Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Mar 10;78(Pt 4):369–372. doi: 10.1107/S2056989022002572

Crystal structure of 2-(benzo[d]thia­zol-2-yl)-3,3-bis­(ethyl­sulfan­yl)acrylo­nitrile

Rasha A Azzam a, Galal H Elgemeie a, Rasha E Elsayed a, Nagwa M Gad a, Peter G Jones b,*
PMCID: PMC8983987  PMID: 35492278

The double-bond system of the acrylo­nitrile moiety is significantly non-planar and displays one very wide angle C—C(CN)=C.

Keywords: benzo­thia­zol, acrylo­nitrile, crystal structure

Abstract

In the title compound, C14H14N2S3, the double-bond system of the acrylo­nitrile moiety is significantly non-planar, with absolute cis torsion angles of 13.9 (2) and 15.1 (2)°. The ring system and the double bond system subtend an inter­planar angle of 11.16 (4)°. The wide angle C—C(CN)=C of 129.40 (12)° may be associated with a balance between planarity and avoidance of a very short S⋯S contact.

Chemical context

Research into medicinal chemistry based on benzo­thia­zoles has become a fast developing and progressively more active topic. The high degree of structural diversity has proved to be important in the search for new effective treatments (Ammazzalorso et al., 2020; Elgemeie, 1989). A large number of therapeutic agents based on benzo­thia­zole systems have been synthesized and evaluated in terms of their pharmacological properties (Gill et al., 2015; Fathy et al., 1988). Much information about benzo­thia­zoles has been reported in the scientific literature, describing their anti-inflammatory, anti­microbial, neuroprotective, anti­convulsant and anti­proliferative effects (Seenaiah et al., 2014). The mol­ecular mechanisms responsible for this variety of pharmacological activity have not been completely established, and various biological pathways have been indicated as possible targets of this class of mol­ecules (Keri et al., 2015). We are engaged in developing synthetic strategies for benzothaizole systems that show important biological activity as novel anti­microbial and anti­viral agents (Azzam et al. 2017a ,b , 2020a ,b ,c , 2021; Elgemeie et al., 2000a ,b ; 2020).

As an extension of this research (Fathy & Elgemeie, 1988; Elgemeie & Elghandour, 1990), we report here a novel benzo­thia­zole cyano­ketene di­thio­acetal (2). Compound 2 was synthesized by the reaction of 2-cyano­methyl­benzo­thia­zole 1 with carbon di­sulfide in the presence of sodium ethoxide, followed by alkyl­ation with ethyl iodide. The structure of 2 was originally based on its elemental analysis and spectroscopic data (see Experimental). In order to establish the structure of the compound unambiguously, the crystal structure was determined.

Structural commentary

The mol­ecule of 2 is shown in Fig. 1. The heterocyclic system is coplanar to within an r.m.s. deviation of only 0.007 Å, and its dimensions are as expected (a selection of mol­ecular dimensions are presented in Table 1). There is appreciable twisting of ca 14° about the double bond C8=C9 (see torsion angles in Table 1), so that the ‘plane’ of the atoms C2, C8, C9, C10, S2 and S3 displays an r.m.s. deviation of 0.14 Å; the two planes subtend an inter­planar angle of 11.16 (4)°. The angle C2—C8=C9 (formally sp 2) is strikingly wide, at 129.40 (12)°; for comparison, the corresponding angles in the five structures mentioned below (with refcodes) range from 122–126°. One might speculate that this large angle and the deviation from planarity about the double bond represent aspects of a compromise between (i) achieving coplanarity of the heterocycle with the double-bond system and (ii) avoiding too short an S⋯S contact. The intra­molecular S⋯S distances are S1⋯S3 = 3.1155 (5) and S2⋯S3 = 3.0496 (5) Å. The ethyl groups project to opposite sides of the mol­ecule. graphic file with name e-78-00369-scheme1.jpg

Figure 1.

Figure 1

The mol­ecule of 2 in the crystal. Ellipsoids represent 50% probability levels.

Table 1. Selected geometric parameters (Å, °).

S1—C7A 1.7371 (13) C3A—C7A 1.4057 (17)
S1—C2 1.7519 (13) C9—S3 1.7489 (13)
C2—N3 1.3078 (16) C9—S2 1.7526 (13)
N3—C3A 1.3813 (16)    
       
C7A—S1—C2 88.97 (6) C9—C8—C2 129.40 (12)
N3—C2—S1 115.52 (9) C10—C8—C2 111.90 (10)
C2—N3—C3A 110.98 (11) C8—C9—S3 121.13 (10)
N3—C3A—C7A 115.03 (11) C8—C9—S2 117.68 (10)
C3A—C7A—S1 109.49 (9) S3—C9—S2 121.14 (7)
C9—C8—C10 118.69 (11)    
       
C2—C8—C9—S3 13.90 (19) C2—C8—C9—S2 −163.46 (10)
C10—C8—C9—S2 15.10 (16) C8—C9—S2—C11 −146.43 (10)

Supra­molecular features

The mol­ecular packing is fairly featureless; a general view is given in Fig. 2 and some borderline possible ‘weak’ hydrogen bonds are listed in Table 2. The main feature is the loose association of pairs of mol­ecules across inversion centres, whereby the heterocyclic systems face each other; however, there is a considerable offset. The centroids of the five-membered rings lie 3.72 Å apart, and the shortest contact is C7A⋯C7A′ (operator 1 − x, 1 − y, 1 − z) 3.741 (2) Å. The sulfur atom S1 lies 3.61 Å from the centroid of the six-membered ring in the facing mol­ecule; such potential S⋯π inter­actions have been discussed by e.g. Ringer et al. (2007) and Silva et al. (2018).

Figure 2.

Figure 2

Crystal packing of 2 viewed parallel to the a axis (hydrogen atoms omitted for clarity). The loose association of the heterocyclic systems across inversion centres can be recognized in the central horizontal rows of rings.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯S2i 0.95 3.02 3.6083 (13) 122
C12—H12B⋯S1ii 0.98 3.03 3.9677 (15) 161
C13—H13A⋯N3i 0.99 2.68 3.5746 (17) 151
C14—H14A⋯S1iii 0.98 2.91 3.7648 (15) 146
C14—H14B⋯N3iv 0.98 2.63 3.5277 (18) 152

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Database survey

Searches of the Cambridge Structural Database (Groom et al., 2016) were performed using ConQuest Version 2021.3.0. A search for the moiety benzo[d]thia­zol-2-yl joined to C(CN)=C gave 27 hits, but none in which any further atom at the double bond was sulfur. A search for the group C—C(CN)=C(S—C)2, with the first carbon atom three-coordinate, both sulfur atoms two-coordinate and not involving cyclicity, gave only five hits. The refcodes, references and absolute cis torsion angles NC—C=C—S were as follows: CIYDIY, Kumar et al. (2008), 9.9°; MTBCEY, Abrahamsson et al. (1974), 15.4°; VAPJAA, Azzam et al. (2017c ), 7.3°; VELSIP, Peng et al. (2006), 3.6°; ZEDJEX, Osaka et al. (1994), 10.5°.

Synthesis and crystallization

A mixture of sodium ethoxide (0.08 mol) and 2-cyano­methyl­benzo­thia­zole (0.04 mol) in absolute ethanol (100 ml) was refluxed for 20 min. After cooling, carbon di­sulfide (0.04 mol) was added gradually and then the solution was warmed for 20 min. Ethyl iodide (0.08 mol) was then added, and the reaction mixture was stirred overnight at room temperature. The solution was poured onto ice–water and the solid product thus formed was filtered off. The product was purified by dissolving it in hot petroleum ether, filtering, and allowing the solution to cool. The solid that formed was recrystallized from DMF to give pale-yellow crystals, m.p. = 366–368 K, yield 72%; IR (KBr, cm−1): υ 3056 (ArCH), 2924 (CH3), 2213 (CN), 1502 (C=N); 1H NMR (300 MHz, DMSO-d6 ): δ 1.27–1.34 (m, 6H, 2 SCH2CH3), 3.16–3.23 (m, 4H, 2 SCH2CH3), 7.50–7.57 (m, 2H, benzo­thia­zole H), 8.04–8.15 (m, 2H, benzo­thia­zole H); analysis, calculated for C14H14N2S3 (306.47): C% 54.87; H% 4.60; N% 9.14; S% 31.39; found: C% 54.85, H% 4.58; N% 9.16; MS m/z (%): 306 (M +, 15%), 276 (100%), 273 (57%), 248 (26%), 217 (76%), 204 (26%), 146 (20%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The methyl groups were refined as idealized rigid groups allowed to rotate but not tip, with C—H = 0.98 Å and H—C—H = 109.5°. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99 Å). The U(H) values were fixed at 1.5 or 1.2 times the equivalent U iso value of the parent carbon atoms for methyl and non-methyl hydrogen atoms, respectively.

Table 3. Experimental details.

Crystal data
Chemical formula C14H14N2S3
M r 306.45
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 100
a, b, c (Å) 10.0771 (3), 16.0292 (5), 17.8768 (6)
V3) 2887.58 (16)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.50
Crystal size (mm) 0.4 × 0.4 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.954, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 58593, 4475, 3679
R int 0.053
(sin θ/λ)max−1) 0.729
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.077, 1.05
No. of reflections 4475
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.33

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015) and XP (Siemens, 1994).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989022002572/ex2055sup1.cif

e-78-00369-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002572/ex2055Isup2.hkl

e-78-00369-Isup2.hkl (356.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022002572/ex2055Isup3.cml

CCDC reference: 2156777

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

supplementary crystallographic information

Crystal data

C14H14N2S3 Dx = 1.410 Mg m3
Mr = 306.45 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 10579 reflections
a = 10.0771 (3) Å θ = 2.6–30.3°
b = 16.0292 (5) Å µ = 0.50 mm1
c = 17.8768 (6) Å T = 100 K
V = 2887.58 (16) Å3 Tablet, pale yellow
Z = 8 0.4 × 0.4 × 0.15 mm
F(000) = 1280

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer 4475 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3679 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
Detector resolution: 16.1419 pixels mm-1 θmax = 31.2°, θmin = 2.3°
ω–scan h = −14→14
Absorption correction: multi-scan (CrysAlisPro; Agilent, 2014) k = −23→22
Tmin = 0.954, Tmax = 1.000 l = −25→25
58593 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.3474P] where P = (Fo2 + 2Fc2)/3
4475 reflections (Δ/σ)max = 0.002
174 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.48621 (3) 0.63526 (2) 0.48864 (2) 0.01440 (8)
C2 0.64877 (12) 0.62079 (7) 0.52085 (7) 0.0129 (2)
N3 0.72242 (10) 0.57082 (6) 0.48059 (6) 0.0141 (2)
C3A 0.65225 (12) 0.54010 (7) 0.42020 (7) 0.0135 (2)
C4 0.70382 (14) 0.48489 (8) 0.36681 (7) 0.0169 (2)
H4 0.793137 0.466208 0.369750 0.020*
C5 0.62153 (14) 0.45833 (8) 0.30983 (7) 0.0194 (3)
H5 0.654822 0.420983 0.273082 0.023*
C6 0.48945 (14) 0.48568 (8) 0.30536 (7) 0.0198 (3)
H6 0.435044 0.466538 0.265499 0.024*
C7 0.43675 (14) 0.53990 (8) 0.35774 (7) 0.0179 (3)
H7 0.347076 0.557869 0.354695 0.022*
C7A 0.51995 (12) 0.56737 (7) 0.41532 (7) 0.0141 (2)
C8 0.70646 (12) 0.65707 (7) 0.58882 (7) 0.0135 (2)
C9 0.66224 (12) 0.72227 (7) 0.63140 (7) 0.0137 (2)
C10 0.82871 (13) 0.61618 (8) 0.60980 (7) 0.0147 (2)
N1 0.92273 (12) 0.58066 (7) 0.62713 (6) 0.0200 (2)
S2 0.77453 (3) 0.76792 (2) 0.69408 (2) 0.01682 (8)
C11 0.67428 (14) 0.80013 (8) 0.77350 (7) 0.0190 (3)
H11A 0.723828 0.842357 0.802710 0.023*
H11B 0.591943 0.826694 0.754915 0.023*
C12 0.63786 (15) 0.72831 (9) 0.82435 (8) 0.0224 (3)
H12A 0.584732 0.687626 0.796466 0.034*
H12B 0.586321 0.749299 0.866859 0.034*
H12C 0.718942 0.701444 0.842693 0.034*
S3 0.50142 (3) 0.76155 (2) 0.62083 (2) 0.01684 (8)
C13 0.53315 (14) 0.87150 (8) 0.60082 (8) 0.0192 (3)
H13A 0.447342 0.900815 0.594773 0.023*
H13B 0.579883 0.896822 0.643920 0.023*
C14 0.61552 (15) 0.88404 (9) 0.53106 (8) 0.0242 (3)
H14A 0.701489 0.856282 0.537151 0.036*
H14B 0.629538 0.943837 0.522807 0.036*
H14C 0.568927 0.860130 0.487976 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01247 (14) 0.01380 (15) 0.01694 (15) 0.00051 (11) 0.00032 (11) −0.00103 (11)
C2 0.0125 (5) 0.0120 (5) 0.0143 (5) −0.0005 (4) 0.0015 (4) 0.0019 (4)
N3 0.0150 (5) 0.0129 (5) 0.0143 (5) −0.0007 (4) 0.0011 (4) −0.0009 (4)
C3A 0.0158 (6) 0.0119 (5) 0.0129 (5) −0.0019 (4) 0.0006 (4) 0.0020 (4)
C4 0.0197 (6) 0.0152 (6) 0.0158 (6) 0.0014 (5) 0.0009 (5) −0.0003 (5)
C5 0.0268 (7) 0.0158 (6) 0.0157 (6) 0.0009 (5) −0.0002 (5) −0.0016 (5)
C6 0.0261 (7) 0.0171 (6) 0.0163 (6) −0.0023 (5) −0.0067 (5) −0.0011 (5)
C7 0.0184 (6) 0.0153 (6) 0.0200 (6) −0.0014 (5) −0.0039 (5) 0.0021 (5)
C7A 0.0173 (6) 0.0106 (5) 0.0144 (5) −0.0013 (4) 0.0003 (5) 0.0012 (4)
C8 0.0131 (6) 0.0127 (5) 0.0145 (5) −0.0018 (4) 0.0018 (4) 0.0008 (4)
C9 0.0134 (6) 0.0127 (5) 0.0150 (6) −0.0017 (4) 0.0024 (4) 0.0010 (4)
C10 0.0182 (6) 0.0137 (5) 0.0122 (5) −0.0011 (5) 0.0010 (4) −0.0028 (4)
N1 0.0218 (6) 0.0205 (5) 0.0177 (5) 0.0028 (5) −0.0026 (4) −0.0029 (4)
S2 0.01627 (15) 0.01690 (16) 0.01730 (15) −0.00122 (12) 0.00140 (11) −0.00523 (12)
C11 0.0250 (7) 0.0161 (6) 0.0159 (6) 0.0035 (5) 0.0025 (5) −0.0049 (5)
C12 0.0231 (7) 0.0208 (7) 0.0232 (7) 0.0015 (5) 0.0051 (5) 0.0012 (5)
S3 0.01226 (15) 0.01522 (15) 0.02304 (17) 0.00007 (11) 0.00338 (11) −0.00326 (12)
C13 0.0198 (6) 0.0139 (6) 0.0240 (7) 0.0024 (5) −0.0015 (5) −0.0002 (5)
C14 0.0270 (7) 0.0238 (7) 0.0218 (7) −0.0025 (6) −0.0011 (6) 0.0031 (5)

Geometric parameters (Å, º)

S1—C7A 1.7371 (13) C9—S3 1.7489 (13)
S1—C2 1.7519 (13) C9—S2 1.7526 (13)
C2—N3 1.3078 (16) C10—N1 1.1480 (17)
C2—C8 1.4672 (17) S2—C11 1.8174 (13)
N3—C3A 1.3813 (16) C11—C12 1.5121 (19)
C3A—C4 1.4015 (17) C11—H11A 0.9900
C3A—C7A 1.4057 (17) C11—H11B 0.9900
C4—C5 1.3807 (18) C12—H12A 0.9800
C4—H4 0.9500 C12—H12B 0.9800
C5—C6 1.404 (2) C12—H12C 0.9800
C5—H5 0.9500 S3—C13 1.8265 (14)
C6—C7 1.3835 (19) C13—C14 1.512 (2)
C6—H6 0.9500 C13—H13A 0.9900
C7—C7A 1.3988 (18) C13—H13B 0.9900
C7—H7 0.9500 C14—H14A 0.9800
C8—C9 1.3675 (17) C14—H14B 0.9800
C8—C10 1.4449 (18) C14—H14C 0.9800
C7A—S1—C2 88.97 (6) S3—C9—S2 121.14 (7)
N3—C2—C8 118.28 (11) N1—C10—C8 177.05 (14)
N3—C2—S1 115.52 (9) C9—S2—C11 105.02 (6)
C8—C2—S1 126.18 (9) C12—C11—S2 112.85 (9)
C2—N3—C3A 110.98 (11) C12—C11—H11A 109.0
N3—C3A—C4 124.58 (12) S2—C11—H11A 109.0
N3—C3A—C7A 115.03 (11) C12—C11—H11B 109.0
C4—C3A—C7A 120.38 (12) S2—C11—H11B 109.0
C5—C4—C3A 118.32 (12) H11A—C11—H11B 107.8
C5—C4—H4 120.8 C11—C12—H12A 109.5
C3A—C4—H4 120.8 C11—C12—H12B 109.5
C4—C5—C6 121.01 (12) H12A—C12—H12B 109.5
C4—C5—H5 119.5 C11—C12—H12C 109.5
C6—C5—H5 119.5 H12A—C12—H12C 109.5
C7—C6—C5 121.44 (12) H12B—C12—H12C 109.5
C7—C6—H6 119.3 C9—S3—C13 101.91 (6)
C5—C6—H6 119.3 C14—C13—S3 112.70 (10)
C6—C7—C7A 117.76 (12) C14—C13—H13A 109.1
C6—C7—H7 121.1 S3—C13—H13A 109.1
C7A—C7—H7 121.1 C14—C13—H13B 109.1
C7—C7A—C3A 121.08 (12) S3—C13—H13B 109.1
C7—C7A—S1 129.43 (10) H13A—C13—H13B 107.8
C3A—C7A—S1 109.49 (9) C13—C14—H14A 109.5
C9—C8—C10 118.69 (11) C13—C14—H14B 109.5
C9—C8—C2 129.40 (12) H14A—C14—H14B 109.5
C10—C8—C2 111.90 (10) C13—C14—H14C 109.5
C8—C9—S3 121.13 (10) H14A—C14—H14C 109.5
C8—C9—S2 117.68 (10) H14B—C14—H14C 109.5
C7A—S1—C2—N3 0.65 (10) C2—S1—C7A—C7 178.99 (13)
C7A—S1—C2—C8 −177.35 (11) C2—S1—C7A—C3A −0.97 (9)
C8—C2—N3—C3A 178.07 (10) N3—C2—C8—C9 165.41 (12)
S1—C2—N3—C3A −0.10 (13) S1—C2—C8—C9 −16.64 (19)
C2—N3—C3A—C4 −179.85 (12) N3—C2—C8—C10 −13.23 (16)
C2—N3—C3A—C7A −0.71 (15) S1—C2—C8—C10 164.72 (9)
N3—C3A—C4—C5 179.09 (12) C10—C8—C9—S3 −167.54 (9)
C7A—C3A—C4—C5 −0.01 (18) C2—C8—C9—S3 13.90 (19)
C3A—C4—C5—C6 −0.11 (19) C10—C8—C9—S2 15.10 (16)
C4—C5—C6—C7 −0.2 (2) C2—C8—C9—S2 −163.46 (10)
C5—C6—C7—C7A 0.5 (2) C8—C9—S2—C11 −146.43 (10)
C6—C7—C7A—C3A −0.63 (19) S3—C9—S2—C11 36.21 (9)
C6—C7—C7A—S1 179.41 (10) C9—S2—C11—C12 77.62 (11)
N3—C3A—C7A—C7 −178.79 (11) C8—C9—S3—C13 −123.70 (11)
C4—C3A—C7A—C7 0.39 (18) S2—C9—S3—C13 53.57 (9)
N3—C3A—C7A—S1 1.17 (13) C9—S3—C13—C14 59.99 (11)
C4—C3A—C7A—S1 −179.64 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···S2i 0.95 3.02 3.6083 (13) 122
C12—H12B···S1ii 0.98 3.03 3.9677 (15) 161
C13—H13A···N3i 0.99 2.68 3.5746 (17) 151
C14—H14A···S1iii 0.98 2.91 3.7648 (15) 146
C14—H14B···N3iv 0.98 2.63 3.5277 (18) 152

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x, −y+3/2, z+1/2; (iii) x+1/2, −y+3/2, −z+1; (iv) −x+3/2, y+1/2, z.

References

  1. Abrahamsson, S., Rehnberg, G., Liljefors, T. & Sandström, J. (1974). Acta Chem. Scand. 28b, 1109–1120.
  2. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  3. Ammazzalorso, A., Carradori, S., Amoroso, R. & Fernández, I. F. (2020). Eur. J. Med. Chem. 207, 112762. [DOI] [PubMed]
  4. Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036. [DOI] [PMC free article] [PubMed]
  5. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822. [DOI] [PMC free article] [PubMed]
  6. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043. [DOI] [PMC free article] [PubMed]
  7. Azzam, R. A., Elgemeie, G. H., Ramadan, R. & Jones, P. G. (2017c). Acta Cryst. E73, 752–754. [DOI] [PMC free article] [PubMed]
  8. Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894. [DOI] [PMC free article] [PubMed]
  9. Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. [DOI] [PMC free article] [PubMed]
  10. Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655. [DOI] [PMC free article] [PubMed]
  11. Elgemeie, G. H. (1989). Chem. Ind. 19, 653–654.
  12. Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020). Inorg. Chim. Acta, 502, 119302.
  13. Elgemeie, G. H. & Elghandour, A. H. (1990). Phosphorus Sulfur Silicon, 48, 281–284.
  14. Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265–272.
  15. Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268.
  16. Fathy, N. M. & Elgemeie, G. H. (1988). Sulfur Lett. 7, 189–193.
  17. Fathy, N. M., Motti, F. M. & Elgemeie, G. H. (1988). Arch. Pharm. Pharm. Med. Chem. 321, 509–512.
  18. Gill, R. K., Rawal, R. K. & Bariwal, J. (2015). Arch. Pharm. Chem. Life Sci. 348, 155–178. [DOI] [PubMed]
  19. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  20. Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207–251. [DOI] [PubMed]
  21. Kumar, S., Peruncheralathan, S., Ila, H. & Junjappa, H. (2008). Org. Lett. 10, 965–968. [DOI] [PubMed]
  22. Osaka, H., Ishida, T., Nogami, T., Yamazaki, R., Yasui, M., Iwasaki, F., Mizoguchi, A., Kubata, M., Uemiya, T. & Nishimura, A. (1994). Bull. Chem. Soc. Jpn, 67, 918–923.
  23. Peng, T., Fu, Y., Yu, C.-Y., Wang, L.-B. & Huang, Z.-T. (2006). Acta Cryst. E62, o3382–o3383.
  24. Ringer, A. L., Senenko, A. & Sherrill, C. D. (2007). Protein Sci. 16, 2216–2223. [DOI] [PMC free article] [PubMed]
  25. Seenaiah, D., Reddy, P. R., Reddy, G. M., Padmaja, A., Padmavathi, V. & Siva krishna, N. (2014). Eur. J. Med. Chem. 77, 1–7. [DOI] [PubMed]
  26. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  27. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  28. Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
  29. Silva, R. F. N., Sacco, A. C. S., Caracelli, I., Zukerman-Schpector, J. & Tiekink, E. R. T. (2018). Z. Krist. Cryst. Mater. 233, 531–537.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989022002572/ex2055sup1.cif

e-78-00369-sup1.cif (1.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002572/ex2055Isup2.hkl

e-78-00369-Isup2.hkl (356.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022002572/ex2055Isup3.cml

CCDC reference: 2156777

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES