neighbor [symmetry code: −x + 1, −y + 1, −z], with the red spots indicating different kinds of inter­molecular inter­actions.

The contribution of different kinds of inter­atomic contacts to the Hirshfeld surface is shown in the fingerprint plots in Fig. 5. A significant fraction of the E⋯H/H⋯E (E = C, N, O, F) contacts (in total 60.1%) suggests the dominant role of the hydrogen-bond inter­actions. The strongest ones (E = O, F) have a similar nature and they are reflected by pairs of spikes pointing to the lower left of the plot. However, the contribution from the contacts with F-atom acceptors is higher (15.6% for F⋯H/H⋯F and 11.6% for O⋯H/H⋯O) and they are also essentially shorter, as indicated by different lengths of the spikes (the shortest contacts are F⋯H = 2.0 and O⋯H = 2.2 Å). One may suppose that the preferable sites for hydrogen bonding of the vanadium oxofluoride groups are the F atoms. This is consistent with the results of Hirshfeld analysis for the [VOF5]2− anion 4,4′-(propane-1,3-di­yl)bis­(4H-1,2,4-triazol-1-ium) salt (Senchyk et al., 2020).

Figure 5.

Figure 5

Two-dimensional fingerprint plots for the title compound, and those delineated into the principal contributions of H⋯H, C⋯H/H⋯C, F⋯H/H⋯F, O⋯H/H⋯O, N⋯H/H⋯N, C⋯C, C⋯N/N⋯C and Ag⋯H/H⋯Ag contacts. Other observed contacts are N⋯N (0.4%), C⋯F/F⋯C (0.1%) and C⋯O/O⋯C (0.1%).

The plots indicate close resemblance of the N⋯H/H⋯N (10.7%) and C⋯H/H⋯C (22.2%) contacts, which appear as pairs of nearly identical, very diffuse and short features (N⋯H = 2.9 and C⋯H = 2.9 Å). Both of them correspond to edge-to-face stacking or C—H⋯π inter­actions involving either the phenyl or triazole rings. The contribution from mutual π–π inter­actions of the latter delivers minor fractions of the C⋯C, N⋯N and C⋯N/N⋯C contacts, which account in total for only 2.6%. The shortest contact of this series [C⋯N = 3.5 Å] exceeds the sum of the van der Waals radii [3.25 Å] and π–π inter­actions are not associated with red spots of the d norm surface. A comparable contribution is due to the distal anagostic contacts Ag⋯H/H⋯Ag (2.9%) with the polarized methyl­ene H atoms. There are no mutual π–π inter­actions involving phenyl rings, which are responsible for larger fractions of the C⋯C contacts in the case of polycyclic species (Spackman & McKinnon, 2002).

Database survey

A structure survey was carried out in the Cambridge Structural Database (CSD version 5.43, update of November 2021; Groom et al., 2016) for 4-benzyl-(4H-1,2,4-triazol-4-yl) and it revealed five hits for coordination compounds based on this ligand. There are no examples of AgI compounds, only two FeII complexes [FAYQAA (Pittala et al., 2017a ) and XASVEV (Pittala et al., 2017b )] and three CuII–POM complexes [YUGLIX and YUGLOD (Tian et al., 2015) and ZUXLAI (Zhang et al., 2020)]. Moreover, there are no examples of heterometallic connection through an –NN– triazole bridge for the 4-benzyl-(4H-1,2,4-triazol-4-yl) ligand.

Synthesis and crystallization

4-Benzyl-(4H-1,2,4-triazol-4-yl) (tr-CH2Ph) was synthesized by refluxing benzyl­amine (5.35 g, 50.0 mmol) and di­methyl­formamide azine (17.75 g, 125.0 mmol) in the presence of toluene­sulfonic acid monohydrate (0.86 g, 5.0 mmol) as a catalyst in DMF (30.0 ml).

Compound I was prepared under hydro­thermal conditions. A mixture of AgOAc (16.7 mg, 0.100 mmol), tr-CH2Ph (20.7 mg, 0.130 mmol), V2O5 (9.1 mg, 0.050 mmol) and 5 mL of water with aqueous HF (50%, 150 µL, 4.33 mmol) was added into a Teflon vessel. Then the components were heated at 423 K for 24 h and slowly cooled to room temperature over 50 h, yielding light-yellow prisms of I (yield 33.4 mg, 61%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For one of the organic ligands, the benzyl linkage (C12–C18) is unequally disordered over two overlapping positions with refined partial contribution factors of 0.68 (3) and 0.32 (3). The major part of the disorder was freely refined anisotropically, while atoms of the minor contributor were refined anisotropically with a restrained geometry for the phenyl ring, rigid-bond restraints applied to the –CH2C6H5 linkage and similarity restraints applied to the closely separated contributions of C12 and C12A, C13 and C13A. H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å (CH) and 0.97 Å (CH2) and with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [Ag2V2F4O4(C9H9N3)4]
M r 1094.39
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.5484 (2), 21.2439 (6), 12.5910 (4)
β (°) 90.910 (2)
V3) 2018.81 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.48
Crystal size (mm) 0.27 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker APEXII area-detector
Absorption correction multi-scan (SADABS; Bruker, 2008)
T min, T max 0.657, 0.856
No. of measured, independent and observed [I > 2σ(I)] reflections 22923, 5125, 3468
R int 0.044
(sin θ/λ)max−1) 0.676
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.078, 1.02
No. of reflections 5125
No. of parameters 323
No. of restraints 65
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.42

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001712/dj2039sup1.cif

e-78-00399-sup1.cif (695.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001712/dj2039Isup2.hkl

e-78-00399-Isup2.hkl (407.9KB, hkl)

CCDC reference: 2151864

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ag2V2F4O4(C9H9N3)4] F(000) = 1088
Mr = 1094.39 Dx = 1.800 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.5484 (2) Å Cell parameters from 4931 reflections
b = 21.2439 (6) Å θ = 2.5–23.8°
c = 12.5910 (4) Å µ = 1.48 mm1
β = 90.910 (2)° T = 296 K
V = 2018.81 (10) Å3 Block, colorless
Z = 2 0.27 × 0.14 × 0.12 mm

Data collection

Bruker APEXII area-detector diffractometer 3468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.044
ω scans θmax = 28.7°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→10
Tmin = 0.657, Tmax = 0.856 k = −26→28
22923 measured reflections l = −16→14
5125 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0194P)2 + 2.1764P] where P = (Fo2 + 2Fc2)/3
5125 reflections (Δ/σ)max = 0.001
323 parameters Δρmax = 0.58 e Å3
65 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ag1 0.00892 (3) 0.49751 (2) 0.16871 (2) 0.04174 (9)
V1 0.43103 (7) 0.48341 (2) 0.33615 (4) 0.03165 (13)
F1 0.6173 (3) 0.42871 (13) 0.32820 (16) 0.0802 (8)
F2 0.3957 (2) 0.45217 (9) 0.46985 (15) 0.0471 (5)
O1 0.3065 (3) 0.45593 (10) 0.23966 (17) 0.0407 (5)
O2 0.5296 (3) 0.54823 (11) 0.29314 (16) 0.0424 (6)
N1 0.0417 (3) 0.54163 (12) 0.32878 (19) 0.0315 (6)
N2 0.2025 (3) 0.54132 (11) 0.38181 (19) 0.0301 (6)
N3 0.0147 (3) 0.59315 (11) 0.47783 (18) 0.0292 (6)
N4 0.2055 (4) 0.54025 (13) 0.0405 (2) 0.0386 (6)
N5 0.1929 (3) 0.54905 (12) −0.06853 (19) 0.0345 (6)
N6 0.4464 (3) 0.58619 (12) −0.0125 (2) 0.0342 (6)
C1 −0.0684 (4) 0.57241 (14) 0.3893 (2) 0.0337 (7)
H1 −0.1876 0.5790 0.3732 0.040*
C2 0.1821 (4) 0.57219 (14) 0.4702 (2) 0.0328 (7)
H2 0.2710 0.5788 0.5209 0.039*
C3 −0.0650 (4) 0.62351 (15) 0.5708 (2) 0.0400 (8)
H3A −0.0579 0.5945 0.6301 0.048*
H3B −0.1896 0.6308 0.5552 0.048*
C4 0.0174 (4) 0.68457 (14) 0.6044 (2) 0.0308 (7)
C5 0.0024 (5) 0.73774 (17) 0.5430 (3) 0.0490 (9)
H5 −0.0493 0.7354 0.4756 0.059*
C6 0.0646 (6) 0.79525 (19) 0.5816 (4) 0.0696 (13)
H6 0.0537 0.8314 0.5403 0.084*
C7 0.1417 (6) 0.7982 (2) 0.6806 (5) 0.0775 (15)
H7 0.1817 0.8367 0.7068 0.093*
C8 0.1607 (6) 0.7456 (3) 0.7410 (4) 0.0752 (14)
H8 0.2152 0.7479 0.8076 0.090*
C9 0.0986 (5) 0.68877 (19) 0.7030 (3) 0.0517 (10)
H9 0.1118 0.6528 0.7444 0.062*
C10 0.3594 (4) 0.56283 (15) 0.0704 (2) 0.0385 (8)
H10 0.4025 0.5627 0.1400 0.046*
C11 0.3391 (4) 0.57667 (15) −0.0972 (2) 0.0369 (7)
H11 0.3652 0.5881 −0.1665 0.044*
C12 0.6224 (7) 0.6171 (4) −0.0050 (16) 0.040 (3) 0.68 (3)
H12A 0.7076 0.5936 −0.0462 0.048* 0.68 (3)
H12B 0.6633 0.6178 0.0684 0.048* 0.68 (3)
C13 0.608 (2) 0.6830 (4) −0.0465 (10) 0.0356 (18) 0.68 (3)
C14 0.5342 (18) 0.7259 (6) 0.0216 (12) 0.049 (2) 0.68 (3)
H14 0.4990 0.7131 0.0887 0.058* 0.68 (3)
C15 0.5119 (14) 0.7881 (5) −0.009 (2) 0.068 (4) 0.68 (3)
H15 0.4623 0.8171 0.0370 0.081* 0.68 (3)
C16 0.5640 (18) 0.8063 (5) −0.1083 (18) 0.065 (5) 0.68 (3)
H16 0.5470 0.8478 −0.1295 0.078* 0.68 (3)
C17 0.639 (2) 0.7654 (8) −0.1755 (12) 0.072 (4) 0.68 (3)
H17 0.6767 0.7787 −0.2417 0.086* 0.68 (3)
C18 0.660 (2) 0.7029 (7) −0.1450 (11) 0.057 (3) 0.68 (3)
H18 0.7102 0.6743 −0.1917 0.069* 0.68 (3)
C12A 0.6197 (12) 0.6178 (8) −0.026 (3) 0.034 (4) 0.32 (3)
H12C 0.6862 0.5951 −0.0794 0.041* 0.32 (3)
H12D 0.6862 0.6157 0.0400 0.041* 0.32 (3)
C13A 0.605 (4) 0.6853 (8) −0.060 (2) 0.035 (4) 0.32 (3)
C14A 0.530 (3) 0.7370 (10) −0.0096 (18) 0.038 (4) 0.32 (3)
H14A 0.4803 0.7324 0.0570 0.046* 0.32 (3)
C15A 0.530 (2) 0.7955 (8) −0.059 (2) 0.048 (5) 0.32 (3)
H15A 0.4797 0.8300 −0.0254 0.057* 0.32 (3)
C16A 0.604 (2) 0.8023 (6) −0.1587 (19) 0.047 (4) 0.32 (3)
H16A 0.6038 0.8415 −0.1917 0.056* 0.32 (3)
C17A 0.679 (3) 0.7507 (8) −0.2089 (17) 0.044 (4) 0.32 (3)
H17A 0.7284 0.7553 −0.2755 0.053* 0.32 (3)
C18A 0.679 (4) 0.6922 (7) −0.159 (2) 0.039 (5) 0.32 (3)
H18A 0.7289 0.6576 −0.1931 0.046* 0.32 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.04650 (15) 0.04865 (17) 0.02972 (13) −0.00637 (12) −0.01010 (10) −0.00375 (12)
V1 0.0375 (3) 0.0324 (3) 0.0249 (3) 0.0025 (2) −0.0031 (2) 0.0009 (2)
F1 0.0848 (17) 0.121 (2) 0.0337 (12) 0.0688 (16) −0.0171 (12) −0.0150 (13)
F2 0.0453 (11) 0.0559 (13) 0.0398 (11) −0.0063 (9) −0.0038 (9) 0.0181 (9)
O1 0.0490 (14) 0.0397 (13) 0.0330 (12) 0.0045 (10) −0.0085 (11) −0.0072 (10)
O2 0.0326 (12) 0.0692 (16) 0.0253 (11) −0.0118 (11) −0.0045 (10) 0.0048 (11)
N1 0.0264 (13) 0.0414 (16) 0.0264 (13) −0.0014 (11) −0.0060 (11) −0.0052 (11)
N2 0.0282 (13) 0.0329 (14) 0.0290 (14) 0.0001 (11) −0.0083 (11) −0.0044 (11)
N3 0.0341 (14) 0.0300 (14) 0.0235 (14) −0.0013 (11) −0.0001 (11) −0.0039 (10)
N4 0.0502 (17) 0.0411 (16) 0.0242 (14) −0.0115 (13) −0.0049 (12) 0.0053 (12)
N5 0.0402 (15) 0.0408 (16) 0.0223 (13) −0.0068 (12) −0.0028 (12) −0.0022 (11)
N6 0.0363 (14) 0.0373 (15) 0.0287 (14) −0.0043 (11) −0.0056 (12) 0.0021 (11)
C1 0.0256 (16) 0.0412 (19) 0.0341 (17) 0.0004 (13) −0.0084 (14) −0.0044 (14)
C2 0.0309 (16) 0.0373 (18) 0.0300 (17) 0.0005 (13) −0.0085 (14) −0.0051 (14)
C3 0.047 (2) 0.0395 (19) 0.0337 (18) −0.0056 (15) 0.0107 (16) −0.0084 (15)
C4 0.0270 (16) 0.0316 (17) 0.0339 (17) 0.0017 (13) 0.0031 (13) −0.0065 (13)
C5 0.046 (2) 0.046 (2) 0.055 (2) −0.0040 (17) −0.0043 (18) 0.0073 (18)
C6 0.062 (3) 0.037 (2) 0.110 (4) −0.004 (2) 0.013 (3) 0.009 (2)
C7 0.070 (3) 0.062 (3) 0.101 (4) −0.024 (2) 0.023 (3) −0.043 (3)
C8 0.067 (3) 0.105 (4) 0.053 (3) −0.028 (3) 0.001 (2) −0.034 (3)
C9 0.054 (2) 0.062 (3) 0.039 (2) −0.0041 (19) −0.0045 (18) −0.0032 (18)
C10 0.052 (2) 0.0395 (19) 0.0239 (16) −0.0072 (16) −0.0098 (15) 0.0055 (14)
C11 0.0428 (19) 0.046 (2) 0.0220 (16) −0.0028 (16) −0.0040 (14) 0.0020 (14)
C12 0.036 (3) 0.049 (3) 0.036 (8) −0.008 (3) −0.010 (3) 0.006 (3)
C13 0.031 (3) 0.036 (3) 0.040 (4) −0.008 (3) −0.008 (3) −0.004 (3)
C14 0.046 (4) 0.049 (5) 0.052 (5) 0.001 (4) −0.003 (4) −0.003 (4)
C15 0.046 (4) 0.042 (5) 0.115 (12) 0.002 (3) −0.008 (6) −0.012 (6)
C16 0.052 (6) 0.050 (5) 0.093 (13) −0.016 (4) −0.022 (7) 0.033 (6)
C17 0.080 (9) 0.081 (9) 0.053 (7) −0.027 (7) −0.009 (5) 0.019 (6)
C18 0.066 (8) 0.054 (5) 0.052 (6) −0.017 (5) −0.005 (5) −0.008 (5)
C12A 0.037 (6) 0.046 (5) 0.020 (9) 0.001 (5) −0.009 (4) 0.003 (4)
C13A 0.035 (6) 0.032 (5) 0.037 (7) −0.004 (5) −0.005 (6) −0.001 (5)
C14A 0.034 (7) 0.044 (8) 0.036 (9) −0.004 (5) 0.001 (7) 0.004 (6)
C15A 0.061 (11) 0.035 (8) 0.048 (11) 0.005 (7) 0.004 (9) −0.001 (7)
C16A 0.045 (9) 0.040 (7) 0.055 (10) −0.010 (6) 0.002 (7) 0.005 (7)
C17A 0.047 (9) 0.036 (7) 0.050 (9) −0.006 (5) 0.005 (6) 0.000 (6)
C18A 0.048 (10) 0.036 (7) 0.032 (8) −0.010 (6) 0.004 (6) 0.002 (5)

Geometric parameters (Å, º)

Ag1—N5i 2.197 (2) C7—H7 0.9300
Ag1—N1 2.233 (2) C8—C9 1.378 (6)
Ag1—N4 2.390 (3) C8—H8 0.9300
Ag1—O1 2.562 (2) C9—H9 0.9300
V1—O1 1.632 (2) C10—H10 0.9300
V1—O2 1.660 (2) C11—H11 0.9300
V1—F1 1.828 (2) C12—C13 1.497 (5)
V1—F2 1.8330 (18) C12—H12A 0.9700
V1—N2 2.203 (2) C12—H12B 0.9700
N1—C1 1.311 (4) C13—C18 1.374 (9)
N1—N2 1.376 (3) C13—C14 1.375 (8)
N2—C2 1.303 (4) C14—C15 1.386 (11)
N3—C1 1.345 (4) C14—H14 0.9300
N3—C2 1.345 (4) C15—C16 1.371 (12)
N3—C3 1.473 (4) C15—H15 0.9300
N4—C10 1.306 (4) C16—C17 1.344 (13)
N4—N5 1.387 (3) C16—H16 0.9300
N5—C11 1.306 (4) C17—C18 1.390 (11)
N5—Ag1i 2.197 (2) C17—H17 0.9300
N6—C10 1.339 (4) C18—H18 0.9300
N6—C11 1.344 (4) C12A—C13A 1.497 (6)
N6—C12A 1.484 (5) C12A—H12C 0.9700
N6—C12 1.484 (5) C12A—H12D 0.9700
C1—H1 0.9300 C13A—C14A 1.3900
C2—H2 0.9300 C13A—C18A 1.3900
C3—C4 1.497 (4) C14A—C15A 1.3900
C3—H3A 0.9700 C14A—H14A 0.9300
C3—H3B 0.9700 C15A—C16A 1.3900
C4—C5 1.372 (5) C15A—H15A 0.9300
C4—C9 1.378 (4) C16A—C17A 1.3900
C5—C6 1.393 (5) C16A—H16A 0.9300
C5—H5 0.9300 C17A—C18A 1.3900
C6—C7 1.369 (6) C17A—H17A 0.9300
C6—H6 0.9300 C18A—H18A 0.9300
C7—C8 1.358 (7)
N5i—Ag1—N1 140.62 (9) C7—C8—C9 119.6 (4)
N5i—Ag1—N4 102.45 (9) C7—C8—H8 120.2
N1—Ag1—N4 112.90 (9) C9—C8—H8 120.2
N5i—Ag1—O1 129.87 (8) C8—C9—C4 120.9 (4)
N1—Ag1—O1 75.28 (8) C8—C9—H9 119.6
N4—Ag1—O1 79.39 (8) C4—C9—H9 119.6
O1—V1—O2 108.04 (11) N4—C10—N6 110.8 (3)
O1—V1—F1 99.57 (11) N4—C10—H10 124.6
O2—V1—F1 99.21 (13) N6—C10—H10 124.6
O1—V1—F2 117.63 (10) N5—C11—N6 110.5 (3)
O2—V1—F2 132.25 (10) N5—C11—H11 124.8
F1—V1—F2 86.76 (10) N6—C11—H11 124.8
O1—V1—N2 87.14 (10) N6—C12—C13 109.3 (8)
O2—V1—N2 88.78 (11) N6—C12—H12A 109.8
F1—V1—N2 167.32 (10) C13—C12—H12A 109.8
F2—V1—N2 80.59 (9) N6—C12—H12B 109.8
V1—O1—Ag1 128.89 (11) C13—C12—H12B 109.8
C1—N1—N2 106.4 (2) H12A—C12—H12B 108.3
C1—N1—Ag1 132.19 (19) C18—C13—C14 118.9 (7)
N2—N1—Ag1 121.35 (18) C18—C13—C12 125.6 (13)
C2—N2—N1 107.3 (2) C14—C13—C12 115.5 (13)
C2—N2—V1 127.4 (2) C13—C14—C15 120.4 (8)
N1—N2—V1 124.36 (18) C13—C14—H14 119.8
C1—N3—C2 105.0 (2) C15—C14—H14 119.8
C1—N3—C3 127.7 (3) C16—C15—C14 119.2 (9)
C2—N3—C3 126.7 (3) C16—C15—H15 120.4
C10—N4—N5 106.5 (2) C14—C15—H15 120.4
C10—N4—Ag1 120.2 (2) C17—C16—C15 121.4 (8)
N5—N4—Ag1 133.30 (19) C17—C16—H16 119.3
C11—N5—N4 106.8 (2) C15—C16—H16 119.3
C11—N5—Ag1i 128.7 (2) C16—C17—C18 119.4 (8)
N4—N5—Ag1i 122.94 (19) C16—C17—H17 120.3
C10—N6—C11 105.4 (3) C18—C17—H17 120.3
C10—N6—C12A 134.8 (15) C13—C18—C17 120.7 (9)
C11—N6—C12A 119.7 (15) C13—C18—H18 119.7
C10—N6—C12 124.3 (8) C17—C18—H18 119.7
C11—N6—C12 130.2 (7) N6—C12A—C13A 113.8 (16)
N1—C1—N3 110.7 (3) N6—C12A—H12C 108.8
N1—C1—H1 124.6 C13A—C12A—H12C 108.8
N3—C1—H1 124.6 N6—C12A—H12D 108.8
N2—C2—N3 110.6 (3) C13A—C12A—H12D 108.8
N2—C2—H2 124.7 H12C—C12A—H12D 107.7
N3—C2—H2 124.7 C14A—C13A—C18A 120.0
N3—C3—C4 115.5 (3) C14A—C13A—C12A 131.1 (18)
N3—C3—H3A 108.4 C18A—C13A—C12A 108.9 (19)
C4—C3—H3A 108.4 C13A—C14A—C15A 120.0
N3—C3—H3B 108.4 C13A—C14A—H14A 120.0
C4—C3—H3B 108.4 C15A—C14A—H14A 120.0
H3A—C3—H3B 107.5 C16A—C15A—C14A 120.0
C5—C4—C9 119.0 (3) C16A—C15A—H15A 120.0
C5—C4—C3 121.6 (3) C14A—C15A—H15A 120.0
C9—C4—C3 119.2 (3) C15A—C16A—C17A 120.0
C4—C5—C6 120.1 (4) C15A—C16A—H16A 120.0
C4—C5—H5 120.0 C17A—C16A—H16A 120.0
C6—C5—H5 120.0 C18A—C17A—C16A 120.0
C7—C6—C5 119.6 (4) C18A—C17A—H17A 120.0
C7—C6—H6 120.2 C16A—C17A—H17A 120.0
C5—C6—H6 120.2 C17A—C18A—C13A 120.0
C8—C7—C6 120.8 (4) C17A—C18A—H18A 120.0
C8—C7—H7 119.6 C13A—C18A—H18A 120.0
C6—C7—H7 119.6
O2—V1—O1—Ag1 −74.41 (17) Ag1—N4—C10—N6 −178.0 (2)
F1—V1—O1—Ag1 −177.46 (15) C11—N6—C10—N4 −0.4 (4)
F2—V1—O1—Ag1 91.19 (15) C12A—N6—C10—N4 178.8 (12)
N2—V1—O1—Ag1 13.37 (14) C12—N6—C10—N4 178.0 (6)
C1—N1—N2—C2 −0.7 (3) N4—N5—C11—N6 0.1 (4)
Ag1—N1—N2—C2 177.7 (2) Ag1i—N5—C11—N6 −165.5 (2)
C1—N1—N2—V1 168.9 (2) C10—N6—C11—N5 0.2 (4)
Ag1—N1—N2—V1 −12.7 (3) C12A—N6—C11—N5 −179.2 (10)
C10—N4—N5—C11 −0.4 (4) C12—N6—C11—N5 −178.1 (7)
Ag1—N4—N5—C11 177.9 (2) C10—N6—C12—C13 −120.7 (10)
C10—N4—N5—Ag1i 166.2 (2) C11—N6—C12—C13 57.3 (15)
Ag1—N4—N5—Ag1i −15.5 (4) N6—C12—C13—C18 −101.7 (13)
N2—N1—C1—N3 1.3 (3) N6—C12—C13—C14 77.8 (15)
Ag1—N1—C1—N3 −176.8 (2) C18—C13—C14—C15 0.4 (10)
C2—N3—C1—N1 −1.4 (3) C12—C13—C14—C15 −179.1 (13)
C3—N3—C1—N1 −172.8 (3) C13—C14—C15—C16 0.1 (13)
N1—N2—C2—N3 −0.2 (3) C14—C15—C16—C17 −1.3 (15)
V1—N2—C2—N3 −169.37 (19) C15—C16—C17—C18 1.8 (15)
C1—N3—C2—N2 1.0 (3) C14—C13—C18—C17 0.0 (10)
C3—N3—C2—N2 172.5 (3) C12—C13—C18—C17 179.5 (15)
C1—N3—C3—C4 −128.2 (3) C16—C17—C18—C13 −1.1 (13)
C2—N3—C3—C4 62.2 (4) C10—N6—C12A—C13A −113 (2)
N3—C3—C4—C5 68.5 (4) C11—N6—C12A—C13A 66 (3)
N3—C3—C4—C9 −116.6 (3) N6—C12A—C13A—C14A 62 (4)
C9—C4—C5—C6 −1.7 (5) N6—C12A—C13A—C18A −117 (2)
C3—C4—C5—C6 173.3 (3) C18A—C13A—C14A—C15A 0.0
C4—C5—C6—C7 0.5 (6) C12A—C13A—C14A—C15A −179 (3)
C5—C6—C7—C8 0.9 (7) C13A—C14A—C15A—C16A 0.0
C6—C7—C8—C9 −1.1 (7) C14A—C15A—C16A—C17A 0.0
C7—C8—C9—C4 −0.1 (7) C15A—C16A—C17A—C18A 0.0
C5—C4—C9—C8 1.5 (5) C16A—C17A—C18A—C13A 0.0
C3—C4—C9—C8 −173.6 (4) C14A—C13A—C18A—C17A 0.0
N5—N4—C10—N6 0.5 (4) C12A—C13A—C18A—C17A 179 (2)

Symmetry code: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O2ii 0.93 2.44 3.289 (4) 153
C1—H1···F2iii 0.93 2.63 3.108 (4) 113
C2—H2···F1iv 0.93 2.07 2.935 (4) 154
C2—H2···F2iv 0.93 2.60 3.304 (4) 133
C3—H3A···O1iii 0.97 2.73 3.465 (4) 133
C3—H3B···F2iii 0.97 2.37 3.006 (4) 123
C10—H10···O2 0.93 2.16 3.082 (4) 170
C11—H11···F1v 0.93 2.07 2.935 (4) 153
C12—H12A···O1v 0.97 2.65 3.388 (2) 133
C16—H16···O2vi 0.93 2.42 3.339 (9) 172
C18—H18···O1v 0.93 2.83 3.589 (15) 139

Symmetry codes: (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z; (vi) x, −y+3/2, z−1/2.

Funding Statement

This work was funded by National Research Foundation of Ukraine grant Project No. 2020.20/0071.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Albrecht, T. A., Sauvage, F., Bodenez, V., Tarascon, J.-M. & Poeppelmeier, K. R. (2009). Chem. Mater. 21, 3017–3020.
  3. Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.
  4. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chamberlain, J. M., Albrecht, T. A., Lesage, J., Sauvage, F., Stern, C. L. & Poeppelmeier, K. R. (2010). Cryst. Growth Des. 10, 4868–4873.
  7. Dolbecq, A., Dumas, E., Mayer, C. R. & Mialane, P. (2010). Chem. Rev. 110, 6009–6048. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.
  11. Lysenko, A. B., Senchyk, G. A., Lukashuk, L. V., Domasevitch, K. V., Handke, M., Lincke, J., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2016). Inorg. Chem. 55, 239–250. [DOI] [PubMed]
  12. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  13. Monakhov, K. Yu., Bensch, W. & Kögerler, P. (2015). Chem. Soc. Rev. 44, 8443–8483. [DOI] [PubMed]
  14. Pittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017a). Chem. Commun. 53, 8356–8359. [DOI] [PubMed]
  15. Pittala, N., Thétiot, F., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017b). Chem. Mater. 29, 490–494. [DOI] [PubMed]
  16. Senchyk, G. A., Bukhan’ko, V. A., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernega, A. N., Karbowiak, M. & Domasevitch, K. V. (2012). Inorg. Chem. 51, 8025–8033. [DOI] [PubMed]
  17. Senchyk, G. A., Lysenko, A. B., Domasevitch, K. V., Erhart, O., Henfling, S., Krautscheid, H., Rusanov, E. B., Krämer, K. W., Decurtins, S. & Liu, S.-X. (2017). Inorg. Chem. 56, 12952–12966. [DOI] [PubMed]
  18. Senchyk, G. A., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2020). Acta Cryst. E76, 780–784. [DOI] [PMC free article] [PubMed]
  19. Senchyk, G. A., Lysenko, A. B., Rusanov, E. B. & Domasevitch, K. V. (2019). Acta Cryst. E75, 808–811. [DOI] [PMC free article] [PubMed]
  20. Sharga, O. V., Lysenko, A. B., Krautscheid, H. & Domasevitch, K. V. (2010). Acta Cryst. C66, m269–m272. [DOI] [PubMed]
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  23. Sorensen, E. M., Izumi, H. K., Vaughey, J. T., Stern, C. L. & Poeppelmeier, K. R. (2005). J. Am. Chem. Soc. 127, 6347–6352. [DOI] [PubMed]
  24. Spackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215–220.
  25. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  26. Tian, A., Liu, X., Ying, J., Zhu, D., Wang, X. & Peng, J. (2011). CrystEngComm, 13, 6680–6686.
  27. Tian, A., Ni, H., Ji, X., Tian, Y., Liu, G. & Ying, J. (2017). RSC Adv. 7, 30573–30581.
  28. Tian, A.-X., Ning, Y.-L., Ying, J., Liu, G.-C., Hou, X., Li, T.-J. & Wang, X.-L. (2015). CrystEngComm, 17, 5569–5578.
  29. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://crystalexplorer.scb.uwa.edu.au/
  30. Zhang, B., Ying, J., Zhang, X., Wang, C. & Tian, A. (2020). New J. Chem. 44, 18074–18083.
  31. Zhu, M., Su, S.-Q., Song, X.-Z., Hao, Z.-M., Song, S.-Y. & Zhang, H.-J. (2012). Dalton Trans. 41, 13267–13270. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001712/dj2039sup1.cif

e-78-00399-sup1.cif (695.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001712/dj2039Isup2.hkl

e-78-00399-Isup2.hkl (407.9KB, hkl)

CCDC reference: 2151864

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES