The crystal structure and supramolecular interactions of a new terbium(III) complex with an acetohydrazide ligand are reported.
Keywords: crystal structure, acetohydrazide, Hirshfeld surface analysis, lanthanide(III) ion, terbium(III)
Abstract
In the title lanthanide(III) compound, [Tb(NO3)2(C2H6N2O)3]NO3, the asymmetric unit contains one Tb3+ ion, three acetohydrazide (C2H6N2O) ligands, two coordinated nitrate anions, and an isolated nitrate anion. The Tb3+ ion is in a ninefold coordinated distorted tricapped trigonal–prismatic geometry formed by three oxygen atoms and three nitrogen atoms from three different acetohydrazide ligands and three oxygen atoms from two nitrate anions. In the crystal, the complex molecules and the non-coordinated nitrate anions are assembled into a three-dimensional supramolecular architecture through extensive N—H⋯O hydrogen-bonding interactions between the amine NH groups of the acetohydrazide ligands and the nitrate oxygen atoms. Hirshfeld surface analysis was performed to aid in the visualization of intermolecular contacts.
Chemical context
Over the past two decades, there has been increasing interest in the construction of new lanthanide-based coordination compounds, not only because of their structural diversity but also because of their fascinating potential applications in luminescence, magnetism, adsorption, and similar areas (Roy et al., 2014 ▸; Cui et al., 2018 ▸; Kuwamura et al., 2021 ▸). It is well known that lanthanide(III) ions have a high affinity for and prefer binding to hard donor atoms. Thus, organic ligands with oxygen donor atoms such as aromatic polycarboxylic acids have been used extensively for the formation of these coordination materials (Janicki et al., 2017 ▸) whereas organohydrazide ligands have received far less attention. Accordingly, a ConQuest search of the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Bruno et al., 2002 ▸; Groom et al., 2016 ▸) reveals only 23 entries for hydrazide-containing lanthanide complexes. Among them, 15 lanthanide coordination complexes have recently been reported by our groups. Some of these complexes exhibited a high CO2 uptake ability at high pressure (Theppitak et al., 2021a
▸), and have shown great potential as luminescent sensors for acetone and the Co2+ ion with good recyclability (Theppitak et al., 2021b
▸). In this work, we present the molecular structure of a new terbium(III) complex, [Tb(C2H6N2O)3(NO3)2]NO3 (1), synthesized with acetohydrazide (C2H6N2O) as the organic ligand. In addition, a Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify the intermolecular contacts in the crystal structure.
Structural commentary
The molecular structure of 1 is shown in Fig. 1 ▸. The asymmetric unit contains one Tb3+ ion, three acetohydrazide ligands, two coordinated nitrate anions, and a non-coordinated nitrate counter-anion. The Tb3+ ion is ninefold coordinated (TbN3O6) by three nitrogen atoms and three oxygen atoms from three different acetohydrazide ligands, two oxygen atoms from one chelate nitrate anion, and one oxygen atom from another nitrate anion. As can be seen in Fig. 2 ▸, the coordination polyhedron of the Tb3+ ion is best described as having a distorted tricapped trigonal–prismatic geometry, wherein the N3, N5, O1, O3, O4, and O7 atoms form a trigonal prism, while the N1, O2, and O5 atoms act as caps. The Tb—O bond lengths of 2.353 (2)–2.496 (2) Å are slightly shorter than the Tb—N bond lengths [2.553 (2)–2.586 (2) Å]. The bond angles around the central Tb3+ ion fall into the range of 50.93 (7)–150.97 (7)°. These values are comparable to those reported for other ninefold-coordinated Tb3+ compounds containing oxygen/nitrogen-donor ligands such as [Tb(C17H13N3)(NO3)2(DMSO)]·CH3OH (VUKNEW, Chen et al., 2015 ▸) and [Tb(C13H22N3)(NO3)3]·MeCN (SEZTOJ, Long et al., 2018 ▸).
Figure 1.
Molecular structure of 1, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Figure 2.
View of the distorted tricapped trigonal–prismatic coordination geometry of the central Tb3+ atom in 1.
Supramolecular features
Extensive hydrogen-bonding interactions involving the three components of the hydrazide group of the acetohydrazide ligand and the coordinated and non-coordinated nitrate ions contribute to the stabilization of the supramolecular structure of 1 (Table 1 ▸; the N—H distances are all fixed with N—H = 0.86 ± 0.02 Å). A closer inspection of the structure reveals that the [Tb(C2H6N2O)3(NO3)2]+ complex molecules form centrosymmetric dimers via pairs of symmetry-related N3—H3B⋯O6 hydrogen bonds involving the amine NH group of the acetohydrazide ligand and the coordinated nitrate oxygen atom, Fig. 3 ▸. Notably, the amine NH donor and the coordinated nitrate oxygen acceptor is also involved in an intramolecular N1—H1A⋯O8 hydrogen bond. The dimers are further held together through an intermolecular N3—H3A⋯O9 hydrogen bond between the amine NH and the coordinated nitrate oxygen (O9), resulting in the formation of a two-dimensional supramolecular layer that propagates in the [100] direction, Fig. 4 ▸. Ultimately, adjacent layers are connected into a three-dimensional supramolecular architecture via the other two complementary N—H⋯O hydrogen-bonding interactions (i.e. N5—H5B⋯O3 and N6—H6⋯O7) occurring between the acetohydrazide ligands and the coordinated nitrate ions, Fig. 5 ▸. In addition, the non-coordinated nitrate anion is located in cavities along the b axis and serves as the acceptor site for six N—H⋯O hydrogen-bonding interactions (i.e. N1—H1B⋯O10, N2—H2⋯O12, N4—H4⋯O10, N4—H4⋯O11, N5—H5A⋯O10, and N5—H5A⋯O12) as shown in Fig. 6 ▸.
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯O8 | 0.84 (2) | 2.37 (2) | 2.950 (3) | 126 (2) |
| N1—H1B⋯O10i | 0.85 (2) | 2.36 (2) | 3.136 (3) | 153 (3) |
| N2—H2⋯O11 | 0.85 (2) | 2.69 (3) | 3.070 (3) | 109 (2) |
| N2—H2⋯O12 | 0.85 (2) | 2.09 (2) | 2.891 (2) | 156 (3) |
| N3—H3A⋯O8 | 0.87 (2) | 2.46 (3) | 2.866 (3) | 110 (2) |
| N3—H3A⋯O9ii | 0.87 (2) | 2.33 (2) | 3.146 (3) | 157 (2) |
| N3—H3B⋯O6iii | 0.85 (2) | 2.25 (2) | 3.089 (3) | 168 (3) |
| N4—H4⋯O10iv | 0.87 (2) | 2.34 (2) | 3.102 (3) | 147 (3) |
| N4—H4⋯O11iv | 0.87 (2) | 2.17 (2) | 2.984 (3) | 156 (3) |
| N5—H5A⋯O10v | 0.86 (2) | 2.58 (2) | 3.176 (3) | 128 (2) |
| N5—H5A⋯O12v | 0.86 (2) | 2.11 (2) | 2.964 (2) | 173 (3) |
| N5—H5B⋯O3vi | 0.85 (2) | 2.51 (2) | 3.211 (2) | 140 (2) |
| N6—H6⋯O7vi | 0.85 (2) | 2.17 (2) | 2.999 (2) | 166 (2) |
| N6—H6⋯O10v | 0.85 (2) | 2.74 (2) | 3.170 (3) | 114 (2) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
.
Figure 3.
Dimer formation through N—H⋯O hydrogen bonds (dashed lines) in 1 (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity).
Figure 4.
The two-dimensional hydrogen bonded layer in 1 (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity).
Figure 5.
The three-dimensional hydrogen-bonded network in 1 (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity).
Figure 6.
View of 1 approximately along the b-axis direction, showing the N—H⋯O hydrogen-bonding interactions involving the non-coordinated nitrate ion and the complex molecules (hydrogen atoms, except those forming hydrogen bonds, are omitted for clarity).
Hirshfeld surface analysis
The Hirshfeld surface analysis (McKinnon et al., 2007 ▸) and the associated two-dimensional fingerprint plot generation (Spackman & McKinnon, 2002 ▸) were carried out using CrystalExplorer17 (Turner et al., 2017 ▸) in order to quantify the nature of the intermolecular interactions present in the crystal structure, and the results are shown in Figs. 7 ▸ and 8 ▸. The most significant contributions to the d norm surfaces are H⋯O/O⋯H contacts (i.e. N—H⋯O hydrogen bonds), contributing 62.8% to the overall crystal packing of the title compound. The H⋯H contacts (representing van der Waals interactions) with a 22.8% contribution play a minor role in the stabilization of the crystal packing. All other N⋯O/O⋯N, O⋯O and H⋯N/N⋯H contacts make only negligible contributions to the Hirshfeld surface.
Figure 7.
Two-dimensional fingerprint plots of 1, showing (a) all interactions, and those delineated into (b) H⋯O/O⋯H, (c) H⋯H, (d) N⋯O/O⋯N, (e) O⋯O, and (f) H⋯N/N⋯H contacts [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively].
Figure 8.
Quantitative results of different intermolecular contacts contributing to the Hirshfeld surface of 1.
Database survey
A ConQuest search of the Cambridge Structural Database (CSD, Version 5.42, September 2021 update; Bruno et al., 2002 ▸; Groom et al., 2016 ▸) for the structures of lanthanide complexes with acetohydrazide ligands gave ten hits, viz. Er [CECLEB (Pangani et al., 1983 ▸), CECLEB10 (Agre et al., 1984 ▸)], Dy [CECLIF (Pangani et al., 1983 ▸), CECLIF10 (Pangani, Agre et al., 1984 ▸)], Ho [CECLOL (Pangani et al., 1983 ▸), CECLOL10 (Pangani, Agre et al., 1984 ▸)], Pr (CUWFAB; Pangani, Machhoshvili et al., 1984 ▸), Gd (FOYGIM; Brandão et al., 2020 ▸), and Sm [ISNHSM (Zinner et al., 1979 ▸), QITBIH (Theppitak et al., 2018 ▸)]. In all of these complexes, the acetohydrazide ligand adopts a μ 2-κ 1:κ 1 bidentate chelating coordination mode to bind the lanthanide(III) ion and the amine NH moiety of the acetohydrazide ligand can act as a donor site for intermolecular hydrogen-bonding interactions, similar to that of the title compound.
Synthesis and crystallization
A mixture of Tb(NO3)3·6H2O (45.3 mg, 0.1 mmol), acetohydrazide (14.8 mg, 0.2 mmol), and isopropyl alcohol (4 ml) was sealed in a 15 ml Teflon-lined steel autoclave and heated at 373 K for 24 h. The mixture was cooled to room temperature and colorless block-shaped crystals of the title compound (1) were obtained in 87% yield (39.3 mg, based on Tb3+ source). Analysis calculated (%) for C6H18N9O12Tb: C 12.71; H 3.20; N 22.23%. Found: C 12.44; H 3.96; N 21.89%.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All hydrogen atoms were located in difference-Fourier maps. All carbon-bound hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.96 Å and U iso(H) = 1.5U eq(C). All nitrogen-bound hydrogen atoms were refined with a fixed distance N—H = 0.86 ± 0.02 Å.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Tb(NO3)2(C2H6N2O)3]NO3 |
| M r | 567.21 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 296 |
| a, b, c (Å) | 10.9076 (3), 9.7786 (3), 16.8578 (5) |
| β (°) | 90.791 (1) |
| V (Å3) | 1797.90 (9) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 4.02 |
| Crystal size (mm) | 0.28 × 0.21 × 0.2 |
| Data collection | |
| Diffractometer | Bruker D8 QUEST CMOS |
| Absorption correction | Multi-scan (SADABS; Bruker, 2016 ▸) |
| T min, T max | 0.471, 0.747 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 47511, 6876, 5752 |
| R int | 0.034 |
| (sin θ/λ)max (Å−1) | 0.770 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.027, 0.044, 1.08 |
| No. of reflections | 6876 |
| No. of parameters | 293 |
| No. of restraints | 9 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 1.12, −1.13 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022002298/yz2015sup1.cif
Supporting information file. DOI: 10.1107/S2056989022002298/yz2015Isup3.cdx
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002298/yz2015Isup4.hkl
CCDC reference: 2101422
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| [Tb(NO3)2(C2H6N2O)3]NO3 | F(000) = 1112 |
| Mr = 567.21 | Dx = 2.096 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| a = 10.9076 (3) Å | Cell parameters from 9937 reflections |
| b = 9.7786 (3) Å | θ = 3.0–33.1° |
| c = 16.8578 (5) Å | µ = 4.01 mm−1 |
| β = 90.791 (1)° | T = 296 K |
| V = 1797.90 (9) Å3 | Block, colourless |
| Z = 4 | 0.28 × 0.21 × 0.2 mm |
Data collection
| Bruker D8 QUEST CMOS diffractometer | 6876 independent reflections |
| Radiation source: sealed x-ray tube, Mo | 5752 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.034 |
| Detector resolution: 7.39 pixels mm-1 | θmax = 33.2°, θmin = 2.8° |
| ω and φ scans | h = −16→14 |
| Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −15→14 |
| Tmin = 0.471, Tmax = 0.747 | l = −25→25 |
| 47511 measured reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
| R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0127P)2 + 1.6017P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.044 | (Δ/σ)max = 0.003 |
| S = 1.08 | Δρmax = 1.12 e Å−3 |
| 6876 reflections | Δρmin = −1.13 e Å−3 |
| 293 parameters | Extinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 9 restraints | Extinction coefficient: 0.00248 (11) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Tb1 | 0.53793 (2) | 0.69267 (2) | 0.81234 (2) | 0.01794 (3) | |
| O1 | 0.53302 (15) | 0.88900 (15) | 0.73061 (9) | 0.0316 (3) | |
| O2 | 0.48569 (13) | 0.88947 (16) | 0.88653 (10) | 0.0310 (3) | |
| O3 | 0.68110 (13) | 0.63211 (16) | 0.71532 (9) | 0.0275 (3) | |
| O4 | 0.5610 (2) | 0.6421 (2) | 0.95580 (11) | 0.0535 (5) | |
| O5 | 0.68865 (16) | 0.53978 (19) | 0.88111 (12) | 0.0425 (4) | |
| O6 | 0.7062 (2) | 0.5199 (3) | 1.00927 (15) | 0.0780 (8) | |
| O7 | 0.47104 (13) | 0.45766 (15) | 0.79809 (10) | 0.0297 (3) | |
| O8 | 0.27693 (15) | 0.46317 (18) | 0.76534 (12) | 0.0430 (4) | |
| O9 | 0.37120 (17) | 0.26983 (17) | 0.77663 (12) | 0.0431 (4) | |
| O10 | 0.51235 (17) | 0.6218 (2) | 0.38477 (11) | 0.0446 (4) | |
| O11 | 0.57284 (17) | 0.6504 (3) | 0.50502 (13) | 0.0598 (6) | |
| O12 | 0.38755 (14) | 0.70400 (18) | 0.47151 (9) | 0.0337 (4) | |
| N1 | 0.4200 (2) | 0.6697 (2) | 0.67879 (12) | 0.0302 (4) | |
| H1A | 0.3464 (17) | 0.647 (3) | 0.6859 (16) | 0.040 (8)* | |
| H1B | 0.454 (3) | 0.608 (3) | 0.6519 (16) | 0.050 (9)* | |
| N2 | 0.42249 (18) | 0.7916 (2) | 0.63406 (11) | 0.0294 (4) | |
| H2 | 0.401 (3) | 0.789 (3) | 0.5854 (11) | 0.048 (9)* | |
| N3 | 0.31650 (17) | 0.7017 (2) | 0.86115 (13) | 0.0301 (4) | |
| H3A | 0.265 (2) | 0.694 (3) | 0.8222 (13) | 0.038 (7)* | |
| H3B | 0.302 (3) | 0.635 (2) | 0.8919 (16) | 0.051 (9)* | |
| N4 | 0.29181 (17) | 0.8249 (2) | 0.90180 (12) | 0.0327 (4) | |
| H4 | 0.2186 (19) | 0.842 (3) | 0.9187 (18) | 0.060 (10)* | |
| N5 | 0.74028 (16) | 0.82302 (19) | 0.82323 (11) | 0.0243 (4) | |
| H5A | 0.786 (2) | 0.809 (3) | 0.8643 (13) | 0.040 (8)* | |
| H5B | 0.722 (2) | 0.9075 (18) | 0.8197 (16) | 0.040 (8)* | |
| N6 | 0.81190 (16) | 0.79567 (19) | 0.75554 (12) | 0.0274 (4) | |
| H6 | 0.8761 (18) | 0.842 (2) | 0.7489 (15) | 0.035 (7)* | |
| N7 | 0.6533 (2) | 0.5651 (2) | 0.95054 (14) | 0.0433 (5) | |
| N8 | 0.36977 (17) | 0.39549 (19) | 0.77997 (11) | 0.0290 (4) | |
| N9 | 0.49126 (17) | 0.6579 (2) | 0.45403 (11) | 0.0286 (4) | |
| C1 | 0.48401 (19) | 0.8957 (2) | 0.66389 (13) | 0.0258 (4) | |
| C2 | 0.4922 (3) | 1.0227 (3) | 0.61533 (16) | 0.0426 (6) | |
| H2A | 0.472625 | 1.100447 | 0.647550 | 0.064* | |
| H2B | 0.435281 | 1.017233 | 0.571491 | 0.064* | |
| H2C | 0.573927 | 1.032232 | 0.595665 | 0.064* | |
| C3 | 0.38049 (19) | 0.9150 (2) | 0.90919 (12) | 0.0246 (4) | |
| C4 | 0.3478 (2) | 1.0492 (3) | 0.94566 (15) | 0.0376 (5) | |
| H4A | 0.401145 | 1.066733 | 0.990255 | 0.056* | |
| H4B | 0.264351 | 1.046395 | 0.963032 | 0.056* | |
| H4C | 0.356757 | 1.120640 | 0.907122 | 0.056* | |
| C5 | 0.77501 (18) | 0.7031 (2) | 0.70400 (13) | 0.0246 (4) | |
| C6 | 0.8488 (2) | 0.6862 (3) | 0.63059 (16) | 0.0421 (6) | |
| H6A | 0.895336 | 0.603072 | 0.634062 | 0.063* | |
| H6B | 0.903604 | 0.762411 | 0.625384 | 0.063* | |
| H6C | 0.794817 | 0.682378 | 0.585182 | 0.063* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Tb1 | 0.01473 (4) | 0.01950 (5) | 0.01956 (5) | 0.00037 (4) | −0.00101 (3) | −0.00128 (4) |
| O1 | 0.0418 (9) | 0.0248 (8) | 0.0279 (8) | −0.0019 (7) | −0.0130 (7) | 0.0027 (6) |
| O2 | 0.0230 (7) | 0.0316 (8) | 0.0386 (9) | −0.0015 (6) | 0.0073 (6) | −0.0121 (7) |
| O3 | 0.0225 (7) | 0.0280 (8) | 0.0321 (8) | −0.0051 (6) | 0.0061 (6) | −0.0090 (6) |
| O4 | 0.0599 (13) | 0.0684 (13) | 0.0320 (10) | 0.0158 (11) | −0.0029 (9) | 0.0067 (9) |
| O5 | 0.0319 (9) | 0.0424 (10) | 0.0530 (12) | 0.0057 (8) | −0.0068 (8) | 0.0097 (9) |
| O6 | 0.0641 (14) | 0.102 (2) | 0.0668 (15) | −0.0119 (14) | −0.0300 (12) | 0.0547 (14) |
| O7 | 0.0236 (7) | 0.0240 (7) | 0.0414 (9) | −0.0037 (6) | −0.0017 (6) | −0.0023 (7) |
| O8 | 0.0224 (8) | 0.0387 (10) | 0.0679 (13) | 0.0003 (7) | −0.0027 (8) | 0.0016 (9) |
| O9 | 0.0467 (11) | 0.0227 (8) | 0.0598 (12) | −0.0082 (8) | −0.0065 (9) | 0.0001 (8) |
| O10 | 0.0487 (11) | 0.0525 (11) | 0.0331 (9) | 0.0088 (9) | 0.0142 (8) | −0.0051 (8) |
| O11 | 0.0280 (9) | 0.1001 (17) | 0.0510 (12) | 0.0141 (10) | −0.0115 (9) | −0.0132 (12) |
| O12 | 0.0214 (7) | 0.0512 (10) | 0.0284 (8) | 0.0049 (7) | 0.0009 (6) | −0.0029 (7) |
| N1 | 0.0331 (10) | 0.0294 (10) | 0.0278 (9) | −0.0056 (8) | −0.0048 (8) | −0.0015 (8) |
| N2 | 0.0332 (10) | 0.0370 (11) | 0.0178 (8) | −0.0010 (8) | −0.0041 (7) | 0.0008 (8) |
| N3 | 0.0217 (8) | 0.0310 (10) | 0.0377 (11) | −0.0035 (8) | 0.0021 (8) | −0.0029 (9) |
| N4 | 0.0198 (8) | 0.0376 (11) | 0.0410 (11) | 0.0027 (8) | 0.0094 (8) | −0.0069 (9) |
| N5 | 0.0234 (8) | 0.0233 (9) | 0.0261 (9) | −0.0011 (7) | −0.0032 (7) | −0.0024 (7) |
| N6 | 0.0213 (8) | 0.0257 (9) | 0.0352 (10) | −0.0075 (7) | 0.0036 (7) | −0.0022 (8) |
| N7 | 0.0389 (11) | 0.0437 (13) | 0.0470 (13) | −0.0100 (10) | −0.0171 (10) | 0.0220 (11) |
| N8 | 0.0277 (9) | 0.0257 (9) | 0.0337 (10) | −0.0065 (8) | 0.0027 (8) | −0.0008 (8) |
| N9 | 0.0237 (9) | 0.0321 (10) | 0.0300 (9) | −0.0011 (7) | 0.0041 (7) | 0.0022 (8) |
| C1 | 0.0233 (10) | 0.0299 (11) | 0.0242 (9) | 0.0054 (8) | 0.0013 (8) | 0.0019 (8) |
| C2 | 0.0429 (14) | 0.0443 (14) | 0.0404 (14) | −0.0028 (12) | −0.0072 (11) | 0.0157 (12) |
| C3 | 0.0248 (9) | 0.0301 (10) | 0.0189 (9) | 0.0048 (9) | 0.0016 (7) | −0.0013 (8) |
| C4 | 0.0361 (12) | 0.0364 (13) | 0.0403 (13) | 0.0112 (10) | 0.0027 (10) | −0.0104 (11) |
| C5 | 0.0221 (9) | 0.0221 (9) | 0.0296 (10) | 0.0016 (8) | 0.0035 (8) | 0.0010 (8) |
| C6 | 0.0414 (13) | 0.0411 (14) | 0.0445 (14) | −0.0059 (12) | 0.0206 (11) | −0.0097 (12) |
Geometric parameters (Å, º)
| Tb1—O1 | 2.3632 (15) | N2—H2 | 0.849 (17) |
| Tb1—O2 | 2.3690 (15) | N2—C1 | 1.316 (3) |
| Tb1—O3 | 2.3525 (14) | N3—H3A | 0.865 (17) |
| Tb1—O4 | 2.4779 (19) | N3—H3B | 0.850 (17) |
| Tb1—O5 | 2.4959 (17) | N3—N4 | 1.414 (3) |
| Tb1—O7 | 2.4220 (15) | N4—H4 | 0.867 (17) |
| Tb1—N1 | 2.587 (2) | N4—C3 | 1.313 (3) |
| Tb1—N3 | 2.5640 (19) | N5—H5A | 0.857 (17) |
| Tb1—N5 | 2.5532 (18) | N5—H5B | 0.851 (17) |
| O1—C1 | 1.240 (2) | N5—N6 | 1.417 (3) |
| O2—C3 | 1.240 (2) | N6—H6 | 0.845 (17) |
| O3—C5 | 1.254 (2) | N6—C5 | 1.314 (3) |
| O4—N7 | 1.261 (3) | C1—C2 | 1.491 (3) |
| O5—N7 | 1.262 (3) | C2—H2A | 0.9600 |
| O6—N7 | 1.222 (3) | C2—H2B | 0.9600 |
| O7—N8 | 1.294 (2) | C2—H2C | 0.9600 |
| O8—N8 | 1.232 (2) | C3—C4 | 1.494 (3) |
| O9—N8 | 1.230 (2) | C4—H4A | 0.9600 |
| O10—N9 | 1.244 (2) | C4—H4B | 0.9600 |
| O11—N9 | 1.231 (3) | C4—H4C | 0.9600 |
| O12—N9 | 1.257 (2) | C5—C6 | 1.494 (3) |
| N1—H1A | 0.844 (17) | C6—H6A | 0.9600 |
| N1—H1B | 0.845 (17) | C6—H6B | 0.9600 |
| N1—N2 | 1.411 (3) | C6—H6C | 0.9600 |
| O1—Tb1—O2 | 69.15 (6) | H3A—N3—H3B | 106 (3) |
| O1—Tb1—O4 | 137.09 (7) | N4—N3—Tb1 | 111.81 (13) |
| O1—Tb1—O5 | 140.08 (6) | N4—N3—H3A | 108.2 (18) |
| O1—Tb1—O7 | 135.12 (5) | N4—N3—H3B | 109 (2) |
| O1—Tb1—N1 | 63.66 (6) | N3—N4—H4 | 120 (2) |
| O1—Tb1—N3 | 98.35 (6) | C3—N4—N3 | 118.22 (18) |
| O1—Tb1—N5 | 69.45 (6) | C3—N4—H4 | 121 (2) |
| O2—Tb1—O4 | 70.66 (7) | Tb1—N5—H5A | 118.0 (19) |
| O2—Tb1—O5 | 113.77 (6) | Tb1—N5—H5B | 106.4 (19) |
| O2—Tb1—O7 | 138.48 (5) | H5A—N5—H5B | 110 (3) |
| O2—Tb1—N1 | 114.19 (6) | N6—N5—Tb1 | 109.48 (12) |
| O2—Tb1—N3 | 64.41 (6) | N6—N5—H5A | 107.6 (19) |
| O2—Tb1—N5 | 76.73 (5) | N6—N5—H5B | 104.8 (19) |
| O3—Tb1—O1 | 79.00 (6) | N5—N6—H6 | 118.1 (18) |
| O3—Tb1—O2 | 137.59 (5) | C5—N6—N5 | 119.68 (17) |
| O3—Tb1—O4 | 124.67 (6) | C5—N6—H6 | 122.1 (18) |
| O3—Tb1—O5 | 74.51 (6) | O4—N7—O5 | 115.89 (19) |
| O3—Tb1—O7 | 83.93 (5) | O6—N7—O4 | 121.8 (3) |
| O3—Tb1—N1 | 72.54 (6) | O6—N7—O5 | 122.3 (3) |
| O3—Tb1—N3 | 150.36 (6) | O8—N8—O7 | 119.45 (18) |
| O3—Tb1—N5 | 66.06 (5) | O9—N8—O7 | 117.96 (19) |
| O4—Tb1—O5 | 50.93 (7) | O9—N8—O8 | 122.57 (19) |
| O4—Tb1—N1 | 150.97 (7) | O10—N9—O12 | 120.03 (19) |
| O4—Tb1—N3 | 77.11 (7) | O11—N9—O10 | 119.8 (2) |
| O4—Tb1—N5 | 87.34 (7) | O11—N9—O12 | 120.1 (2) |
| O5—Tb1—N1 | 131.95 (7) | O1—C1—N2 | 121.1 (2) |
| O5—Tb1—N3 | 119.27 (7) | O1—C1—C2 | 120.9 (2) |
| O5—Tb1—N5 | 72.69 (6) | N2—C1—C2 | 118.0 (2) |
| O7—Tb1—O4 | 86.19 (7) | C1—C2—H2A | 109.5 |
| O7—Tb1—O5 | 70.93 (6) | C1—C2—H2B | 109.5 |
| O7—Tb1—N1 | 71.68 (6) | C1—C2—H2C | 109.5 |
| O7—Tb1—N3 | 77.33 (6) | H2A—C2—H2B | 109.5 |
| O7—Tb1—N5 | 137.71 (5) | H2A—C2—H2C | 109.5 |
| N3—Tb1—N1 | 79.81 (7) | H2B—C2—H2C | 109.5 |
| N5—Tb1—N1 | 121.66 (6) | O2—C3—N4 | 121.3 (2) |
| N5—Tb1—N3 | 140.98 (6) | O2—C3—C4 | 122.1 (2) |
| C1—O1—Tb1 | 125.30 (14) | N4—C3—C4 | 116.64 (19) |
| C3—O2—Tb1 | 123.84 (14) | C3—C4—H4A | 109.5 |
| C5—O3—Tb1 | 121.19 (13) | C3—C4—H4B | 109.5 |
| N7—O4—Tb1 | 96.95 (15) | C3—C4—H4C | 109.5 |
| N7—O5—Tb1 | 96.06 (14) | H4A—C4—H4B | 109.5 |
| N8—O7—Tb1 | 136.41 (13) | H4A—C4—H4C | 109.5 |
| Tb1—N1—H1A | 111.2 (19) | H4B—C4—H4C | 109.5 |
| Tb1—N1—H1B | 108 (2) | O3—C5—N6 | 121.60 (19) |
| H1A—N1—H1B | 108 (3) | O3—C5—C6 | 121.0 (2) |
| N2—N1—Tb1 | 112.25 (13) | N6—C5—C6 | 117.39 (19) |
| N2—N1—H1A | 109.1 (19) | C5—C6—H6A | 109.5 |
| N2—N1—H1B | 108 (2) | C5—C6—H6B | 109.5 |
| N1—N2—H2 | 119 (2) | C5—C6—H6C | 109.5 |
| C1—N2—N1 | 117.60 (18) | H6A—C6—H6B | 109.5 |
| C1—N2—H2 | 122 (2) | H6A—C6—H6C | 109.5 |
| Tb1—N3—H3A | 111.3 (19) | H6B—C6—H6C | 109.5 |
| Tb1—N3—H3B | 110 (2) | ||
| Tb1—O1—C1—N2 | 3.9 (3) | Tb1—O7—N8—O9 | 178.18 (15) |
| Tb1—O1—C1—C2 | −176.58 (17) | Tb1—N1—N2—C1 | 1.4 (2) |
| Tb1—O2—C3—N4 | 8.5 (3) | Tb1—N3—N4—C3 | 0.0 (3) |
| Tb1—O2—C3—C4 | −171.10 (16) | Tb1—N5—N6—C5 | −6.9 (2) |
| Tb1—O3—C5—N6 | 14.8 (3) | N1—N2—C1—O1 | −3.4 (3) |
| Tb1—O3—C5—C6 | −164.56 (17) | N1—N2—C1—C2 | 177.1 (2) |
| Tb1—O4—N7—O5 | −4.1 (2) | N3—N4—C3—O2 | −5.3 (3) |
| Tb1—O4—N7—O6 | 174.7 (2) | N3—N4—C3—C4 | 174.4 (2) |
| Tb1—O5—N7—O4 | 4.0 (2) | N5—N6—C5—O3 | −4.1 (3) |
| Tb1—O5—N7—O6 | −174.7 (2) | N5—N6—C5—C6 | 175.3 (2) |
| Tb1—O7—N8—O8 | −0.5 (3) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···O8 | 0.84 (2) | 2.37 (2) | 2.950 (3) | 126 (2) |
| N1—H1B···O10i | 0.85 (2) | 2.36 (2) | 3.136 (3) | 153 (3) |
| N2—H2···O11 | 0.85 (2) | 2.69 (3) | 3.070 (3) | 109 (2) |
| N2—H2···O12 | 0.85 (2) | 2.09 (2) | 2.891 (2) | 156 (3) |
| N3—H3A···O8 | 0.87 (2) | 2.46 (3) | 2.866 (3) | 110 (2) |
| N3—H3A···O9ii | 0.87 (2) | 2.33 (2) | 3.146 (3) | 157 (2) |
| N3—H3B···O6iii | 0.85 (2) | 2.25 (2) | 3.089 (3) | 168 (3) |
| N4—H4···O10iv | 0.87 (2) | 2.34 (2) | 3.102 (3) | 147 (3) |
| N4—H4···O11iv | 0.87 (2) | 2.17 (2) | 2.984 (3) | 156 (3) |
| N5—H5A···O10v | 0.86 (2) | 2.58 (2) | 3.176 (3) | 128 (2) |
| N5—H5A···O12v | 0.86 (2) | 2.11 (2) | 2.964 (2) | 173 (3) |
| N5—H5B···O3vi | 0.85 (2) | 2.51 (2) | 3.211 (2) | 140 (2) |
| N6—H6···O7vi | 0.85 (2) | 2.17 (2) | 2.999 (2) | 166 (2) |
| N6—H6···O10v | 0.85 (2) | 2.74 (2) | 3.170 (3) | 114 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+1, −y+1, −z+2; (iv) x−1/2, −y+3/2, z+1/2; (v) x+1/2, −y+3/2, z+1/2; (vi) −x+3/2, y+1/2, −z+3/2.
Funding Statement
This work was funded by Thailand Institute of Nuclear Technology; Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications; National Research Council of Thailand grant 15/2563 to C. Theppitak.
References
- Agre, V. M., Pangani, V. S. & Trunov, V. K. (1984). Koord. Khim. 10, 120–128
- Brandão, S. G., Ribeiro, M. A., Perrella, R. V., de Sousa Filho, P. C. & Luz, P. P. (2020). J. Rare Earths, 38, 642–648.
- Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
- Chen, P., Zhang, M., Sun, W., Li, H., Zhao, L. & Yan, P. (2015). CrystEngComm, 17, 5066–5073.
- Cui, Y., Zhang, J., He, H. & Qian, G. (2018). Chem. Soc. Rev. 47, 5740–5785. [DOI] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Janicki, R., Mondry, A. & Starynowicz, P. (2017). Coord. Chem. Rev. 340, 98–133.
- Kuwamura, N. & Konno, T. (2021). Inorg. Chem. Front. 8, 2634–649.
- Long, J., Lyubov, D. M., Mahrova, T. V., Cherkasov, A. V., Fukin, G. K., Guari, Y., Larionova, J. & Trifonov, A. A. (2018). Dalton Trans. 47, 5153–5156. [DOI] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Pangani, V. S., Agre, V. M. & Trunov, V. K. (1983). Zh. Neorg. Khim. 28, 2136–2137.
- Pangani, V. S., Agre, V. M., Trunov, V. K. & Machkhoshvili, R. I. (1984). Koord. Khim. 10, 1128–1131.
- Pangani, V. S., Machhoshvili, R. I., Agre, V. M., Trunov, V. K. & Shchelokov, R. N. (1984). Inorg. Chim. Acta, 94, 79.
- Roy, S., Chakraborty, A. & Maji, T. P. (2014). Coord. Chem. Rev. 273–274, 139–164.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
- Theppitak, C., Jiajaroen, S., Chongboriboon, N., Chanthee, S., Kielar, F., Dungkaew, W., Sukwattanasinitt, M. & Chainok, K. (2021b). Molecules, 26, 4428. [DOI] [PMC free article] [PubMed]
- Theppitak, C., Kielar, F. & Chainok, K. (2018). Acta Cryst. E74, 1691–1694. [DOI] [PMC free article] [PubMed]
- Theppitak, C., Kielar, F., Dungkaew, W., Sukwattanasinitt, M., Kangkaew, L., Sahasithiwat, S., Zenno, H., Hayami, S. & Chainok, K. (2021a). RSC Adv. 11, 24709–24721. [DOI] [PMC free article] [PubMed]
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Zinner, L. B., Crotty, D. E., Anderson, T. J. & Glick, M. D. (1979). Inorg. Chem. 18, 2045–2048.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022002298/yz2015sup1.cif
Supporting information file. DOI: 10.1107/S2056989022002298/yz2015Isup3.cdx
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002298/yz2015Isup4.hkl
CCDC reference: 2101422
Additional supporting information: crystallographic information; 3D view; checkCIF report








