Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Mar 22;78(Pt 4):425–432. doi: 10.1107/S2056989022002912

Crystal structure, Hirshfeld surface analysis, inter­action energy and DFT calculations and energy frameworks of methyl 6-chloro-1-methyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate

Yassir Filali Baba a,*, Sonia Hayani a, Samira Dalbouha b,c, Tuncer Hökelek d, Fouad Ouazzani Chahdi a, Joel T Mague e, Youssef Kandri Rodi a, Nada Kheira Sebbar f,g, El Mokhtar Essassi g
PMCID: PMC8983989  PMID: 35492275

In the title compound, the di­hydro­quinoline moiety is not quite planar and an intra­molecular C—H⋯O hydrogen bond helps to establish the rotational orientation of the carboxyl group. In the crystal, sheets of mol­ecules parallel to (10 Inline graphic ) are generated by C—H⋯O and C—H⋯Cl hydrogen bonds.

Keywords: crystal structure, hydrogen-bonding, π-stacking, di­hydro­quinoline

Abstract

In the title compound, C12H10ClNO3, the di­hydro­quinoline moiety is not planar with a dihedral angle between the two ring planes of 1.61 (6)°. An intra­molecular C—H⋯O hydrogen bond helps to establish the rotational orientation of the carboxyl group. In the crystal, sheets of mol­ecules parallel to (10 Inline graphic ) are generated by C—H⋯O and C—H⋯Cl hydrogen bonds, and are stacked through slipped π-stacking inter­actions between inversion-related di­hydro­quinoline units. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (34.2%), H⋯O/O⋯H (19.9%), H⋯Cl/Cl⋯H (12.8%), H⋯C/C⋯H (10.3%) and C⋯C (9.7%) inter­actions. Computational chemistry indicates that in the crystal, the C—H⋯Cl hydrogen-bond energy is −37.4 kJ mol−1, while the C—H⋯O hydrogen-bond energies are −45.4 and −29.2 kJ mol−1. An evaluation of the electrostatic, dispersion and total energy frameworks revealed that the stabilization is dominated via the dispersion energy contribution. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state, and the HOMO—LUMO behaviour was elucidated to determine the energy gap.

Chemical context

Over the past few decades, heterocyclic chemistry has received increasing inter­est because of the pharmacological importance of the majority of heterocyclic compounds, especially N-containing heterocycles such as quinoline derivatives (Filali Baba et al., 2019; Hayani et al., 2021). Quinoline derivatives possess numerous biological properties, including anti­microbial (Katoh et al., 2004; Abdel-Wahab et al., 2012), anti-inflammatory (Leatham et al., 1983), anti­hypertensive (Muruganantham et al., 2004), anti­biotic (Mahamoud et al., 2006), anti-HIV (Wilson et al., 1992; Strekowski et al., 1991) and corrosion-inhibitive activities (Filali Baba et al., 2016a ,b ). They are also considered to be important scaffolds for the development of new mol­ecules of pharmaceutical inter­est (Filali Baba et al., 2020; Bouzian et al., 2018). graphic file with name e-78-00425-scheme1.jpg

In a continuation of our research work devoted to the study of O- and N-alkyl­ation reactions involving quinoline derivatives, we report here the synthesis and crystal structure of methyl 6-chloro-1-methyl-2-oxo-1,2-di­hydro­quinoline-4-carboxyl­ate obtained by the alkyl­ation reaction of 6-chloro-2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid with an excess of methyl iodide as an alkyl­ating reagent in phase transfer catalysis (PTC). The mol­ecular and crystal structure as well as the Hirshfeld surface analysis of the title compound are reported. The results obtained using density functional theory (DFT) calculations, performed at the B3LYP/6-311G(d,p) level, are compared with the experimental results determined from the mol­ecular and crystal structures in the solid state of the title compound, (I).

Structural commentary

The bicyclic mol­ecular core is not planar as there is a dihedral angle of 1.61 (6)° between the mean planes of its constituent rings. The dihedral angle between the mean plane of the (C1/N1/C6–C9) ring and the plane defined by atoms C7, C11, O2 and O3 is 4.08 (8)° with the near coplanarity of the carboxyl group and the heterocyclic ring being caused, in part, by the intra­molecular C5—H5⋯O2 hydrogen bond (Table 1, Fig. 1).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2iii 0.95 2.57 3.5146 (16) 178
C5—H5⋯O2 0.95 2.19 2.8496 (16) 126
C8—H8⋯Cl1iv 0.95 2.84 3.7786 (13) 170
C12—H12C⋯O1ii 0.98 2.36 3.0016 (16) 122

Symmetry codes: (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 1.

Figure 1

The title mol­ecule with labelling scheme and displacement ellipsoids drawn at the 50% probability level. The intra­molecular C—H⋯O hydrogen bond is depicted by a dashed line.

Supra­molecular features

In the crystal, C2—H2⋯O2iii hydrogen bonds (Table 1) form ribbons of mol­ecules extending along [010], which are further linked into sheets parallel to (10 Inline graphic ) by C12—H12C⋯O1ii and weak C8—H8⋯Cl1iv (H⋯Cl is 0.11 Å less than the sum of the van der Waals radii) hydrogen bonds (Table 1, Fig. 2). The sheets are stacked along the direction of the normal to (10 Inline graphic ) by slipped π-stacking inter­actions between inversion-related di­hydro­quinoline moieties [centroid⋯centroid distance = 3.7140 (7) Å, dihedral angle = 1.61 (6)°, slippage = 1.63 Å] (Fig. 3).

Figure 2.

Figure 2

A portion of one layer projected on (10 Inline graphic ) with C—H⋯O and C—H⋯Cl hydrogen bonds depicted, respectively, by black and green dashed lines.

Figure 3.

Figure 3

Packing of mol­ecules viewed along [010] with slipped π-stacking inter­actions depicted by orange dashed lines.

Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 4 a), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii (Venkatesan et al., 2016). Selected contacts are given in Table 2. The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) shown in Fig. 4 b. The blue regions indicate a positive electrostatic potential (hydrogen-bond donors), while the red regions indicate a negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles: if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 4 c clearly suggests that there are π–π inter­actions in (I). The overall two-dimensional fingerprint plot is shown in Fig. 5 a, and those delineated into H⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, C⋯C, C⋯O/O⋯C, C⋯Cl/Cl⋯C, O⋯Cl/Cl⋯O, O·· O, H⋯N/N⋯H, N⋯Cl/Cl⋯N, C⋯N/N⋯C, Cl⋯Cl and N⋯O/O⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 5 bo, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 34.2% to the overall crystal packing, which is reflected in Fig. 5 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at d e = d i = 1.24 Å. The pair of the scattered points of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts, Fig. 5 c, with a 19.9% contribution to the HS has a distribution of points with the tips at d e + d i = 2.28 Å. The H⋯Cl/Cl⋯H contacts, Fig. 5 d, with a 12.8% contribution to the HS have a symmetric distribution of points with the tips at d e + d i = 2.68 Å. In the absence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 5 e, with a 10.3% contribution to the HS has the tips at d e + d i = 3.01 Å. The C⋯C contacts, Fig. 5 f, with a 9.7% contribution to the HS have a bullet-shaped distribution of points with the tip at d e = d i = 1.67 Å. The C⋯O/O⋯C contacts, Fig. 5 g, with a 3.4% contribution to the HS have the tips at d e + d i = 3.32 Å and d e + d i = 3.45 Å for sharp and tiny distributions of points. The symmetric distribution of points of the C⋯Cl/Cl⋯C contacts, Fig. 5 h, with a 3.0% contribution to the HS appear as scattered points with a tiny pair of spikes with the tips at d e + d i = 3.48 Å. Finally, the contributions of the remaining O⋯Cl/Cl⋯O, O⋯O, H⋯N/N⋯H, N⋯Cl/Cl⋯N, C⋯N/N⋯C, Cl⋯Cl and N⋯O/O⋯N contacts (Fig. 5 io) are smaller than 3.0% to the HS with low densities of points.

Figure 4.

Figure 4

(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over d norm in the range of −0.2172 to 0.9151 a.u.; (b) view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory; (c) Hirshfeld surface of the title compound plotted over shape-index.

Table 2. Selected interatomic distances (Å).

Cl1⋯O3i 3.1903 (10) H2⋯O2iii 2.57
Cl1⋯H8i 2.84 O3⋯H8 2.25
C12⋯O1ii 3.0016 (16) C2⋯H10C 2.78
O2⋯C5 2.8496 (17) C2⋯H10B 2.74
O1⋯H10A 2.26 C10⋯H2 2.46
H12C⋯O1ii 2.36 C11⋯H5 2.71
O2⋯H12A 2.64 H2⋯H10B 2.24
O2⋯H5 2.19 H2⋯H10C 2.29
O2⋯H12B 2.55    

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 5.

Figure 5

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯Cl/Cl⋯H, (e) H⋯C/C⋯H, (f) C⋯C, (g) C⋯O/O⋯C, (h) C⋯Cl/Cl⋯C, (i) O⋯Cl/Cl⋯O, (j) O⋯O, (k) H⋯N/N⋯H, (l) N⋯Cl/Cl⋯N, (m) C⋯N/N⋯C, (n) Cl⋯Cl and (o) N⋯O/O⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H and C⋯C inter­actions in Fig. 6 ae, respectively.

Figure 6.

Figure 6

Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯O/O⋯H, (c) H⋯Cl/Cl⋯H, (d) H⋯C/C⋯H and (e) C⋯C inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions play the major role in the crystal packing (Hathwar et al., 2015).

Inter­action energy calculations

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017), where a cluster of mol­ecules would be needed by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014). The total inter­molecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −10.4 (E ele), −1.6 (E pol), −51.9 (E dis), 32.4 (E rep) and −37.4 (E tot) [for the C8—H8⋯Cl1iv hydrogen-bonding inter­action], −0.9 (E ele), −2.8 (E pol), −84.0 (E dis), 49.9 (E rep) and −45.4 (E tot) (for C2—H2⋯O2iii) and −6.0 (E ele), −4.1 (E pol), −37.0 (E dis), 20.2 (E rep) and −29.2 (E tot) (for C12—H12C⋯O1ii).

Energy frameworks

Energy frameworks combine the calculation of inter­molecular inter­action energies with a graphical representation of their magnitude (Turner et al., 2015). Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules with the cylinder radius proportional to the relative strength of the corresponding inter­action energy. Energy frameworks were constructed for E ele (red cylinders), E dis (green cylinders) and E tot (blue cylinders) (Fig. 7 ac). The evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the dispersion energy contributions in (I).

Figure 7.

Figure 7

Energy frameworks of (I).

DFT calculations

The geometrical parameters and energies of (I) in the gas phase were computed via density functional theory (DFT) using the standard B3LYP functional and 6–311G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009), see Table 3. The theoretical bond lengths and angles are in good agreement with those based on the X-ray analysis. However, a few differences exists in case of some dihedral angles (N1—C1—C6—C7; C10—N1—C1—C6; O1—C9—N1—C1; O2—C11—C7—C6; O3—C11—C7—C6; C12—O3—C11—C7), because in the DFT calculations there is only one mol­ecule treated in the gas phase whereas in the solid state several mol­ecules inter­act by hydrogen-bonding inter­actions (Fig. 2, Table 1). The torsion angles show that the conformation of the mol­ecule in the gas phase has C 1 symmetry.

Table 3. B3LY/6–311G(d,p) equilibrium structural parameters (Å, °) and X-ray analysis of the title compound, (I).

Bonds/angles X-ray B3LYP/6–311G(d,p)
C2—C1 1.4070 (17) 1.4562
C3—C2 1.3547 (18) 1.3547
C4—C3 1.3836 (17) 1.3933
C5—C4 1.3807 (17) 1.3798
C6—C5 1.4098 (16) 1.4086
C7—C6 1.4514 (16) 1.4562
C8—C7 1.3510 (16) 1.3547
C9—C8 1.4513 (17) 1.4563
N1—C1 1.3920 (15) 1.3914
C10—N1 1.4673 (16) 1.4641
H2—C2 0.95 1.07965
H3—C3 0.95 1.0822
Cl1—C4 1.7397 (13) 1.7594
H5—C5 0.9500 1.0777
C11—C7 1.5022 (16) 1.5077
H8—C8 0.9500 1.0792
O1—C9 1.2319 (15) 1.2227
O2—C11 1.2040 (16) 1.2086
O3—C11 1.3258 (15) 1.3452
C12—O3 1.4458 (15) 1.4400
H12A—C12 0.98 1.0907
H12B—C12 0.98 1.0907
H12C—C12 0.98 1.0872
H10A—C10 0.98 1.0924
H10B—C10 0.98 1.0859
H10C—C10 0.98 1.0924
     
C3—C2—C1 120.15 (11) 121.15
C4—C3—C2 120.29 (12) 119.41
C5—C4—C3 121.22 (12) 121.07
C6—C5—C4 120.00 (11) 120.57
C7—C6—C5 123.66 (11) 123.69
C8—C7—C6 119.52 (11) 119.54
C9—C8—C7 123.22 (11) 123.86
N1—C1—C6 120.32 (11) 120.78
C10—N1—C1 119.77 (10) 120.37
H2—C2—C1 119.9 120.30
H3—C3—C4 119.9 120.32
Cl1—C4—C5 118.82 (10) 119.62
H5—C5—C6 120.00 119.03
C11—C7—C6 122.02 (10) 122.01
H8—C8—C9 118.40 114.79
O1—C9—N1 122.17 (12) 122.09
O2—C11—C7 125.71 (11) 125.86
O3—C11—C7 111.59 (10) 111.75
C12—O3—C11 116.08 (11) 115.75
H12A—C12—O3 109.5 110.40
H12B—C12—O3 109.5 110.40
H12C—C12—O3 109.5 105.31
H10A—C10—N1 109.5 110.62
H10B—C10—N1 109.5 107.00
H10C—C10—N1 109.5 110.40
     
C4—C3—C2—C1 0.40 (19) 0.00
C5—C4—C3—C2 0.32 (19) 0.00
C6—C5—C4—C3 −0.25 (19) 0.00
C7—C6—C5—C4 −179.83 (11) −180.00
C8—C7—C6—C1 −1.59 (17) 0.00
C9—C8—C7—C6 0.23 (18) 0.00
N1—C1—C6—C7 0.69 (17) 0.00
C10—N1—C1—C6 −178.45 (12) −180.0
Cl1—C4—C5—C6 −179.81 (9) −180.0
O1—C9—N1—C1 177.48 (12) 179.99
O2—C11—C7—C6 −4.6 (2) −0.01
O3—C11—C7—C6 175.14 (11) −179.99
C12—O3—C11—C7 −179.85 (11) 179.99

The infrared spectrum of (I) on basis of the B3LYP/6-311G calculation is shown in the supporting information. All harmonic frequencies are positive, demonstrating the minimal signature of (I). The spectrum mainly constitutes 75 vibration modes. The CH3 torsion appears in the 17–119 cm−1 region, the ν C=C stretching mode is at 1363 cm−1, the vibrations of the aromatic N—CH3 appear at 1091 cm−1, and the O—CH3 and the C—Cl stretching bands are observed, respectively, at 1033 cm−1 and 1124 cm−1. The C—H stretch of the CH3 group appears at 3182 cm−1, however the aromatic C—H stretches appear in the 3208-3256 cm−1 region. The bending of CH3 appear between 1528 cm−1 and 1556 cm−1, Finally, the band positions of the bending of the HCC, HCN and HCO groups are respectively at 1169 cm−1, 1119 cm−1 and 1204 cm−1.

The HOMO and LUMO energies are predicted with the B3LYP method in combination of basis sets 6-31G(d,p). This mol­ecule contains 65 occupied mol­ecular orbitals and 309 unoccupied virtual mol­ecular orbitals. The frontier mol­ecular orbitals are shown in Fig. 8. The positive phase is shown in red and the negative phase is shown in green. The HOMO-LUMO energy gap of (I) reflects the chemical activity and was calculated by the DFT/B3LYP/6-31G(d,p) method (Table 4). The high value of the energy gap (3.68 eV) implies a high electronic stability and low reactivity. In general, low values mean that it will be easier to remove an electron from the HOMO orbital towards the LUMO orbital.

Figure 8.

Figure 8

The energy band gap of (I).

Table 4. Calculated energies.

Mol­ecular Energy (eV) Compound (I)
Total Energy TE (eV) −32759.86
E HOMO (eV) −6.50
E LUMO (eV) −2.82
Gap, ΔE (eV) 3.68
Dipole moment, μ (Debye) 0.6065
Ionization potential, I (eV) 6.50
Electron affinity, A 2.82
Electronegativity, χ 1.84
Hardness, η 3.68
Softness, σ 0.27
Electrophilicity index, ω −0.68

Mol­ecular electrostatic potential (MESP) analysis

The study of MESP is a useful tool in the investigation of the mol­ecular structure with its relation to physico-chemical properties. The MESP analysis of (I) was performed with the functional B3LYP and the basis set 6-311G (d,P). The different values of the electrostatic potential are represented by different colours (Seminario, 1996; Murray & Sen, 1996) such that red represents the region of the most negative electrostatic potential (electrophilic sites), blue represents the region of the most positive electrostatic potential (the nucleophilic reactivity) and green represents the region of zero potential. The potential increases in the following order: red < orange < yellow < green < blue. Fig. 9 reveals that the negative potential sites are on oxygen and chlorine atoms, as well as the positive potential site is around hydrogen atoms. From these results, we can deduce that the H atoms show the strongest attraction and the oxygen and chlorine atoms show the strongest repulsion in the density curve. The H atom of the meth­oxy and amine group has a higher positive value than the other H atoms.

Figure 9.

Figure 9

Contour surface of the electrostatic potential of (I).

Database survey

A search of the Cambridge Crystallographic Database (updated to Dec. 31, 2021; Groom et al., 2016) using the fragment shown in the scheme below yielded 20 hits of which 16 contained an ester group attached to C7 (the remainder contained an alkyl group at this position) and, of these, only two, ROKCIG (Filali Baba et al., 2019) and REYREV (Filali Baba et al., 2018) contain a halogen atom attached to the aromatic ring. The former is more closely related to the title mol­ecule by having an ethyl group attached to nitro­gen and also in the ester substituent. In contrast to the title mol­ecule, that in ROKCIG forms inversion dimers through C—H⋯O hydrogen bonds (rather than ribbons), which are connected into layers approximately parallel to (10 Inline graphic ), but there are no C—H⋯Cl hydrogen bonds or π-stacking inter­actions. In the non-halogenated analog of ROKCIG (ROKCOM; Filali Baba et al., 2019) C—H⋯O hydrogen bonds form ribbons of mol­ecules along [001], which are connected by weak π-stacking inter­actions. graphic file with name e-78-00425-scheme2.jpg

Synthesis and crystallization

To a solution of 6-chloro-2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid (1 g, 4.47 mmol) in 10 ml of DMF were added 3.30 ml (9.83 mmol) of methyl iodide, 3.17 g (22.36 mmol) of K2CO3 and 0.17 g (0.5 mmol) of tetra n-butyl­ammonium bromide (TBAB). The reaction mixture was stirred at room temperature in DMF for 6 h. After removal of salts, the solvent was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and then concentrated in vacuo. A pure compound was obtained after recrystallization from di­chloro­methane/hexane (v/v 1/3).

Refinement

Crystal, data collection and refinement details are presented in Table 5. Hydrogen atoms were included as riding contributions in idealized positions with isotropic displacement parameters tied to those of the attached atoms. Two reflections obscured by the beamstop were omitted from the final refinement.

Table 5. Experimental details.

Crystal data
Chemical formula C12H10ClNO3
M r 251.66
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 8.3515 (3), 16.6672 (6), 7.9705 (3)
β (°) 107.191 (2)
V3) 1059.90 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.35 × 0.19 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.94, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 70718, 3544, 2977
R int 0.040
(sin θ/λ)max−1) 0.737
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.115, 1.06
No. of reflections 3544
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.30

Computer programs: APEX3 and SAINT (Bruker, 2020), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989022002912/wm5635sup1.cif

e-78-00425-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002912/wm5635Isup3.hkl

e-78-00425-Isup3.hkl (282.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022002912/wm5635Isup4.cdx

the infrared spectrum of b3lyp/6-311g of the compound (I). DOI: 10.1107/S2056989022002912/wm5635sup5.tif

Supporting information file. DOI: 10.1107/S2056989022002912/wm5635Isup5.cml

CCDC reference: 2159047

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C12H10ClNO3 F(000) = 520
Mr = 251.66 Dx = 1.577 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.3515 (3) Å Cell parameters from 9727 reflections
b = 16.6672 (6) Å θ = 2.6–31.5°
c = 7.9705 (3) Å µ = 0.36 mm1
β = 107.191 (2)° T = 150 K
V = 1059.90 (7) Å3 Plate, pale blue
Z = 4 0.35 × 0.19 × 0.04 mm

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer 3544 independent reflections
Radiation source: fine-focus sealed tube 2977 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 7.3910 pixels mm-1 θmax = 31.6°, θmin = 2.8°
φ and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −24→24
Tmin = 0.94, Tmax = 0.99 l = −11→11
70718 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.427P] where P = (Fo2 + 2Fc2)/3
3544 reflections (Δ/σ)max = 0.001
156 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. The diffraction data were obtained from 12 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 15 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Two reflections obscured by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.84517 (4) 0.57446 (2) 1.07652 (4) 0.02841 (10)
O1 0.11119 (15) 0.35446 (6) 0.34782 (14) 0.0330 (2)
O2 0.33909 (15) 0.67466 (6) 0.64348 (17) 0.0415 (3)
O3 0.12761 (13) 0.64014 (6) 0.41182 (12) 0.0279 (2)
N1 0.34559 (13) 0.36878 (6) 0.58343 (13) 0.0213 (2)
C1 0.46120 (15) 0.41783 (7) 0.70040 (16) 0.0199 (2)
C2 0.59973 (16) 0.38341 (8) 0.82548 (17) 0.0236 (2)
H2 0.612806 0.326763 0.831409 0.028*
C3 0.71602 (16) 0.43149 (7) 0.93894 (17) 0.0226 (2)
H3 0.809737 0.407995 1.022678 0.027*
C4 0.69735 (16) 0.51402 (8) 0.93189 (16) 0.0223 (2)
C5 0.56211 (15) 0.54992 (7) 0.81228 (16) 0.0205 (2)
H5 0.551223 0.606682 0.809742 0.025*
C6 0.44019 (14) 0.50236 (7) 0.69390 (15) 0.0187 (2)
C7 0.29453 (15) 0.53504 (7) 0.56374 (15) 0.0186 (2)
C8 0.18725 (16) 0.48494 (7) 0.45164 (16) 0.0213 (2)
H8 0.092808 0.507382 0.367006 0.026*
C9 0.20920 (16) 0.39853 (8) 0.45415 (16) 0.0228 (2)
C10 0.36647 (19) 0.28134 (8) 0.59449 (19) 0.0288 (3)
H10A 0.272556 0.255765 0.506926 0.043*
H10B 0.369000 0.263150 0.712165 0.043*
H10C 0.471808 0.266706 0.571760 0.043*
C11 0.25956 (15) 0.62357 (7) 0.54768 (16) 0.0209 (2)
C12 0.08323 (19) 0.72398 (8) 0.3841 (2) 0.0304 (3)
H12A 0.174601 0.753257 0.357605 0.046*
H12B 0.064284 0.746230 0.490485 0.046*
H12C −0.019260 0.729287 0.285546 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02388 (16) 0.02942 (17) 0.02545 (16) −0.00297 (11) −0.00271 (12) −0.00145 (11)
O1 0.0406 (6) 0.0229 (5) 0.0279 (5) −0.0084 (4) −0.0016 (4) −0.0034 (4)
O2 0.0370 (6) 0.0184 (4) 0.0512 (7) 0.0009 (4) −0.0147 (5) −0.0053 (4)
O3 0.0309 (5) 0.0208 (4) 0.0250 (5) 0.0054 (4) −0.0028 (4) 0.0003 (3)
N1 0.0261 (5) 0.0153 (4) 0.0205 (5) 0.0001 (4) 0.0041 (4) −0.0008 (3)
C1 0.0217 (5) 0.0175 (5) 0.0201 (5) −0.0002 (4) 0.0056 (4) −0.0002 (4)
C2 0.0249 (6) 0.0198 (5) 0.0251 (6) 0.0033 (4) 0.0061 (5) 0.0024 (4)
C3 0.0222 (6) 0.0223 (5) 0.0222 (5) 0.0027 (4) 0.0048 (4) 0.0022 (4)
C4 0.0202 (5) 0.0242 (5) 0.0200 (5) −0.0009 (4) 0.0023 (4) −0.0003 (4)
C5 0.0205 (5) 0.0186 (5) 0.0210 (5) 0.0002 (4) 0.0039 (4) 0.0001 (4)
C6 0.0189 (5) 0.0178 (5) 0.0182 (5) 0.0002 (4) 0.0035 (4) −0.0002 (4)
C7 0.0196 (5) 0.0162 (5) 0.0188 (5) 0.0000 (4) 0.0041 (4) 0.0002 (4)
C8 0.0221 (5) 0.0188 (5) 0.0206 (5) −0.0012 (4) 0.0027 (4) 0.0004 (4)
C9 0.0262 (6) 0.0202 (5) 0.0203 (5) −0.0025 (4) 0.0043 (4) 0.0001 (4)
C10 0.0364 (7) 0.0153 (5) 0.0323 (7) 0.0006 (5) 0.0063 (6) 0.0007 (4)
C11 0.0206 (5) 0.0176 (5) 0.0221 (5) 0.0008 (4) 0.0027 (4) 0.0008 (4)
C12 0.0334 (7) 0.0221 (6) 0.0314 (7) 0.0077 (5) 0.0030 (5) 0.0055 (5)

Geometric parameters (Å, º)

Cl1—C4 1.7397 (13) C4—C5 1.3807 (17)
O1—C9 1.2319 (15) C5—C6 1.4098 (16)
O2—C11 1.2040 (16) C5—H5 0.9500
O3—C11 1.3258 (15) C6—C7 1.4514 (16)
O3—C12 1.4458 (15) C7—C8 1.3510 (16)
N1—C9 1.3825 (16) C7—C11 1.5022 (16)
N1—C1 1.3920 (15) C8—C9 1.4513 (17)
N1—C10 1.4673 (16) C8—H8 0.9500
C1—C2 1.4070 (17) C10—H10A 0.9800
C1—C6 1.4189 (16) C10—H10B 0.9800
C2—C3 1.3726 (18) C10—H10C 0.9800
C2—H2 0.9500 C12—H12A 0.9800
C3—C4 1.3836 (17) C12—H12B 0.9800
C3—H3 0.9500 C12—H12C 0.9800
Cl1···O3i 3.1903 (10) H2···O2iii 2.57
Cl1···H8i 2.84 O3···H8 2.25
C12···O1ii 3.0016 (16) C2···H10C 2.78
O2···C5 2.8496 (17) C2···H10B 2.74
O1···H10A 2.26 C10···H2 2.46
H12C···O1ii 2.36 C11···H5 2.71
O2···H12A 2.64 H2···H10B 2.24
O2···H5 2.19 H2···H10C 2.29
O2···H12B 2.55
C11—O3—C12 116.08 (11) C8—C7—C11 118.46 (11)
C9—N1—C1 122.97 (10) C6—C7—C11 122.02 (10)
C9—N1—C10 117.27 (10) C7—C8—C9 123.22 (11)
C1—N1—C10 119.77 (10) C7—C8—H8 118.4
N1—C1—C2 119.83 (11) C9—C8—H8 118.4
N1—C1—C6 120.32 (11) O1—C9—N1 122.17 (12)
C2—C1—C6 119.85 (11) O1—C9—C8 121.78 (12)
C3—C2—C1 120.15 (11) N1—C9—C8 116.05 (11)
C3—C2—H2 119.9 N1—C10—H10A 109.5
C1—C2—H2 119.9 N1—C10—H10B 109.5
C2—C3—C4 120.29 (12) H10A—C10—H10B 109.5
C2—C3—H3 119.9 N1—C10—H10C 109.5
C4—C3—H3 119.9 H10A—C10—H10C 109.5
C5—C4—C3 121.22 (12) H10B—C10—H10C 109.5
C5—C4—Cl1 118.82 (10) O2—C11—O3 122.70 (12)
C3—C4—Cl1 119.96 (10) O2—C11—C7 125.71 (11)
C4—C5—C6 120.00 (11) O3—C11—C7 111.59 (10)
C4—C5—H5 120.0 O3—C12—H12A 109.5
C6—C5—H5 120.0 O3—C12—H12B 109.5
C5—C6—C1 118.48 (11) H12A—C12—H12B 109.5
C5—C6—C7 123.66 (11) O3—C12—H12C 109.5
C1—C6—C7 117.86 (10) H12A—C12—H12C 109.5
C8—C7—C6 119.52 (11) H12B—C12—H12C 109.5
C9—N1—C1—C2 −178.19 (12) C1—C6—C7—C8 −1.59 (17)
C10—N1—C1—C2 1.67 (18) C5—C6—C7—C11 −1.54 (18)
C9—N1—C1—C6 1.70 (18) C1—C6—C7—C11 179.15 (11)
C10—N1—C1—C6 −178.45 (12) C6—C7—C8—C9 0.23 (18)
N1—C1—C2—C3 178.70 (11) C11—C7—C8—C9 179.51 (11)
C6—C1—C2—C3 −1.18 (19) C1—N1—C9—O1 177.48 (12)
C1—C2—C3—C4 0.40 (19) C10—N1—C9—O1 −2.39 (19)
C2—C3—C4—C5 0.32 (19) C1—N1—C9—C8 −2.97 (17)
C2—C3—C4—Cl1 179.88 (10) C10—N1—C9—C8 177.17 (11)
C3—C4—C5—C6 −0.25 (19) C7—C8—C9—O1 −178.44 (13)
Cl1—C4—C5—C6 −179.81 (9) C7—C8—C9—N1 2.01 (18)
C4—C5—C6—C1 −0.52 (18) C12—O3—C11—O2 −0.1 (2)
C4—C5—C6—C7 −179.83 (11) C12—O3—C11—C7 −179.85 (11)
N1—C1—C6—C5 −178.65 (11) C8—C7—C11—O2 176.09 (14)
C2—C1—C6—C5 1.23 (18) C6—C7—C11—O2 −4.6 (2)
N1—C1—C6—C7 0.69 (17) C8—C7—C11—O3 −4.12 (16)
C2—C1—C6—C7 −179.43 (11) C6—C7—C11—O3 175.14 (11)
C5—C6—C7—C8 177.71 (12)

Symmetry codes: (i) x+1, y, z+1; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2iii 0.95 2.57 3.5146 (16) 178
C5—H5···O2 0.95 2.19 2.8496 (16) 126
C8—H8···Cl1iv 0.95 2.84 3.7786 (13) 170
C12—H12C···O1ii 0.98 2.36 3.0016 (16) 122

Symmetry codes: (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+3/2; (iv) x−1, y, z−1.

Funding Statement

This work was funded by Tulane University; Hacettepe University Scientific Research Project Unit grant 013 D04 602 004.

References

  1. Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, pp. 211–276.
  2. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  3. Bouzian, Y., Hlimi, F., Sebbar, N. K., El Hafi, M., Hni, B., Essassi, E. M. & Mague, J. T. (2018). IUCrData, 3, x181438.
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2020). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
  6. Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K. & Essassi, E. M. (2016b). J. Mater. Environ. Sci. 7, 2424–2434.
  7. Filali Baba, Y., Elmsellem, H., Kandri Rodi, Y., Steli, H., Ouazzani Chahdi, F., Ouzidan, Y., Sebbar, N. K., Essassi, E. M., El-Hajjaji, F. & Hammouti, B. (2016a). Der Pharmacia Lettre. 8, 128–137.
  8. Filali Baba, Y., Gökce, H., Kandri Rodi, Y., Hayani, S., Ouazzani Chahdi, F., Boukir, A., Jasinski, J. P., Kaur, M., Hökelek, T., Sebbar, N. K. & Essassi, E. M. (2020). J. Mol. Struct. 1217, 128461.
  9. Filali Baba, Y., Kandri Rodi, Y., Mague, J. T., Ouzidan, Y., Ouazzani Chahdi, F. & Essassi, E. M. (2018). IUCrData, 3, x180288.
  10. Filali Baba, Y., Sert, Y., Kandri Rodi, Y., Hayani, S., Mague, J. T., Prim, D., Marrot, J., Ouazzani Chahdi, F., Sebbar, N. K. & Essassi, E. M. (2019). J. Mol. Struct. 1188, 255–268.
  11. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  14. Hayani, S., Sert, Y., Filali Baba, Y., Benhiba, F., Ouazzani Chahdi, F., Laraqui, F.-Z., Mague, J. T., El Ibrahimi, B., Sebbar, N. K., Kandri Rodi, Y. & Essassi, E. M. (2021). J. Mol. Struct. 1227, 129520.
  15. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  16. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  17. Katoh, M., Matsune, R., Nagase, H. & Honda, T. (2004). Tetrahedron Lett. 45, 6221–6223.
  18. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  19. Leatham, P. A., Bird, H. A., Wright, V., Seymour, D. & Gordon, A. (1983). J. Rheumatol. Inflamm. 6, 209–211. [PubMed]
  20. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  21. Mahamoud, A., Chevalier, J., Davin-Regli, A., Barbe, J. & Pages, J. (2006). Curr. Drug Targets, 7, 843–847. [DOI] [PubMed]
  22. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  23. Murray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials, Concepts and Applications, Elsevier, Amsterdam.
  24. Muruganantham, N., Sivakumar, R., Anbalagan, N., Gunasekaran, V. & Leonard, J. T. (2004). Biol. Pharm. Bull. 27, 1683–1687. [DOI] [PubMed]
  25. Seminario, J. M. (1996). Recent Developments and Applications of Modern Density Functional Theory, vol. 4, pp. 800–806. Amsterdam: Elsevier.
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  29. Strekowski, L., Mokrosz, J. L., Honkan, V. A., Czarny, A., Cegla, M. T., Wydra, R. L., Patterson, S. E. & Schinazi, R. F. (1991). J. Med. Chem. 34, 1739–1746. [DOI] [PubMed]
  30. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  31. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  32. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  33. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]
  34. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  35. Wilson, W. D., Zhao, M., Patterson, S. E., Wydra, R. L., Janda, L. & Strekowski, L. (1992). J. Med. Chem. Res, 2, 102–110.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989022002912/wm5635sup1.cif

e-78-00425-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022002912/wm5635Isup3.hkl

e-78-00425-Isup3.hkl (282.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022002912/wm5635Isup4.cdx

the infrared spectrum of b3lyp/6-311g of the compound (I). DOI: 10.1107/S2056989022002912/wm5635sup5.tif

Supporting information file. DOI: 10.1107/S2056989022002912/wm5635Isup5.cml

CCDC reference: 2159047

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES