Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Mar 15;78(Pt 4):392–398. doi: 10.1107/S2056989022002729

Crystal structure of cis-7,8-dihy­droxy-5,10,15,20-tetra­phenyl­chlorin and its zinc(II)–ethyl­enedi­amine complex

Nivedita Chaudhri a, Christian Brückner a,*, Matthias Zeller b
PMCID: PMC8983991  PMID: 35492263

Normal mode structural decomposition (NSD) shows the title chlorin compounds to have considerable saddling deformation from planarity.

Keywords: crystal structure, porphyrinoids, hydro­porphyrins, meso-phenyl­chlorins, β-hy­droxy­chlorin

Abstract

The title chlorin, 2PhH2 , hydrogen-bonded to di­methyl­amino­pyridine (DMAP), C44H32N4O2·C7H10N2, and its corresponding zinc(II) complex, 2PhZn, axially coordinated to ethyl­enedi­amine (EDA), [Zn(C44H30N4O2)]·C2H8N2, were isolated and crystallized by adventitious reduction of the corresponding osmate esters by DMAP and EDA, respectively. Known since 1996 and, inter alia, used for the preparation of a wide range of (planar and non-planar) chlorin analogues (so-called pyrrole-modified porphyrins), their conformational analyses in the solid state are important benchmarks. Both macrocycles are only modestly distorted from planarity and both are slightly more non-planar than the corresponding dimeth­oxy-derivative, but less planar than a free-base meso-penta­fluoro­phenyl-based osmate ester. NSD analyses provide qu­anti­tative and qualitative analyses of the distortion modes. One origin of the non-planarity is presumably the avoidance of the eclipsed configuration of the two vic–cis diols on the pyrroline moiety; the resulting deformation of the pyrroline translates in some cases into the macrocycle. The structure of 2PhH2 features voids making up ca 26% of the unit-cell volume filled with highly disordered solvate mol­ecules (chloro­form and hexa­nes). 2PhZn crystallized with a 13.6 (4)% occupied solvate methanol mol­ecule.

Chemical context

The study of synthetic chlorins as functional, spectroscopic, or structural models for nature’s premiere light-harvesting pigment chloro­phyll is one of the central aspects in contemporary porphyrinoid chemistry (Flitsch, 1988; Liu et al., 2018; Taniguchi & Lindsey, 2017; Lindsey, 2015). Because of the facility of the synthesis of a wide range of meso-tetra­aryl­porphyrins, their conversion to chlorins has been widely studied (Flitsch, 1988; Taniguchi & Lindsey, 2017).

We contributed to the field the description of the OsO4-mediated di­hydroxy­lation of meso-tetra­aryl­porphyrins 1ArM, generating the corresponding chlorin diols 2ArM (Fig. 1) (Brückner & Dolphin, 1995a ; Brückner et al., 1998). Depending on the stoichiometric ratio of OsO4 used and whether the porphyrin metal complex or free base is used, the reaction may also lead to the regioselective formation of tetra­hydroxy­metalloisobacteriochlorins or tetra­hydroxy­bacteriochlorins, respectively (Brückner & Dolphin, 1995b ; Samankumara et al., 2010; Hyland et al., 2012; Bruhn & Brückner, 2015). Chlorin diols 2ArH2 have shown efficacy as photosensitizers in photodynamic therapy (Macalpine et al., 2002) or are substrates toward their oxidation to the corres­ponding diones (Starnes et al., 2000, 2001; Daniell et al., 2003). Importantly, chlorin diols 2ArM are the starting materials for the generation of a wide range of planar and non-planar chlorin analogues (so-called pyrrole-modified porphyrins) (Brückner, 2016; Sharma et al., 2017; Hewage et al., 2019; Brückner et al., 2020; Luciano et al., 2020; Wu et al., 2020), whereby the parent chlorin diols 2PhH2 and 2PhZn generally serve as spectroscopic benchmarks. Since the conformation of a porphyrinic macrocycle greatly influences its electronic structure, the structural characterization of the benchmark compounds 2PhH2 and 2PhZn is important. Curiously, however, even though these fundamental compounds are known since 1996, crystals suitable for single X-ray crystal structure analyses could not be grown to date. However, related derivatives, such as osmate ester 3FH2 (Hewage et al., 2019), a number of tetra­hydroxy­bacteriochlorins and isobacteriochlorins (Samankumara et al., 2010), and a number of alkyl­ated diol free base and metal complexes 4Ar M (M = 2H, Ni, Cu, Zn, Pd) (Samankumara et al., 2010; Sharma et al., 2017) could be structurally characterized. graphic file with name e-78-00392-scheme1.jpg

Figure 1.

Figure 1

Synthetic pathways towards 2PhH2·DMAP and 2PhZn·EDA and their meth­oxy ethers.

In due course of working with the inter­mediate osmate esters and attempts to form crystals of the amine adducts, we inadvertently reduced the osmate ester and the long-sought parent free base meso-phenyl chlorin diol 2PhH2 , as 2PhH2·DMAP hydrogen-bonded to DMAP (4-di­methyl­amino­pyridine) and the zinc(II) complex 2PhZn, in the form 2PhZn·EDA in which the metal is axially coordinated to ethyl­enedi­amine (EDA), crystallized in single-crystal X-ray diffraction quality.

Structural commentary

The structures of both 2PhH2·DMAP and 2PhZn·EDA confirm the cis–vic stereochemistry of the diol functionality and the near-perpendicular arrangement of the meso-phenyl groups – structural features well known for these types of meso-aryl­chlorin diols (Hewage et al., 2019; Samankumara et al., 2010; Sharma et al., 2017) or meso-aryl­porphyrinoids, in general (Senge, 2000) (Figs. 2 and 3).

Figure 2.

Figure 2

X-ray structure of 2PhH2·DMAP with the atom-labeling scheme for non-H atoms. 50% probability ellipsoids.

Figure 3.

Figure 3

X-ray structure of the zinc(II) complex 2PhZn·EDA, with the atom-labeling scheme for non-H atoms. 50% probability ellipsoids. Dashed bonds indicate the minor disordered amine [11.8 (12)% occupancy], and the partially occupied MeOH solvate [13.6 (4)% occupancy]. Atom labels for the backwards pointing phenyl ring (C21–C26) are omitted for clarity.

Importantly, the structures allow the determination of the conformation of their chromophores. The dissection of the conformation of 2PhH2·DMAP using a normal mode structural decomposition (NSD) analysis (Kingsbury & Senge, 2021; Shelnutt et al., 1998) shows that its chromophore exhibits a considerable saddling distortion. In comparison, the dimeth­oxy derivative 4PhH2 (Samankumara et al., 2010) is more planar, with only very modest distortions evenly spread over a number of distortion modes (Fig. 4 a). In 4PhH2 , both meth­oxy substituents point toward the outside, whereas the corresponding hy­droxy groups in 2PhH2·DMAP point in opposite directions, with only the hydrogen-bonded (to DMAP) hy­droxy group pointing outwards. A slight deformation of the pyrroline moiety in 2PhH2·DMAP alleviates the steric inter­actions between the two hy­droxy groups [26.65 (13)° O—C—C—O torsion angle] that would be otherwise forced to be eclipsed. The corresponding torsion angle in 4PhH2 is slightly smaller [17.23 (17)°; Samankumara et al., 2010]. This vic--cis-substituents-induced pyrroline deformation was also observed previously (Sharma et al., 2017; Hewage et al., 2019).

Figure 4.

Figure 4

Normal mode Structural Decomposition (NSD) analysis (Kingsbury & Senge, 2021) of (a), the chromophore conformations of di­hydroxy­chlorin 2PhH2·DMAP (hydrogen-bonded to DMAP) in comparison to the conformation of the chromophore of di­meth­oxy­chlorin 4PhH2 (Samankumara et al., 2010), and (b), the equivalent chromophore conformation analysis of 2PhZn·EDA in comparison to the closely related dimeth­oxy derivative 4CF3Zn (Sharma et al., 2017).

The out-of-plane plots (Kingsbury & Senge, 2021) of the two free-base chlorins 2PhH2·DMAP and 4PhH2 also illustrate the qualitative and qu­anti­tative differences in the conformations of the two (Fig. 5 a).

Figure 5.

Figure 5

Out-of-plane plots (Kingsbury & Senge, 2021) of the chromophore conformations of (a), di­hydroxy­chlorin 2PhH2·DMAP and di­meth­oxy­chlorin 4PhH2 (Samankumara et al., 2010), and (b), the equivalent plots of 2PhZn·EDA and 4CF3Zn·py (Sharma et al., 2017). The atoms indicated in red are the pyrroline β-carbons carrying the cis-hy­droxy or meth­oxy groups.

The saddling deformation is more pronounced in the corresponding zinc(II) complexes but the deformation modes observed in either of the complexes are very similar (Fig. 4 b and 5b). This (small) B 2u deformation mode is typical for penta-coordinated, square-pyramidal porphyrinoid zinc(II) complexes (Kingsbury & Senge, 2021). The differences in conformation quality and qu­antity is only minimal between the parent compound 2PhZn·EDA and its p-aryl-substituted and methyl­ated analogue 4CF3Zn·py. In addition, both mol­ecules carry their axial ligand on the same hemisphere defined by the macrocycle the diol/dimeth­oxy moieties are located. Nonetheless, there are differences. For instance, a smaller O—C—C—O torsion angle was observed in the diol zinc complex 2PhZn·EDA [O—Cβ—Cβ—O dihedral angle = 7.86 (17)°], whereas the corresponding angle in the dimeth­oxy derivative 4CF3Zn is 28.1 (4)°(Sharma et al., 2017).

In neither the free base nor the zinc complex of the diol chlorins are any significant in-plane deformations observed. The change in the macrocycle conformation upon methyl­ation and/or hydrogen bonding to an amine acceptor reiterates the conformational malleability of the chlorin chromophore (Kratky et al., 1985), as previously also shown in the varying conformations of a range of transition-metal complexes (Sharma et al., 2017).

Supra­molecular features

The dominant supra­molecular inter­actions in both 2PhH2·DMAP and 2PhZn·EDA are hydrogen-bonding inter­actions between the hydroxyl functions of the chlorin mol­ecules, and the DMAP and EDA bases incorporated into the crystal structure.

In 2PhH2·DMAP one of the hydroxyl groups acts as a donor towards the DMAP with O1—H1O⋯N5 = 2.6968 (14) Å. O1 in turn acts as acceptor for an O—H⋯O bond originating from O2 of a neighboring mol­ecule. A symmetry-equivalent inter­action (by inversion) connects the other two oxygen atoms of the same two mol­ecules with each other, creating an inversion-symmetric dimer (Fig. 6). A number of additional inter­actions that augment the strong hydrogen bonds, among them C—H⋯O, C—H⋯N and C–H⋯π inter­actions, are listed in the hydrogen-bonding Table 1.

Figure 6.

Figure 6

Hydrogen bonding and packing of 2PhH2·DMAP. 50% probability ellipsoids. Symmetry code: (i) 1 − x, 1 − y, 1 − z.

Table 1. Hydrogen-bond geometry (Å, °) for 2PhH2 .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N5 0.973 (17) 1.727 (17) 2.6968 (14) 174.1 (14)
O2—H2O⋯O1i 0.927 (17) 1.882 (17) 2.7798 (12) 162.5 (14)
N1—H1N⋯N2 0.925 (15) 2.346 (15) 2.9064 (13) 118.7 (11)
N1—H1N⋯N4 0.925 (15) 2.383 (15) 2.9518 (13) 119.6 (11)
N3—H3N⋯N2 0.915 (16) 2.292 (16) 2.8868 (13) 122.3 (12)
N3—H3N⋯N4 0.915 (16) 2.458 (15) 2.9766 (14) 116.1 (12)
C37—H37⋯O2ii 0.95 2.51 3.3840 (16) 153
C38—H38⋯C48ii 0.95 2.77 3.6779 (19) 161
C50—H50B⋯N4ii 0.98 2.57 3.544 (2) 171

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

The structure of 2PhH2·DMAP also contains 647 Å3 (ca 26% of the unit-cell volume) of solvent-accessible voids occupied by highly disordered solvent mol­ecules that could not be properly modeled or refined (Fig. 7). The content of these voids, presumably chloro­form and hexane, the crystallization solvents, were instead included in the model via reverse-Fourier-transform methods using the SQUEEZE routine (van der Sluis & Spek, 1990; Spek, 2015) as implemented in the program PLATON (Spek, 2020), and added as additional not-model-based structure-factor contributions. The procedure corrected for 162 electrons within the solvent-accessible voids.

Figure 7.

Figure 7

Solvent-accessible voids in 2PhH2·DMAP. The void volume is 647 Å3, or ca 26% of the unit-cell volume.

Hydrogen bonding in 2PhZn·EDA is similar to that of 2PhH2·DMAP, but more complex. In contrast to the DMAP mol­ecule in 2PhH2·DMAP, the amino NH2 groups of the ethyl­ene di­amine in 2PhZn·EDA can act as both hydrogen-bond acceptors as well as hydrogen-bond donors. One of the two amine moieties of the EDA base is axially coordinated to the zinc center of the chlorin complex, and is thus not available as a hydrogen-bond acceptor. The partially occupied methanol mol­ecule also takes part in hydrogen-bonding inter­actions, and the disorder of the not-metal-coordinated amino group further complicates the hydrogen-bonding network of 2PhZn·EDA.

The two hydroxyl groups again both act as hydrogen-bond donors, and similar to in 2PhH2·DMAP they form an inversion-symmetric dimer (Fig. 8). O1 again acts as a hydrogen-bond donor towards the base, here the disordered amino group, of the other mol­ecule of the dimer. Different from the DMAP mol­ecule, which lacks acidic H atoms, the amines also act as hydrogen-bond donors. The metal-coordinated amine creates an N—H⋯O bond that provides an additional connection within the dimer to create a 3D hydrogen-bonding network between the two mol­ecules (Fig. 8).

Figure 8.

Figure 8

Hydrogen bonding and packing of 2PhZn·EDA. 50% probability ellipsoids. Symmetry code: (i) 1 − x, 1 − y, 1 − z. 50% ellipsoids for fully occupied and major occupancy non-H atoms. Others in capped stick mode. Phenyl and pyrrole H atoms are omitted for clarity.

Several ‘terminal’ hydrogen bonds or hydrogen-bond-like inter­actions cap off the not yet used acidic and basic atoms, which are listed in the hydrogen-bonding Table 2 (inter­actions not shown). The second amine H atom of the metal-coordin­ated NH2 group is engaged in an N—H⋯π inter­action towards the π-density of C29 of the phenyl ring of a neighboring mol­ecule. The major moiety of the disordered amino group hydrogen bonds with the partially occupied methanol mol­ecule. However, this inter­action is not always present, as the occupancy of the MeOH mol­ecule is only 13.6 (4)%, while that of the amino group is 88.2 (12)%. The second amino H atom is not involved in any directional inter­actions. One of the H atoms of the minor amino moiety might be engaged in another N—H⋯π inter­action towards the π-density of C43 and C43 of a phenyl ring of the second dimer mol­ecule, but the exact positions of the amino H atoms are not determined accurately given the low occupancy of the amino fragment [11.8 (12)%]. The same is true for the position of the methanol hydroxyl H atom, which appears to be engaged in a weak O—H⋯π inter­action with the porphyrinic π-system of a mol­ecule at −1 + x, y, z. O3, the methanol oxygen atom, acts as acceptor for a C—H⋯O inter­action originating from a phenyl C atom of a mol­ecule not part of the dimer. The H⋯O distance is unusually short for a C—H⋯O inter­action, 2.53 Å, which could be an artifact of the low occupancy of the methanol mol­ecule.

Table 2. Hydrogen-bond geometry (Å, °) for 2PhZn .

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N6i 0.99 1.73 2.710 (3) 168
O1—H1⋯N6B i 0.99 1.54 2.510 (17) 165
O2—H2A⋯O1i 0.99 1.82 2.8056 (18) 171
C2—H2⋯O3i 1.00 2.53 3.460 (14) 155
N5—H5A⋯O1i 0.88 (2) 2.38 (2) 3.2442 (18) 166 (2)
C46—H46A⋯N2 0.99 2.49 3.368 (2) 148
N6—H6A⋯O3 0.90 (2) 2.08 (2) 2.932 (14) 159 (3)
C46B—H46C⋯N2 0.99 2.68 3.368 (2) 126
O3—H3O⋯N4ii 0.84 2.20 2.992 (14) 157

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Database survey

A search of the Cambridge Structural Database (CSD Version 5.43, Nov 2021; Groom et al., 2016) for meso-tetra­aryl­chlorins or their metal(II) complexes revealed in excess of 75 structures, but few are directly comparable to the title compounds: Most examples contain a variety of bulky substituents or annulated rings at the pyrroline positions [the closest being an imidazolone-annulated di­hydroxy­chlorin, TAKDUI (Luciano et al. 2020)] or contain other (sterically encumbering) subs­tit­uents at the pyrrolic β-positions or on the meso-aryl groups. Most metallochlorins contain also a different metal than zinc(II). Only a few compounds are structurally closely related to 2PhH2·DMAP or 2PhZn·EDA. Among them is the parent non-hy­droxy­lated chlorin zinc chelate [5,10,15,20-tetra­phenyl­chlorinato]zinc(II)·pyridine complex (HPORZN10; Spaulding et al., 1977), the bis-β-n-butyl­ated free base and zinc(II) chlorins (QAKLUJ and QAKMAQ, respectively; Senge et al., 2000), free base 5,10,15,20-tetra­phenyl-7-hy­droxy­chlorin (SAZSAP; Samankumara et al., 2010), the β-nitrated analogue of 2PhH2 (TIPBIF; Worlinsky et al., 2013), dimeth­oxy derivatives 4PhH2 (SAZROC; Samankumara et al., 2010) and 4CF3Zn·py (PEDKER; Sharma et al., 2017), osmate ester 3FH2 (SIZFUF; Hewage et al., 2019), and trans-7,8-diol-7,8-di­methyl­tetra­phenyl­chlorin (ZAZNIZ; Banerjee et al., 2012).

Synthesis and crystallization

The OsO4-mediated di­hydroxy­lation of porphyrin 1H2 is a two-step sequence: the formation of the osmate ester 3ArH2 in the first step is followed by the reduction of the osmate ester to the target di­hydroxy­chlorin 2ArH2 (often performed as a two-step, one-pot process) (Brückner & Dolphin, 1995b ; Samankumara et al., 2010; Hyland et al., 2012). Here, we prepared the inter­mediate meso-tetra­phenyl-2,3-vic-di­hydroxy­chlorin osmate ester according to the established oxidation of meso-tetra­phenyl­porphyrins 1PhH2 (Brückner et al., 1998). Metalation of the free base 1PhH2 using Zn(OAc)2·2H2O under standard conditions (Buchler, 1978) (refluxing CHCl3/MeOH for 35-40 min) formed the corresponding ZnII osmate ester 3PhZn.

While crystallizing the osmate esters in CH2Cl2 and layering with the non-solvent hexane in the presence of DMAP (for 3PhH2 ) or by allowing a solution of the ester in CH2Cl2/MeOH to slowly evaporate in the presence of EDA (for 3PhZn), both osmate esters adventitiously reduced and diols 2PhH2·DMAP and 2PhZn·EDA crystallized, respectively. The spectroscopic data of both known chromophores are as described previously (Brückner et al., 1998).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C—H bond distances were constrained to 0.95 Å for aromatic and alkene C—H groups, and to 1.00, 0.99 and 0.98 Å for aliphatic C—H, CH2 and CH3 groups, respectively. Positions of N—H and NH2 hydrogen atoms were refined. N—H distances within NH2 groups in 2PhZn·EDA were restrained to 0.88 (2) Å and H—N—H and H–N–C angles were restrained to be similar to each other. Methyl CH3 and hydroxyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. The hydroxyl H atom of the partially occupied methanol mol­ecule in 2PhZn·EDA was restrained to hydrogen bond to a porphyrin N atom of a neighboring complex. U iso(H) values were set to a multiple of U eq(C/O/N) with 1.5 for CH3 and OH, and 1.2 for C–H, CH2, N—H and NH2 units, respectively.

Table 3. Experimental details.

  2PhH2 2PhZn
Crystal data
Chemical formula C44H32N4O2·C7H10N2·[+solvent] [Zn(C44H30N4O2)]·C2H8N2·0.136CH4O
M r 770.90 776.57
Crystal system, space group Triclinic, P Inline graphic Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 10.0193 (4), 15.2554 (8), 17.7983 (10) 10.1249 (3), 13.5400 (4), 27.0447 (8)
α, β, γ (°) 69.918 (2), 74.926 (2), 84.140 (2) 90, 95.1464 (11), 90
V3) 2466.9 (2) 3692.64 (19)
Z 2 4
Radiation type Mo Kα Cu Kα
μ (mm−1) 0.06 1.32
Crystal size (mm) 0.33 × 0.21 × 0.19 0.27 × 0.25 × 0.18
 
Data collection
Diffractometer Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) Bruker AXS D8 Quest diffractometer with PhotonIII-C14 charge-integrating and photon counting pixel array detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.665, 0.746 0.606, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 48645, 14738, 9891 21319, 7551, 7037
R int 0.060 0.024
(sin θ/λ)max−1) 0.714 0.638
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.133, 1.04 0.031, 0.088, 1.04
No. of reflections 14738 7551
No. of parameters 549 549
No. of restraints 0 17
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.21 0.31, −0.44

Computer programs: APEX4 (Bruker, 2021), APEX3 and SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a ), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015b ), ShelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2020), and publCIF (Westrip, 2010).

In the structure of 2PhZn·EDA, disorder of the not-metal-coordinated amino group of the ethyl­ene di­amine mol­ecule is observed and a methanol solvate mol­ecule is partially occupied. The C—N bonds were restrained to be similar in length. A partially occupied methanol mol­ecule is located nearby the major disordered amino group and hydrogen-bonded to it. The hydroxyl H atom was restrained to hydrogen bond to a porphyrin N atom of a neighboring complex. Subject to these conditions, the occupancy ratio for the amino groups refined to 0.882 (12): 0.118 (12), and the occupancy rate for the methanol mol­ecule refined to 0.136 (4). The occupancy of the methanol mol­ecule is not correlated with the disorder of the amino group (the major 88% occupied amino group is hydrogen-bonded to the 14% occupied methanol mol­ecule).

The structure of 2PhH2·DMAP contains 647 Å3 of solvent-accessible voids occupied by highly disordered solvate mol­ecules (presumably chloro­form and hexane, the crystallization solvents). The residual electron-density peaks are not arranged in an inter­pretable pattern and no unambiguous disorder model could be developed. The structure factors were instead augmented via reverse-Fourier-transform methods using the SQUEEZE routine (van Sluis & Spek, 1990; Spek, 2015), as implemented in the program PLATON (Spek, 2020). The resultant .fab file containing the structure-factor contribution from the electron content of the void space was used in together with the original hkl file in the further refinement. The SQUEEZE procedure accounted for 162 electrons within the solvent-accessible voids.

Supplementary Material

Crystal structure: contains datablock(s) 2PhH2, 2PhZn. DOI: 10.1107/S2056989022002729/dj2044sup1.cif

e-78-00392-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) 2PhH2. DOI: 10.1107/S2056989022002729/dj20442PhH2sup2.hkl

Structure factors: contains datablock(s) 2PhZn. DOI: 10.1107/S2056989022002729/dj20442PhZnsup3.hkl

e-78-00392-2PhZnsup3.hkl (599.8KB, hkl)

CCDC references: 2157745, 2157746

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2) . Crystal data

C44H32N4O2·C7H10N2·[+solvent] Z = 2
Mr = 770.90 F(000) = 812
Triclinic, P1 Dx = 1.038 Mg m3
a = 10.0193 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 15.2554 (8) Å Cell parameters from 9960 reflections
c = 17.7983 (10) Å θ = 2.4–31.9°
α = 69.918 (2)° µ = 0.06 mm1
β = 74.926 (2)° T = 150 K
γ = 84.140 (2)° Fragment, black
V = 2466.9 (2) Å3 0.33 × 0.21 × 0.19 mm

cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2) . Data collection

Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD) 14738 independent reflections
Radiation source: fine focus sealed tube X-ray source 9891 reflections with I > 2σ(I)
Triumph curved graphite crystal monochromator Rint = 0.060
Detector resolution: 7.4074 pixels mm-1 θmax = 30.5°, θmin = 2.2°
ω and phi scans h = −14→14
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −21→21
Tmin = 0.665, Tmax = 0.746 l = −25→25
48645 measured reflections

cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: mixed
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.2687P] where P = (Fo2 + 2Fc2)/3
14738 reflections (Δ/σ)max = 0.001
549 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.21 e Å3

cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The structure contains 647 Ang3 of solvent accessible voids occupied by highly disordered solvate molecules (presumably chloroform and hexane, the crystallization solvents). The residual electron density peaks are not arranged in an interpretable pattern and no unambiguous disorder model could be developed. The structure factors were instead augmented via reverse Fourier transform methods using the SQUEEZE routine (P. van der Sluis & A.L. Spek (1990). Acta Cryst. A46, 194-201) as implemented in the program Platon. The resultant FAB file containing the structure factor contribution from the electron content of the void space was used in together with the original hkl file in the further refinement. (The FAB file with details of the Squeeze results is appended to this cif file). The Squeeze procedure corrected for 162 electrons within the solvent accessible voids.

cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.62197 (8) 0.52783 (6) 0.53614 (5) 0.03032 (18)
H1O 0.6812 (16) 0.5788 (11) 0.4973 (10) 0.045*
O2 0.65897 (9) 0.42954 (6) 0.42876 (5) 0.03175 (18)
H2O 0.5704 (17) 0.4513 (11) 0.4458 (10) 0.048*
N1 0.43218 (10) 0.14254 (6) 0.68820 (6) 0.02595 (19)
H1N 0.4495 (15) 0.1795 (10) 0.7162 (9) 0.039*
N2 0.37812 (10) 0.12770 (6) 0.86064 (6) 0.02649 (19)
N3 0.55460 (10) 0.28307 (7) 0.82259 (6) 0.0283 (2)
H3N 0.5129 (16) 0.2577 (11) 0.7949 (10) 0.042*
N4 0.59891 (9) 0.30953 (6) 0.64424 (6) 0.02597 (19)
N5 0.79133 (13) 0.66232 (8) 0.42197 (8) 0.0513 (3)
N6 1.09618 (14) 0.82611 (9) 0.22875 (8) 0.0542 (3)
C1 0.48576 (12) 0.15869 (8) 0.60568 (7) 0.0272 (2)
C2 0.43926 (14) 0.08451 (8) 0.58748 (8) 0.0344 (3)
H2 0.461662 0.076127 0.535118 0.041*
C3 0.35751 (13) 0.02790 (8) 0.65773 (7) 0.0329 (3)
H3 0.312720 −0.026520 0.662782 0.039*
C4 0.35068 (11) 0.06429 (7) 0.72235 (7) 0.0261 (2)
C5 0.27900 (11) 0.02833 (7) 0.80485 (7) 0.0258 (2)
C6 0.28682 (11) 0.06218 (8) 0.86799 (7) 0.0258 (2)
C7 0.20051 (12) 0.02932 (8) 0.95097 (7) 0.0292 (2)
H7 0.128291 −0.014687 0.970852 0.035*
C8 0.24279 (12) 0.07350 (8) 0.99458 (7) 0.0300 (2)
H8 0.206040 0.066657 1.051130 0.036*
C9 0.35477 (11) 0.13318 (8) 0.93846 (7) 0.0270 (2)
C10 0.42982 (12) 0.18860 (8) 0.96202 (7) 0.0282 (2)
C11 0.52658 (12) 0.25542 (8) 0.90752 (7) 0.0293 (2)
C12 0.60953 (13) 0.31160 (9) 0.92638 (8) 0.0349 (3)
H12 0.614596 0.307363 0.980081 0.042*
C13 0.68056 (13) 0.37261 (9) 0.85413 (8) 0.0344 (3)
H13 0.742769 0.418500 0.848983 0.041*
C14 0.64544 (12) 0.35568 (8) 0.78779 (7) 0.0290 (2)
C15 0.69121 (11) 0.40654 (7) 0.70330 (7) 0.0266 (2)
C16 0.66552 (11) 0.38612 (7) 0.63837 (7) 0.0256 (2)
C17 0.71366 (11) 0.44961 (8) 0.54998 (7) 0.0269 (2)
H17 0.810994 0.469724 0.538272 0.032*
C18 0.70357 (11) 0.38542 (8) 0.50137 (7) 0.0271 (2)
H18 0.798257 0.359268 0.485428 0.033*
C19 0.61540 (11) 0.30561 (7) 0.56736 (7) 0.0258 (2)
C20 0.56811 (11) 0.23380 (8) 0.54904 (7) 0.0267 (2)
C21 0.18885 (12) −0.05389 (8) 0.82851 (7) 0.0277 (2)
C22 0.21160 (13) −0.13703 (8) 0.88883 (8) 0.0340 (3)
H22 0.286768 −0.142088 0.913483 0.041*
C23 0.12514 (15) −0.21243 (9) 0.91308 (9) 0.0418 (3)
H23 0.141490 −0.268761 0.954185 0.050*
C24 0.01525 (14) −0.20589 (10) 0.87763 (9) 0.0428 (3)
H24 −0.044311 −0.257364 0.894713 0.051*
C25 −0.00731 (13) −0.12454 (10) 0.81758 (9) 0.0392 (3)
H25 −0.082307 −0.120161 0.792940 0.047*
C26 0.07881 (12) −0.04862 (9) 0.79264 (8) 0.0321 (2)
H26 0.062527 0.007135 0.750918 0.039*
C27 0.40379 (12) 0.17673 (9) 1.05123 (7) 0.0306 (2)
C28 0.42357 (13) 0.09033 (9) 1.10829 (8) 0.0350 (3)
H28 0.453285 0.038015 1.090474 0.042*
C29 0.39991 (14) 0.08048 (11) 1.19136 (8) 0.0438 (3)
H29 0.413317 0.021333 1.230008 0.053*
C30 0.35704 (17) 0.15613 (13) 1.21802 (9) 0.0518 (4)
H30 0.341547 0.149010 1.274766 0.062*
C31 0.33677 (18) 0.24209 (12) 1.16204 (9) 0.0532 (4)
H31 0.307152 0.294134 1.180274 0.064*
C32 0.35962 (15) 0.25240 (10) 1.07935 (8) 0.0409 (3)
H32 0.345099 0.311659 1.041196 0.049*
C33 0.77693 (12) 0.48962 (8) 0.68495 (7) 0.0277 (2)
C34 0.71456 (13) 0.57598 (9) 0.68111 (8) 0.0357 (3)
H34 0.617350 0.583199 0.687579 0.043*
C35 0.79380 (15) 0.65217 (10) 0.66780 (9) 0.0435 (3)
H35 0.750570 0.711286 0.664713 0.052*
C36 0.93499 (15) 0.64211 (10) 0.65908 (9) 0.0443 (3)
H36 0.988404 0.693901 0.651294 0.053*
C37 0.99855 (14) 0.55681 (11) 0.66166 (9) 0.0444 (3)
H37 1.095810 0.549926 0.655054 0.053*
C38 0.91967 (13) 0.48109 (9) 0.67397 (9) 0.0379 (3)
H38 0.963808 0.422699 0.674888 0.045*
C39 0.61114 (12) 0.23285 (8) 0.46200 (7) 0.0285 (2)
C40 0.51769 (14) 0.25180 (9) 0.41304 (8) 0.0353 (3)
H40 0.424591 0.267589 0.434044 0.042*
C41 0.55892 (15) 0.24792 (10) 0.33351 (8) 0.0408 (3)
H41 0.494024 0.261266 0.300357 0.049*
C42 0.69418 (15) 0.22468 (9) 0.30227 (8) 0.0405 (3)
H42 0.722094 0.221702 0.247937 0.049*
C43 0.78742 (14) 0.20604 (10) 0.35014 (9) 0.0424 (3)
H43 0.880424 0.190326 0.328850 0.051*
C44 0.74671 (13) 0.20998 (9) 0.42957 (8) 0.0369 (3)
H44 0.812284 0.196878 0.462273 0.044*
C45 0.89678 (18) 0.69732 (11) 0.43549 (10) 0.0546 (4)
H45 0.901928 0.682842 0.491021 0.065*
C46 0.99821 (17) 0.75277 (10) 0.37465 (10) 0.0504 (4)
H46 1.069780 0.775754 0.388603 0.060*
C47 0.99487 (15) 0.77500 (9) 0.29192 (9) 0.0435 (3)
C48 0.88343 (15) 0.73985 (10) 0.27753 (10) 0.0484 (4)
H48 0.873990 0.753889 0.222851 0.058*
C49 0.78732 (15) 0.68461 (10) 0.34342 (11) 0.0504 (4)
H49 0.713560 0.661011 0.331852 0.060*
C50 1.20258 (17) 0.86988 (12) 0.24494 (12) 0.0637 (5)
H50A 1.267695 0.901455 0.192839 0.096*
H50B 1.252073 0.822161 0.281093 0.096*
H50C 1.159873 0.915591 0.271836 0.096*
C51 1.09541 (19) 0.84148 (13) 0.14456 (10) 0.0656 (5)
H51A 1.184094 0.867545 0.108436 0.098*
H51B 1.020473 0.885300 0.129652 0.098*
H51C 1.081150 0.782071 0.138165 0.098*

cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0308 (4) 0.0229 (4) 0.0316 (4) −0.0034 (3) −0.0017 (3) −0.0053 (3)
O2 0.0346 (4) 0.0310 (4) 0.0244 (4) −0.0029 (4) −0.0022 (3) −0.0055 (3)
N1 0.0303 (5) 0.0227 (4) 0.0226 (4) −0.0058 (4) −0.0006 (4) −0.0074 (4)
N2 0.0297 (5) 0.0251 (4) 0.0228 (5) −0.0050 (4) −0.0019 (4) −0.0075 (4)
N3 0.0328 (5) 0.0262 (5) 0.0241 (5) −0.0088 (4) −0.0024 (4) −0.0070 (4)
N4 0.0278 (4) 0.0240 (4) 0.0237 (5) −0.0044 (4) −0.0022 (4) −0.0068 (4)
N5 0.0458 (7) 0.0300 (6) 0.0536 (8) −0.0030 (5) 0.0108 (6) 0.0007 (5)
N6 0.0464 (7) 0.0388 (6) 0.0517 (8) −0.0073 (6) 0.0050 (6) 0.0067 (6)
C1 0.0315 (5) 0.0248 (5) 0.0230 (5) −0.0046 (4) −0.0009 (4) −0.0078 (4)
C2 0.0451 (7) 0.0297 (6) 0.0270 (6) −0.0103 (5) 0.0010 (5) −0.0120 (5)
C3 0.0430 (6) 0.0273 (5) 0.0275 (6) −0.0102 (5) −0.0015 (5) −0.0103 (5)
C4 0.0301 (5) 0.0214 (5) 0.0244 (5) −0.0051 (4) −0.0025 (4) −0.0062 (4)
C5 0.0265 (5) 0.0230 (5) 0.0256 (5) −0.0041 (4) −0.0028 (4) −0.0066 (4)
C6 0.0267 (5) 0.0248 (5) 0.0231 (5) −0.0036 (4) −0.0025 (4) −0.0061 (4)
C7 0.0281 (5) 0.0315 (6) 0.0243 (5) −0.0077 (5) −0.0002 (4) −0.0072 (5)
C8 0.0309 (5) 0.0335 (6) 0.0222 (5) −0.0056 (5) 0.0002 (4) −0.0082 (5)
C9 0.0287 (5) 0.0258 (5) 0.0240 (5) −0.0027 (4) −0.0026 (4) −0.0071 (4)
C10 0.0323 (5) 0.0263 (5) 0.0240 (5) −0.0040 (4) −0.0032 (4) −0.0073 (4)
C11 0.0339 (6) 0.0281 (5) 0.0250 (5) −0.0048 (5) −0.0044 (5) −0.0083 (4)
C12 0.0417 (7) 0.0355 (6) 0.0280 (6) −0.0111 (5) −0.0069 (5) −0.0091 (5)
C13 0.0386 (6) 0.0351 (6) 0.0308 (6) −0.0118 (5) −0.0062 (5) −0.0107 (5)
C14 0.0324 (5) 0.0251 (5) 0.0285 (6) −0.0063 (4) −0.0035 (5) −0.0087 (4)
C15 0.0277 (5) 0.0227 (5) 0.0270 (5) −0.0051 (4) −0.0025 (4) −0.0069 (4)
C16 0.0252 (5) 0.0229 (5) 0.0250 (5) −0.0037 (4) −0.0020 (4) −0.0053 (4)
C17 0.0256 (5) 0.0242 (5) 0.0256 (5) −0.0048 (4) −0.0006 (4) −0.0044 (4)
C18 0.0264 (5) 0.0264 (5) 0.0238 (5) −0.0039 (4) 0.0002 (4) −0.0059 (4)
C19 0.0256 (5) 0.0238 (5) 0.0236 (5) −0.0023 (4) −0.0004 (4) −0.0059 (4)
C20 0.0290 (5) 0.0251 (5) 0.0227 (5) −0.0032 (4) −0.0009 (4) −0.0071 (4)
C21 0.0289 (5) 0.0266 (5) 0.0256 (5) −0.0062 (4) 0.0013 (4) −0.0102 (4)
C22 0.0375 (6) 0.0303 (6) 0.0303 (6) −0.0087 (5) −0.0032 (5) −0.0063 (5)
C23 0.0463 (7) 0.0291 (6) 0.0406 (7) −0.0117 (5) 0.0022 (6) −0.0059 (5)
C24 0.0380 (7) 0.0378 (7) 0.0496 (8) −0.0173 (6) 0.0082 (6) −0.0198 (6)
C25 0.0302 (6) 0.0460 (7) 0.0463 (8) −0.0084 (5) −0.0011 (6) −0.0252 (6)
C26 0.0308 (6) 0.0334 (6) 0.0328 (6) −0.0036 (5) −0.0025 (5) −0.0146 (5)
C27 0.0324 (6) 0.0347 (6) 0.0242 (5) −0.0088 (5) −0.0044 (5) −0.0084 (5)
C28 0.0312 (6) 0.0395 (7) 0.0312 (6) −0.0064 (5) −0.0076 (5) −0.0061 (5)
C29 0.0402 (7) 0.0565 (9) 0.0297 (7) −0.0134 (6) −0.0135 (6) −0.0006 (6)
C30 0.0581 (9) 0.0730 (11) 0.0286 (7) −0.0243 (8) −0.0086 (7) −0.0167 (7)
C31 0.0709 (10) 0.0573 (9) 0.0370 (8) −0.0205 (8) −0.0013 (7) −0.0256 (7)
C32 0.0537 (8) 0.0374 (7) 0.0320 (7) −0.0110 (6) −0.0038 (6) −0.0139 (5)
C33 0.0295 (5) 0.0276 (5) 0.0239 (5) −0.0075 (4) −0.0009 (4) −0.0079 (4)
C34 0.0327 (6) 0.0314 (6) 0.0412 (7) −0.0070 (5) 0.0012 (5) −0.0153 (5)
C35 0.0499 (8) 0.0330 (6) 0.0470 (8) −0.0116 (6) 0.0020 (6) −0.0193 (6)
C36 0.0509 (8) 0.0459 (8) 0.0363 (7) −0.0257 (7) −0.0007 (6) −0.0140 (6)
C37 0.0332 (6) 0.0545 (8) 0.0392 (7) −0.0189 (6) −0.0025 (6) −0.0072 (6)
C38 0.0301 (6) 0.0364 (6) 0.0413 (7) −0.0054 (5) −0.0036 (5) −0.0076 (6)
C39 0.0349 (6) 0.0239 (5) 0.0237 (5) −0.0080 (4) 0.0015 (5) −0.0081 (4)
C40 0.0376 (6) 0.0368 (6) 0.0296 (6) −0.0028 (5) −0.0023 (5) −0.0121 (5)
C41 0.0533 (8) 0.0402 (7) 0.0308 (7) −0.0056 (6) −0.0090 (6) −0.0134 (6)
C42 0.0548 (8) 0.0362 (7) 0.0292 (6) −0.0141 (6) 0.0052 (6) −0.0165 (5)
C43 0.0393 (7) 0.0483 (8) 0.0418 (7) −0.0106 (6) 0.0071 (6) −0.0272 (7)
C44 0.0352 (6) 0.0403 (7) 0.0374 (7) −0.0039 (5) −0.0009 (5) −0.0204 (6)
C45 0.0650 (10) 0.0410 (8) 0.0440 (8) −0.0082 (7) 0.0077 (8) −0.0101 (7)
C46 0.0550 (9) 0.0366 (7) 0.0508 (9) −0.0091 (6) 0.0013 (7) −0.0117 (6)
C47 0.0415 (7) 0.0234 (6) 0.0466 (8) −0.0005 (5) 0.0051 (6) 0.0006 (5)
C48 0.0431 (8) 0.0367 (7) 0.0486 (8) 0.0037 (6) −0.0048 (6) 0.0013 (6)
C49 0.0368 (7) 0.0340 (7) 0.0629 (10) 0.0013 (6) −0.0042 (7) −0.0005 (7)
C50 0.0418 (8) 0.0402 (8) 0.0829 (13) −0.0060 (7) −0.0022 (8) 0.0046 (8)
C51 0.0553 (10) 0.0607 (10) 0.0467 (9) 0.0059 (8) 0.0061 (8) 0.0095 (8)

cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2) . Geometric parameters (Å, º)

O1—C17 1.4214 (14) C23—C24 1.384 (2)
O1—H1O 0.973 (17) C23—H23 0.9500
O2—C18 1.4016 (14) C24—C25 1.375 (2)
O2—H2O 0.927 (17) C24—H24 0.9500
N1—C1 1.3692 (14) C25—C26 1.3909 (17)
N1—C4 1.3797 (14) C25—H25 0.9500
N1—H1N 0.925 (15) C26—H26 0.9500
N2—C9 1.3737 (14) C27—C28 1.3929 (18)
N2—C6 1.3740 (14) C27—C32 1.3986 (17)
N3—C14 1.3714 (14) C28—C29 1.3916 (18)
N3—C11 1.3811 (15) C28—H28 0.9500
N3—H3N 0.915 (16) C29—C30 1.382 (2)
N4—C19 1.3565 (14) C29—H29 0.9500
N4—C16 1.3639 (14) C30—C31 1.381 (2)
N5—C49 1.331 (2) C30—H30 0.9500
N5—C45 1.340 (2) C31—C32 1.3843 (19)
N6—C47 1.3669 (18) C31—H31 0.9500
N6—C51 1.437 (2) C32—H32 0.9500
N6—C50 1.450 (2) C33—C34 1.3867 (17)
C1—C20 1.4062 (15) C33—C38 1.3910 (17)
C1—C2 1.4284 (16) C34—C35 1.3924 (17)
C2—C3 1.3602 (17) C34—H34 0.9500
C2—H2 0.9500 C35—C36 1.381 (2)
C3—C4 1.4232 (16) C35—H35 0.9500
C3—H3 0.9500 C36—C37 1.381 (2)
C4—C5 1.3970 (15) C36—H36 0.9500
C5—C6 1.4101 (16) C37—C38 1.3891 (19)
C5—C21 1.4958 (15) C37—H37 0.9500
C6—C7 1.4478 (16) C38—H38 0.9500
C7—C8 1.3508 (16) C39—C40 1.3840 (18)
C7—H7 0.9500 C39—C44 1.3905 (17)
C8—C9 1.4445 (16) C40—C41 1.3879 (17)
C8—H8 0.9500 C40—H40 0.9500
C9—C10 1.4119 (16) C41—C42 1.384 (2)
C10—C11 1.3977 (16) C41—H41 0.9500
C10—C27 1.4895 (16) C42—C43 1.368 (2)
C11—C12 1.4233 (16) C42—H42 0.9500
C12—C13 1.3651 (18) C43—C44 1.3864 (18)
C12—H12 0.9500 C43—H43 0.9500
C13—C14 1.4243 (17) C44—H44 0.9500
C13—H13 0.9500 C45—C46 1.377 (2)
C14—C15 1.4094 (16) C45—H45 0.9500
C15—C16 1.3846 (16) C46—C47 1.402 (2)
C15—C33 1.4977 (15) C46—H46 0.9500
C16—C17 1.5166 (16) C47—C48 1.402 (2)
C17—C18 1.5380 (16) C48—C49 1.383 (2)
C17—H17 1.0000 C48—H48 0.9500
C18—C19 1.5298 (15) C49—H49 0.9500
C18—H18 1.0000 C50—H50A 0.9800
C19—C20 1.4008 (15) C50—H50B 0.9800
C20—C39 1.5008 (15) C50—H50C 0.9800
C21—C26 1.3937 (17) C51—H51A 0.9800
C21—C22 1.3951 (17) C51—H51B 0.9800
C22—C23 1.3884 (17) C51—H51C 0.9800
C22—H22 0.9500
C17—O1—H1O 103.8 (9) C25—C24—H24 120.2
C18—O2—H2O 105.0 (10) C23—C24—H24 120.2
C1—N1—C4 110.47 (9) C24—C25—C26 120.52 (13)
C1—N1—H1N 123.8 (9) C24—C25—H25 119.7
C4—N1—H1N 125.7 (9) C26—C25—H25 119.7
C9—N2—C6 104.78 (9) C25—C26—C21 120.38 (12)
C14—N3—C11 110.47 (10) C25—C26—H26 119.8
C14—N3—H3N 126.2 (10) C21—C26—H26 119.8
C11—N3—H3N 123.2 (10) C28—C27—C32 118.61 (12)
C19—N4—C16 108.59 (9) C28—C27—C10 120.80 (11)
C49—N5—C45 115.86 (13) C32—C27—C10 120.58 (11)
C47—N6—C51 120.56 (15) C29—C28—C27 120.15 (13)
C47—N6—C50 120.85 (15) C29—C28—H28 119.9
C51—N6—C50 118.52 (14) C27—C28—H28 119.9
N1—C1—C20 127.44 (10) C30—C29—C28 120.47 (14)
N1—C1—C2 106.31 (10) C30—C29—H29 119.8
C20—C1—C2 126.24 (10) C28—C29—H29 119.8
C3—C2—C1 108.53 (10) C31—C30—C29 119.90 (13)
C3—C2—H2 125.7 C31—C30—H30 120.1
C1—C2—H2 125.7 C29—C30—H30 120.1
C2—C3—C4 108.18 (10) C30—C31—C32 119.99 (14)
C2—C3—H3 125.9 C30—C31—H31 120.0
C4—C3—H3 125.9 C32—C31—H31 120.0
N1—C4—C5 125.72 (10) C31—C32—C27 120.88 (14)
N1—C4—C3 106.47 (10) C31—C32—H32 119.6
C5—C4—C3 127.81 (10) C27—C32—H32 119.6
C4—C5—C6 125.26 (10) C34—C33—C38 118.83 (11)
C4—C5—C21 117.43 (10) C34—C33—C15 120.39 (10)
C6—C5—C21 117.30 (10) C38—C33—C15 120.75 (11)
N2—C6—C5 125.47 (10) C33—C34—C35 120.29 (12)
N2—C6—C7 110.91 (9) C33—C34—H34 119.9
C5—C6—C7 123.59 (10) C35—C34—H34 119.9
C8—C7—C6 106.56 (10) C36—C35—C34 120.24 (13)
C8—C7—H7 126.7 C36—C35—H35 119.9
C6—C7—H7 126.7 C34—C35—H35 119.9
C7—C8—C9 106.62 (10) C37—C36—C35 120.02 (12)
C7—C8—H8 126.7 C37—C36—H36 120.0
C9—C8—H8 126.7 C35—C36—H36 120.0
N2—C9—C10 125.32 (10) C36—C37—C38 119.72 (13)
N2—C9—C8 111.05 (10) C36—C37—H37 120.1
C10—C9—C8 123.63 (10) C38—C37—H37 120.1
C11—C10—C9 124.84 (11) C37—C38—C33 120.87 (13)
C11—C10—C27 116.86 (10) C37—C38—H38 119.6
C9—C10—C27 118.30 (10) C33—C38—H38 119.6
N3—C11—C10 125.39 (10) C40—C39—C44 118.43 (11)
N3—C11—C12 106.27 (10) C40—C39—C20 121.53 (10)
C10—C11—C12 128.27 (11) C44—C39—C20 120.02 (11)
C13—C12—C11 108.35 (11) C39—C40—C41 120.53 (12)
C13—C12—H12 125.8 C39—C40—H40 119.7
C11—C12—H12 125.8 C41—C40—H40 119.7
C12—C13—C14 108.32 (11) C42—C41—C40 120.31 (13)
C12—C13—H13 125.8 C42—C41—H41 119.8
C14—C13—H13 125.8 C40—C41—H41 119.8
N3—C14—C15 127.08 (10) C43—C42—C41 119.60 (12)
N3—C14—C13 106.53 (10) C43—C42—H42 120.2
C15—C14—C13 126.34 (10) C41—C42—H42 120.2
C16—C15—C14 126.44 (10) C42—C43—C44 120.28 (12)
C16—C15—C33 118.94 (10) C42—C43—H43 119.9
C14—C15—C33 114.62 (10) C44—C43—H43 119.9
N4—C16—C15 126.10 (10) C43—C44—C39 120.86 (13)
N4—C16—C17 112.44 (9) C43—C44—H44 119.6
C15—C16—C17 121.45 (10) C39—C44—H44 119.6
O1—C17—C16 108.57 (9) N5—C45—C46 124.66 (17)
O1—C17—C18 112.64 (9) N5—C45—H45 117.7
C16—C17—C18 101.86 (9) C46—C45—H45 117.7
O1—C17—H17 111.1 C45—C46—C47 119.36 (16)
C16—C17—H17 111.1 C45—C46—H46 120.3
C18—C17—H17 111.1 C47—C46—H46 120.3
O2—C18—C19 117.07 (9) N6—C47—C46 121.97 (15)
O2—C18—C17 115.00 (9) N6—C47—C48 121.83 (15)
C19—C18—C17 102.30 (9) C46—C47—C48 116.18 (13)
O2—C18—H18 107.3 C49—C48—C47 119.59 (16)
C19—C18—H18 107.3 C49—C48—H48 120.2
C17—C18—H18 107.3 C47—C48—H48 120.2
N4—C19—C20 125.15 (10) N5—C49—C48 124.33 (16)
N4—C19—C18 112.16 (9) N5—C49—H49 117.8
C20—C19—C18 122.51 (10) C48—C49—H49 117.8
C19—C20—C1 126.08 (10) N6—C50—H50A 109.5
C19—C20—C39 118.64 (10) N6—C50—H50B 109.5
C1—C20—C39 115.24 (10) H50A—C50—H50B 109.5
C26—C21—C22 118.64 (11) N6—C50—H50C 109.5
C26—C21—C5 121.07 (11) H50A—C50—H50C 109.5
C22—C21—C5 120.27 (11) H50B—C50—H50C 109.5
C23—C22—C21 120.46 (12) N6—C51—H51A 109.5
C23—C22—H22 119.8 N6—C51—H51B 109.5
C21—C22—H22 119.8 H51A—C51—H51B 109.5
C24—C23—C22 120.31 (13) N6—C51—H51C 109.5
C24—C23—H23 119.8 H51A—C51—H51C 109.5
C22—C23—H23 119.8 H51B—C51—H51C 109.5
C25—C24—C23 119.69 (12)
C4—N1—C1—C20 176.83 (11) C18—C19—C20—C1 −179.31 (11)
C4—N1—C1—C2 −2.11 (13) N4—C19—C20—C39 −171.75 (10)
N1—C1—C2—C3 1.49 (14) C18—C19—C20—C39 2.90 (16)
C20—C1—C2—C3 −177.46 (12) N1—C1—C20—C19 2.4 (2)
C1—C2—C3—C4 −0.35 (15) C2—C1—C20—C19 −178.88 (12)
C1—N1—C4—C5 −179.30 (11) N1—C1—C20—C39 −179.76 (11)
C1—N1—C4—C3 1.91 (13) C2—C1—C20—C39 −1.02 (18)
C2—C3—C4—N1 −0.92 (14) C4—C5—C21—C26 −60.11 (15)
C2—C3—C4—C5 −179.68 (12) C6—C5—C21—C26 121.08 (12)
N1—C4—C5—C6 −5.13 (19) C4—C5—C21—C22 121.51 (12)
C3—C4—C5—C6 173.41 (12) C6—C5—C21—C22 −57.30 (15)
N1—C4—C5—C21 176.17 (10) C26—C21—C22—C23 −0.72 (18)
C3—C4—C5—C21 −5.30 (18) C5—C21—C22—C23 177.70 (11)
C9—N2—C6—C5 −175.53 (11) C21—C22—C23—C24 0.0 (2)
C9—N2—C6—C7 2.71 (12) C22—C23—C24—C25 0.6 (2)
C4—C5—C6—N2 −8.48 (18) C23—C24—C25—C26 −0.5 (2)
C21—C5—C6—N2 170.23 (10) C24—C25—C26—C21 −0.30 (18)
C4—C5—C6—C7 173.50 (11) C22—C21—C26—C25 0.88 (17)
C21—C5—C6—C7 −7.80 (16) C5—C21—C26—C25 −177.52 (10)
N2—C6—C7—C8 −1.69 (13) C11—C10—C27—C28 −122.22 (13)
C5—C6—C7—C8 176.58 (11) C9—C10—C27—C28 58.57 (16)
C6—C7—C8—C9 −0.05 (13) C11—C10—C27—C32 57.43 (16)
C6—N2—C9—C10 176.68 (11) C9—C10—C27—C32 −121.78 (13)
C6—N2—C9—C8 −2.75 (12) C32—C27—C28—C29 −0.18 (18)
C7—C8—C9—N2 1.78 (13) C10—C27—C28—C29 179.47 (11)
C7—C8—C9—C10 −177.66 (11) C27—C28—C29—C30 −0.2 (2)
N2—C9—C10—C11 9.00 (19) C28—C29—C30—C31 0.3 (2)
C8—C9—C10—C11 −171.64 (11) C29—C30—C31—C32 −0.1 (2)
N2—C9—C10—C27 −171.86 (11) C30—C31—C32—C27 −0.3 (2)
C8—C9—C10—C27 7.50 (17) C28—C27—C32—C31 0.4 (2)
C14—N3—C11—C10 174.45 (11) C10—C27—C32—C31 −179.25 (13)
C14—N3—C11—C12 −2.57 (13) C16—C15—C33—C34 91.51 (14)
C9—C10—C11—N3 5.97 (19) C14—C15—C33—C34 −89.12 (14)
C27—C10—C11—N3 −173.17 (11) C16—C15—C33—C38 −90.45 (15)
C9—C10—C11—C12 −177.67 (12) C14—C15—C33—C38 88.92 (14)
C27—C10—C11—C12 3.18 (19) C38—C33—C34—C35 −1.03 (19)
N3—C11—C12—C13 1.97 (14) C15—C33—C34—C35 177.04 (12)
C10—C11—C12—C13 −174.93 (12) C33—C34—C35—C36 −0.6 (2)
C11—C12—C13—C14 −0.69 (15) C34—C35—C36—C37 1.5 (2)
C11—N3—C14—C15 −175.45 (11) C35—C36—C37—C38 −0.7 (2)
C11—N3—C14—C13 2.16 (13) C36—C37—C38—C33 −0.9 (2)
C12—C13—C14—N3 −0.87 (14) C34—C33—C38—C37 1.8 (2)
C12—C13—C14—C15 176.76 (12) C15—C33—C38—C37 −176.26 (12)
N3—C14—C15—C16 −7.9 (2) C19—C20—C39—C40 −110.08 (13)
C13—C14—C15—C16 174.91 (12) C1—C20—C39—C40 71.89 (14)
N3—C14—C15—C33 172.75 (11) C19—C20—C39—C44 71.77 (15)
C13—C14—C15—C33 −4.41 (17) C1—C20—C39—C44 −106.26 (13)
C19—N4—C16—C15 −169.25 (11) C44—C39—C40—C41 0.02 (18)
C19—N4—C16—C17 9.77 (12) C20—C39—C40—C41 −178.16 (11)
C14—C15—C16—N4 −4.65 (19) C39—C40—C41—C42 0.2 (2)
C33—C15—C16—N4 174.64 (10) C40—C41—C42—C43 −0.4 (2)
C14—C15—C16—C17 176.41 (11) C41—C42—C43—C44 0.3 (2)
C33—C15—C16—C17 −4.31 (16) C42—C43—C44—C39 0.0 (2)
N4—C16—C17—O1 103.05 (10) C40—C39—C44—C43 −0.12 (19)
C15—C16—C17—O1 −77.88 (13) C20—C39—C44—C43 178.09 (12)
N4—C16—C17—C18 −16.00 (12) C49—N5—C45—C46 −0.4 (2)
C15—C16—C17—C18 163.07 (10) N5—C45—C46—C47 −0.6 (2)
O1—C17—C18—O2 26.65 (13) C51—N6—C47—C46 175.09 (14)
C16—C17—C18—O2 142.76 (9) C50—N6—C47—C46 −8.1 (2)
O1—C17—C18—C19 −101.33 (10) C51—N6—C47—C48 −3.3 (2)
C16—C17—C18—C19 14.78 (10) C50—N6—C47—C48 173.57 (13)
C16—N4—C19—C20 176.25 (10) C45—C46—C47—N6 −176.90 (14)
C16—N4—C19—C18 1.12 (12) C45—C46—C47—C48 1.6 (2)
O2—C18—C19—N4 −137.49 (10) N6—C47—C48—C49 176.77 (13)
C17—C18—C19—N4 −10.83 (12) C46—C47—C48—C49 −1.7 (2)
O2—C18—C19—C20 47.23 (15) C45—N5—C49—C48 0.2 (2)
C17—C18—C19—C20 173.89 (10) C47—C48—C49—N5 0.9 (2)
N4—C19—C20—C1 6.04 (19)

cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O···N5 0.973 (17) 1.727 (17) 2.6968 (14) 174.1 (14)
O2—H2O···O1i 0.927 (17) 1.882 (17) 2.7798 (12) 162.5 (14)
N1—H1N···N2 0.925 (15) 2.346 (15) 2.9064 (13) 118.7 (11)
N1—H1N···N4 0.925 (15) 2.383 (15) 2.9518 (13) 119.6 (11)
N3—H3N···N2 0.915 (16) 2.292 (16) 2.8868 (13) 122.3 (12)
N3—H3N···N4 0.915 (16) 2.458 (15) 2.9766 (14) 116.1 (12)
C37—H37···O2ii 0.95 2.51 3.3840 (16) 153
C38—H38···C48ii 0.95 2.77 3.6779 (19) 161
C50—H50B···N4ii 0.98 2.57 3.544 (2) 171

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

[cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)–ethylenediamine–methanol (1/1/0.136) (2PhZn) . Crystal data

[Zn(C44H30N4O2)]·C2H8N2·0.136CH4O F(000) = 1618
Mr = 776.57 Dx = 1.397 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 10.1249 (3) Å Cell parameters from 9950 reflections
b = 13.5400 (4) Å θ = 3.3–79.4°
c = 27.0447 (8) Å µ = 1.32 mm1
β = 95.1464 (11)° T = 150 K
V = 3692.64 (19) Å3 Block, black
Z = 4 0.27 × 0.25 × 0.18 mm

[cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)–ethylenediamine–methanol (1/1/0.136) (2PhZn) . Data collection

Bruker AXS D8 Quest diffractometer with PhotonIII-C14 charge-integrating and photon counting pixel array detector 7551 independent reflections
Radiation source: I-mu-S microsource X-ray tube 7037 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromator Rint = 0.024
Detector resolution: 7.4074 pixels mm-1 θmax = 79.5°, θmin = 3.3°
ω and phi scans h = −12→11
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −16→15
Tmin = 0.606, Tmax = 0.754 l = −29→34
21319 measured reflections

[cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)–ethylenediamine–methanol (1/1/0.136) (2PhZn) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: mixed
wR(F2) = 0.088 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0454P)2 + 1.8191P] where P = (Fo2 + 2Fc2)/3
7551 reflections (Δ/σ)max = 0.001
549 parameters Δρmax = 0.31 e Å3
17 restraints Δρmin = −0.43 e Å3

[cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)–ethylenediamine–methanol (1/1/0.136) (2PhZn) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The not metal coordinated amino group of an ethylene diamine ligand was refined as disordered. The C-N bonds were restrained to be similar in length. Amine H atom positions were refined and N-H distances were restrained to 0.88 (2) Angstrom. Equivalent H···H and C···H distances were restrained to be similar to each other. Subject to these conditions the occupancy ratio refined to 0.882 (12) to 0.118 (12). A partially occupied methanol molecule is located nearby the major disordered amino group and H-bonded to it. The hydroxyl H atom was restrained to hydrogen bond to a porphyrin N atom of a neighboring complex. Subject to these conditions the occupancy rate refined to 0.136 (4).

[cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)–ethylenediamine–methanol (1/1/0.136) (2PhZn) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.70722 (2) 0.44915 (2) 0.36168 (2) 0.01832 (7)
O1 0.62030 (12) 0.47166 (9) 0.54271 (4) 0.0308 (2)
H1 0.6482 (10) 0.4528 (15) 0.5775 (9) 0.046*
O2 0.56022 (12) 0.65470 (9) 0.51056 (4) 0.0328 (3)
H2A 0.4922 (17) 0.6092 (15) 0.4949 (8) 0.049*
N1 0.73694 (12) 0.51455 (9) 0.43385 (4) 0.0204 (2)
N2 0.68821 (12) 0.58909 (9) 0.33244 (4) 0.0202 (2)
N3 0.73798 (12) 0.39779 (9) 0.29110 (4) 0.0192 (2)
N4 0.80823 (12) 0.32619 (9) 0.39012 (4) 0.0201 (2)
C1 0.76495 (14) 0.46245 (11) 0.47647 (5) 0.0211 (3)
C2 0.72768 (15) 0.51995 (12) 0.52170 (5) 0.0247 (3)
H2 0.805841 0.525874 0.546886 0.030*
C3 0.68812 (16) 0.62230 (12) 0.49999 (5) 0.0256 (3)
H3 0.755257 0.671994 0.513274 0.031*
C4 0.70045 (14) 0.60845 (11) 0.44448 (5) 0.0217 (3)
C5 0.67805 (14) 0.68419 (11) 0.41046 (5) 0.0221 (3)
C6 0.67411 (14) 0.67471 (11) 0.35816 (5) 0.0214 (3)
C7 0.65058 (16) 0.75574 (11) 0.32390 (6) 0.0273 (3)
H7 0.638690 0.823086 0.332289 0.033*
C8 0.64860 (16) 0.71772 (11) 0.27743 (6) 0.0274 (3)
H8 0.635401 0.753563 0.247193 0.033*
C9 0.67021 (14) 0.61307 (11) 0.28244 (5) 0.0216 (3)
C10 0.66810 (14) 0.54655 (11) 0.24303 (5) 0.0212 (3)
C11 0.69457 (14) 0.44448 (11) 0.24758 (5) 0.0207 (3)
C12 0.68755 (15) 0.37502 (12) 0.20741 (5) 0.0255 (3)
H12 0.658048 0.388023 0.173700 0.031*
C13 0.73118 (15) 0.28702 (11) 0.22677 (5) 0.0246 (3)
H13 0.737737 0.226813 0.209116 0.030*
C14 0.76550 (14) 0.30210 (11) 0.27891 (5) 0.0200 (3)
C15 0.82584 (14) 0.23173 (11) 0.31236 (5) 0.0205 (3)
C16 0.85130 (14) 0.24664 (11) 0.36358 (5) 0.0221 (3)
C17 0.92352 (17) 0.17956 (12) 0.39728 (6) 0.0295 (3)
H17 0.965688 0.120098 0.388676 0.035*
C18 0.92010 (17) 0.21707 (13) 0.44358 (6) 0.0304 (3)
H18 0.958959 0.188554 0.473521 0.036*
C19 0.84659 (14) 0.30825 (11) 0.43899 (5) 0.0227 (3)
C20 0.81842 (14) 0.36856 (11) 0.47976 (5) 0.0222 (3)
C21 0.66512 (16) 0.78725 (11) 0.42976 (5) 0.0257 (3)
C22 0.54419 (18) 0.83574 (13) 0.42621 (7) 0.0343 (4)
H22 0.466488 0.801861 0.413263 0.041*
C23 0.5353 (2) 0.93293 (15) 0.44131 (8) 0.0464 (5)
H23 0.451780 0.965418 0.438633 0.056*
C24 0.6477 (2) 0.98287 (14) 0.46029 (8) 0.0492 (5)
H24 0.641627 1.049810 0.470365 0.059*
C25 0.7680 (2) 0.93559 (14) 0.46454 (8) 0.0478 (5)
H25 0.845182 0.969597 0.477894 0.057*
C26 0.77712 (19) 0.83764 (13) 0.44927 (7) 0.0370 (4)
H26 0.860658 0.805211 0.452263 0.044*
C27 0.63996 (15) 0.58672 (11) 0.19152 (5) 0.0222 (3)
C28 0.51396 (15) 0.62173 (12) 0.17514 (6) 0.0271 (3)
H28 0.445274 0.620404 0.196869 0.033*
C29 0.48819 (17) 0.65857 (12) 0.12724 (6) 0.0303 (3)
H29 0.401410 0.680622 0.116268 0.036*
C30 0.58747 (18) 0.66344 (12) 0.09542 (6) 0.0317 (3)
H30 0.569838 0.689923 0.062973 0.038*
C31 0.71357 (18) 0.62906 (15) 0.11152 (6) 0.0376 (4)
H31 0.782543 0.632158 0.089955 0.045*
C32 0.73909 (16) 0.59025 (14) 0.15896 (6) 0.0323 (4)
H32 0.825091 0.565819 0.169340 0.039*
C33 0.86940 (14) 0.13604 (11) 0.29145 (5) 0.0213 (3)
C34 0.95353 (15) 0.13496 (11) 0.25326 (5) 0.0233 (3)
H34 0.982623 0.195715 0.240408 0.028*
C35 0.99553 (16) 0.04640 (12) 0.23368 (6) 0.0274 (3)
H35 1.052341 0.047091 0.207570 0.033*
C36 0.95451 (17) −0.04261 (12) 0.25227 (7) 0.0313 (3)
H36 0.982821 −0.103132 0.238932 0.038*
C37 0.87209 (17) −0.04298 (12) 0.29037 (7) 0.0309 (3)
H37 0.844492 −0.104022 0.303371 0.037*
C38 0.82924 (16) 0.04546 (11) 0.30982 (6) 0.0263 (3)
H38 0.772140 0.044189 0.335840 0.032*
C39 0.85297 (15) 0.32409 (12) 0.53006 (5) 0.0237 (3)
C40 0.78919 (17) 0.23834 (13) 0.54385 (6) 0.0313 (3)
H40 0.720053 0.210821 0.522050 0.038*
C41 0.8254 (2) 0.19268 (15) 0.58903 (7) 0.0394 (4)
H41 0.782257 0.133703 0.597723 0.047*
C42 0.92487 (19) 0.23337 (16) 0.62148 (6) 0.0419 (5)
H42 0.949622 0.202435 0.652456 0.050*
C43 0.98729 (17) 0.31836 (16) 0.60868 (6) 0.0381 (4)
H43 1.054483 0.346547 0.631109 0.046*
C44 0.95294 (15) 0.36380 (13) 0.56300 (6) 0.0291 (3)
H44 0.997849 0.422012 0.554307 0.035*
N5 0.50664 (13) 0.40837 (10) 0.36913 (5) 0.0271 (3)
H5A 0.480 (2) 0.4337 (14) 0.3967 (7) 0.041*
H5B 0.509 (2) 0.3447 (11) 0.3761 (8) 0.041*
C45 0.40746 (17) 0.42549 (15) 0.32609 (7) 0.0385 (4)
H45A 0.329199 0.383047 0.329539 0.046*
H45B 0.446349 0.405890 0.295254 0.046*
C46 0.36344 (16) 0.53096 (14) 0.32166 (6) 0.0326 (4) 0.882 (12)
H46A 0.442264 0.574411 0.322569 0.039* 0.882 (12)
H46B 0.311072 0.540812 0.289330 0.039* 0.882 (12)
N6 0.2830 (4) 0.5585 (2) 0.36180 (8) 0.0361 (8) 0.882 (12)
H6A 0.2073 (19) 0.5235 (18) 0.3589 (9) 0.054* 0.882 (12)
H6B 0.257 (3) 0.6185 (13) 0.3606 (9) 0.054* 0.882 (12)
C46B 0.36344 (16) 0.53096 (14) 0.32166 (6) 0.0326 (4) 0.118 (12)
H46C 0.428985 0.567714 0.303754 0.039* 0.118 (12)
H46D 0.277978 0.532993 0.300800 0.039* 0.118 (12)
N6B 0.346 (3) 0.5839 (15) 0.3685 (6) 0.046 (5) 0.118 (12)
H6C 0.305 (16) 0.640 (6) 0.3622 (17) 0.068* 0.118 (12)
H6D 0.425 (5) 0.604 (12) 0.382 (4) 0.068* 0.118 (12)
O3 0.0708 (14) 0.4152 (11) 0.3732 (6) 0.070 (4) 0.136 (4)
H3O −0.010618 0.402558 0.371916 0.084* 0.136 (4)
C47 0.1402 (18) 0.3301 (15) 0.3759 (7) 0.060 (5) 0.136 (4)
H47A 0.117547 0.291039 0.345850 0.072* 0.136 (4)
H47B 0.118247 0.292480 0.405043 0.072* 0.136 (4)
H47C 0.235366 0.344884 0.378874 0.072* 0.136 (4)

[cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)–ethylenediamine–methanol (1/1/0.136) (2PhZn) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02239 (11) 0.01794 (11) 0.01494 (10) 0.00134 (6) 0.00332 (7) −0.00039 (6)
O1 0.0343 (6) 0.0355 (6) 0.0240 (6) 0.0011 (5) 0.0097 (4) 0.0021 (5)
O2 0.0390 (6) 0.0310 (6) 0.0299 (6) 0.0063 (5) 0.0107 (5) −0.0054 (5)
N1 0.0240 (6) 0.0202 (6) 0.0175 (6) 0.0000 (4) 0.0033 (4) −0.0014 (4)
N2 0.0242 (6) 0.0190 (6) 0.0179 (6) 0.0007 (4) 0.0041 (4) −0.0005 (4)
N3 0.0241 (6) 0.0187 (6) 0.0153 (5) 0.0017 (4) 0.0038 (4) 0.0000 (4)
N4 0.0235 (6) 0.0220 (6) 0.0148 (5) 0.0035 (4) 0.0027 (4) −0.0006 (4)
C1 0.0224 (7) 0.0249 (7) 0.0161 (6) −0.0013 (5) 0.0029 (5) −0.0024 (5)
C2 0.0277 (7) 0.0281 (8) 0.0182 (7) 0.0010 (6) 0.0019 (5) −0.0036 (6)
C3 0.0332 (8) 0.0245 (7) 0.0191 (7) −0.0008 (6) 0.0021 (6) −0.0044 (6)
C4 0.0229 (6) 0.0229 (7) 0.0196 (7) −0.0010 (5) 0.0032 (5) −0.0048 (5)
C5 0.0238 (7) 0.0202 (7) 0.0226 (7) 0.0005 (5) 0.0040 (5) −0.0036 (5)
C6 0.0230 (7) 0.0184 (7) 0.0233 (7) −0.0002 (5) 0.0044 (5) −0.0012 (5)
C7 0.0372 (8) 0.0170 (7) 0.0282 (8) 0.0009 (6) 0.0059 (6) 0.0012 (6)
C8 0.0368 (8) 0.0211 (7) 0.0249 (7) 0.0012 (6) 0.0055 (6) 0.0042 (6)
C9 0.0251 (7) 0.0203 (7) 0.0198 (7) 0.0012 (5) 0.0045 (5) 0.0031 (5)
C10 0.0229 (7) 0.0230 (7) 0.0182 (7) 0.0014 (5) 0.0038 (5) 0.0024 (5)
C11 0.0239 (7) 0.0220 (7) 0.0164 (6) 0.0013 (5) 0.0027 (5) 0.0008 (5)
C12 0.0329 (8) 0.0270 (8) 0.0163 (6) 0.0017 (6) 0.0003 (5) −0.0013 (6)
C13 0.0322 (8) 0.0224 (7) 0.0190 (7) 0.0008 (6) 0.0008 (6) −0.0042 (5)
C14 0.0229 (6) 0.0203 (7) 0.0172 (6) −0.0002 (5) 0.0044 (5) −0.0020 (5)
C15 0.0223 (6) 0.0203 (7) 0.0193 (7) 0.0012 (5) 0.0040 (5) −0.0015 (5)
C16 0.0244 (7) 0.0225 (7) 0.0198 (7) 0.0047 (5) 0.0038 (5) −0.0003 (5)
C17 0.0366 (8) 0.0292 (8) 0.0223 (7) 0.0136 (6) 0.0008 (6) −0.0007 (6)
C18 0.0377 (8) 0.0332 (9) 0.0197 (7) 0.0148 (7) −0.0009 (6) 0.0018 (6)
C19 0.0254 (7) 0.0247 (7) 0.0179 (7) 0.0034 (6) 0.0015 (5) 0.0000 (5)
C20 0.0241 (7) 0.0262 (7) 0.0162 (6) 0.0008 (5) 0.0021 (5) −0.0002 (5)
C21 0.0355 (8) 0.0209 (7) 0.0210 (7) 0.0014 (6) 0.0048 (6) −0.0030 (5)
C22 0.0375 (9) 0.0282 (9) 0.0377 (9) 0.0053 (7) 0.0059 (7) −0.0034 (7)
C23 0.0566 (12) 0.0319 (10) 0.0513 (12) 0.0176 (9) 0.0074 (9) −0.0057 (8)
C24 0.0779 (15) 0.0224 (9) 0.0467 (11) 0.0083 (9) 0.0025 (10) −0.0114 (8)
C25 0.0609 (13) 0.0278 (9) 0.0529 (12) −0.0050 (8) −0.0042 (10) −0.0136 (8)
C26 0.0414 (9) 0.0290 (9) 0.0397 (10) 0.0009 (7) −0.0015 (7) −0.0101 (7)
C27 0.0290 (7) 0.0188 (7) 0.0188 (7) 0.0006 (5) 0.0023 (5) 0.0021 (5)
C28 0.0280 (7) 0.0274 (8) 0.0261 (7) 0.0034 (6) 0.0027 (6) 0.0002 (6)
C29 0.0342 (8) 0.0270 (8) 0.0286 (8) 0.0055 (6) −0.0041 (6) 0.0016 (6)
C30 0.0430 (9) 0.0290 (8) 0.0219 (7) −0.0030 (7) −0.0037 (6) 0.0071 (6)
C31 0.0352 (9) 0.0543 (11) 0.0239 (8) −0.0044 (8) 0.0059 (6) 0.0111 (7)
C32 0.0269 (8) 0.0463 (10) 0.0240 (8) 0.0030 (7) 0.0039 (6) 0.0084 (7)
C33 0.0238 (7) 0.0219 (7) 0.0179 (6) 0.0036 (5) −0.0002 (5) −0.0017 (5)
C34 0.0266 (7) 0.0226 (7) 0.0207 (7) 0.0018 (5) 0.0032 (5) −0.0014 (5)
C35 0.0271 (7) 0.0319 (8) 0.0236 (7) 0.0058 (6) 0.0044 (6) −0.0044 (6)
C36 0.0329 (8) 0.0237 (8) 0.0369 (9) 0.0081 (6) 0.0015 (7) −0.0072 (6)
C37 0.0329 (8) 0.0208 (8) 0.0390 (9) 0.0026 (6) 0.0036 (7) 0.0029 (6)
C38 0.0275 (7) 0.0250 (8) 0.0270 (8) 0.0037 (6) 0.0058 (6) 0.0022 (6)
C39 0.0260 (7) 0.0289 (8) 0.0164 (6) 0.0067 (6) 0.0038 (5) −0.0004 (6)
C40 0.0390 (9) 0.0319 (9) 0.0230 (7) 0.0024 (7) 0.0037 (6) 0.0014 (6)
C41 0.0496 (10) 0.0411 (10) 0.0290 (8) 0.0103 (8) 0.0120 (7) 0.0109 (7)
C42 0.0438 (10) 0.0636 (13) 0.0191 (8) 0.0266 (9) 0.0067 (7) 0.0104 (8)
C43 0.0298 (8) 0.0623 (12) 0.0212 (8) 0.0162 (8) −0.0031 (6) −0.0050 (8)
C44 0.0247 (7) 0.0396 (9) 0.0232 (7) 0.0067 (6) 0.0024 (6) −0.0034 (6)
N5 0.0246 (6) 0.0233 (7) 0.0341 (7) 0.0007 (5) 0.0062 (5) 0.0004 (5)
C45 0.0281 (8) 0.0444 (10) 0.0419 (10) −0.0002 (7) −0.0037 (7) −0.0157 (8)
C46 0.0270 (8) 0.0478 (10) 0.0229 (8) 0.0033 (7) 0.0011 (6) 0.0014 (7)
N6 0.0404 (17) 0.0460 (14) 0.0224 (9) 0.0156 (12) 0.0061 (10) 0.0046 (8)
C46B 0.0270 (8) 0.0478 (10) 0.0229 (8) 0.0033 (7) 0.0011 (6) 0.0014 (7)
N6B 0.035 (12) 0.049 (10) 0.052 (10) −0.002 (8) 0.002 (8) −0.006 (7)
O3 0.064 (8) 0.067 (9) 0.078 (10) −0.017 (7) −0.003 (7) 0.016 (7)
C47 0.054 (10) 0.072 (12) 0.056 (10) −0.017 (9) 0.011 (8) −0.011 (9)

[cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)–ethylenediamine–methanol (1/1/0.136) (2PhZn) . Geometric parameters (Å, º)

Zn1—N2 2.0556 (12) C25—H25 0.9500
Zn1—N4 2.0660 (12) C26—H26 0.9500
Zn1—N3 2.0812 (11) C27—C32 1.394 (2)
Zn1—N5 2.1315 (13) C27—C28 1.395 (2)
Zn1—N1 2.1399 (12) C28—C29 1.391 (2)
O1—C2 1.4294 (19) C28—H28 0.9500
O1—H1 0.99 (2) C29—C30 1.382 (3)
O2—C3 1.4204 (19) C29—H29 0.9500
O2—H2A 0.99 (3) C30—C31 1.392 (3)
N1—C1 1.3593 (19) C30—H30 0.9500
N1—C4 1.3618 (19) C31—C32 1.389 (2)
N2—C6 1.3661 (18) C31—H31 0.9500
N2—C9 1.3865 (18) C32—H32 0.9500
N3—C14 1.3716 (18) C33—C34 1.397 (2)
N3—C11 1.3731 (18) C33—C38 1.397 (2)
N4—C19 1.3654 (18) C34—C35 1.393 (2)
N4—C16 1.3863 (18) C34—H34 0.9500
C1—C20 1.382 (2) C35—C36 1.384 (2)
C1—C2 1.5257 (19) C35—H35 0.9500
C2—C3 1.544 (2) C36—C37 1.383 (3)
C2—H2 1.0000 C36—H36 0.9500
C3—C4 1.5292 (19) C37—C38 1.393 (2)
C3—H3 1.0000 C37—H37 0.9500
C4—C5 1.383 (2) C38—H38 0.9500
C5—C6 1.417 (2) C39—C44 1.395 (2)
C5—C21 1.500 (2) C39—C40 1.395 (2)
C6—C7 1.442 (2) C40—C41 1.389 (2)
C7—C8 1.356 (2) C40—H40 0.9500
C7—H7 0.9500 C41—C42 1.389 (3)
C8—C9 1.438 (2) C41—H41 0.9500
C8—H8 0.9500 C42—C43 1.372 (3)
C9—C10 1.394 (2) C42—H42 0.9500
C10—C11 1.411 (2) C43—C44 1.396 (2)
C10—C27 1.4990 (19) C43—H43 0.9500
C11—C12 1.434 (2) C44—H44 0.9500
C12—C13 1.359 (2) N5—C45 1.486 (2)
C12—H12 0.9500 N5—H5A 0.884 (15)
C13—C14 1.4364 (19) N5—H5B 0.882 (15)
C13—H13 0.9500 C45—C46B 1.498 (3)
C14—C15 1.414 (2) C45—C46 1.498 (3)
C15—C16 1.401 (2) C45—H45A 0.9900
C15—C33 1.4960 (19) C45—H45B 0.9900
C16—C17 1.439 (2) C46—N6 1.463 (2)
C17—C18 1.354 (2) C46—H46A 0.9900
C17—H17 0.9500 C46—H46B 0.9900
C18—C19 1.441 (2) N6—H6A 0.898 (16)
C18—H18 0.9500 N6—H6B 0.853 (16)
C19—C20 1.421 (2) C46B—N6B 1.479 (14)
C20—C39 1.5001 (19) C46B—H46C 0.9900
C21—C22 1.385 (2) C46B—H46D 0.9900
C21—C26 1.387 (2) N6B—H6C 0.88 (2)
C22—C23 1.383 (3) N6B—H6D 0.89 (2)
C22—H22 0.9500 O3—C47 1.35 (2)
C23—C24 1.382 (3) O3—H3O 0.8400
C23—H23 0.9500 C47—H47A 0.9800
C24—C25 1.372 (3) C47—H47B 0.9800
C24—H24 0.9500 C47—H47C 0.9800
C25—C26 1.394 (3)
N2—Zn1—N4 155.81 (5) C25—C24—H24 120.1
N2—Zn1—N3 88.38 (5) C23—C24—H24 120.1
N4—Zn1—N3 87.85 (5) C24—C25—C26 120.1 (2)
N2—Zn1—N5 102.59 (5) C24—C25—H25 120.0
N4—Zn1—N5 101.54 (5) C26—C25—H25 120.0
N3—Zn1—N5 102.84 (5) C21—C26—C25 120.47 (18)
N2—Zn1—N1 88.29 (5) C21—C26—H26 119.8
N4—Zn1—N1 88.25 (5) C25—C26—H26 119.8
N3—Zn1—N1 162.66 (5) C32—C27—C28 118.52 (14)
N5—Zn1—N1 94.49 (5) C32—C27—C10 120.79 (13)
C2—O1—H1 109.5 C28—C27—C10 120.69 (13)
C3—O2—H2A 109.5 C29—C28—C27 120.48 (15)
C1—N1—C4 110.22 (12) C29—C28—H28 119.8
C1—N1—Zn1 124.07 (10) C27—C28—H28 119.8
C4—N1—Zn1 124.07 (9) C30—C29—C28 120.72 (15)
C6—N2—C9 106.70 (12) C30—C29—H29 119.6
C6—N2—Zn1 126.63 (10) C28—C29—H29 119.6
C9—N2—Zn1 126.20 (10) C29—C30—C31 119.17 (15)
C14—N3—C11 106.58 (11) C29—C30—H30 120.4
C14—N3—Zn1 125.90 (9) C31—C30—H30 120.4
C11—N3—Zn1 124.72 (9) C32—C31—C30 120.32 (16)
C19—N4—C16 106.72 (12) C32—C31—H31 119.8
C19—N4—Zn1 126.30 (10) C30—C31—H31 119.8
C16—N4—Zn1 126.97 (9) C31—C32—C27 120.76 (15)
N1—C1—C20 125.66 (13) C31—C32—H32 119.6
N1—C1—C2 111.54 (12) C27—C32—H32 119.6
C20—C1—C2 122.79 (13) C34—C33—C38 118.04 (13)
O1—C2—C1 109.69 (12) C34—C33—C15 120.58 (13)
O1—C2—C3 112.41 (12) C38—C33—C15 121.37 (13)
C1—C2—C3 103.15 (12) C35—C34—C33 121.16 (14)
O1—C2—H2 110.5 C35—C34—H34 119.4
C1—C2—H2 110.5 C33—C34—H34 119.4
C3—C2—H2 110.5 C36—C35—C34 119.99 (15)
O2—C3—C4 113.06 (12) C36—C35—H35 120.0
O2—C3—C2 114.25 (13) C34—C35—H35 120.0
C4—C3—C2 102.83 (12) C37—C36—C35 119.65 (14)
O2—C3—H3 108.8 C37—C36—H36 120.2
C4—C3—H3 108.8 C35—C36—H36 120.2
C2—C3—H3 108.8 C36—C37—C38 120.50 (15)
N1—C4—C5 125.69 (13) C36—C37—H37 119.7
N1—C4—C3 111.67 (12) C38—C37—H37 119.7
C5—C4—C3 122.63 (13) C37—C38—C33 120.65 (15)
C4—C5—C6 125.81 (13) C37—C38—H38 119.7
C4—C5—C21 118.21 (13) C33—C38—H38 119.7
C6—C5—C21 115.86 (13) C44—C39—C40 118.47 (14)
N2—C6—C5 126.18 (13) C44—C39—C20 121.42 (14)
N2—C6—C7 109.70 (12) C40—C39—C20 120.03 (14)
C5—C6—C7 124.10 (13) C41—C40—C39 120.89 (17)
C8—C7—C6 107.13 (13) C41—C40—H40 119.6
C8—C7—H7 126.4 C39—C40—H40 119.6
C6—C7—H7 126.4 C42—C41—C40 119.91 (18)
C7—C8—C9 107.28 (13) C42—C41—H41 120.0
C7—C8—H8 126.4 C40—C41—H41 120.0
C9—C8—H8 126.4 C43—C42—C41 119.83 (16)
N2—C9—C10 125.87 (13) C43—C42—H42 120.1
N2—C9—C8 109.15 (13) C41—C42—H42 120.1
C10—C9—C8 124.93 (13) C42—C43—C44 120.60 (17)
C9—C10—C11 125.20 (13) C42—C43—H43 119.7
C9—C10—C27 117.69 (13) C44—C43—H43 119.7
C11—C10—C27 117.08 (13) C39—C44—C43 120.28 (17)
N3—C11—C10 124.71 (13) C39—C44—H44 119.9
N3—C11—C12 109.73 (12) C43—C44—H44 119.9
C10—C11—C12 125.48 (13) C45—N5—Zn1 117.93 (11)
C13—C12—C11 106.91 (13) C45—N5—H5A 111.4 (15)
C13—C12—H12 126.5 Zn1—N5—H5A 110.1 (15)
C11—C12—H12 126.5 C45—N5—H5B 108.8 (14)
C12—C13—C14 107.17 (13) Zn1—N5—H5B 105.3 (14)
C12—C13—H13 126.4 H5A—N5—H5B 101.8 (18)
C14—C13—H13 126.4 N5—C45—C46B 112.77 (14)
N3—C14—C15 124.61 (12) N5—C45—C46 112.77 (14)
N3—C14—C13 109.49 (12) N5—C45—H45A 109.0
C15—C14—C13 125.79 (13) C46—C45—H45A 109.0
C16—C15—C14 124.48 (13) N5—C45—H45B 109.0
C16—C15—C33 117.67 (13) C46—C45—H45B 109.0
C14—C15—C33 117.82 (12) H45A—C45—H45B 107.8
N4—C16—C15 125.85 (13) N6—C46—C45 111.44 (17)
N4—C16—C17 109.14 (12) N6—C46—H46A 109.3
C15—C16—C17 124.99 (13) C45—C46—H46A 109.3
C18—C17—C16 107.17 (13) N6—C46—H46B 109.3
C18—C17—H17 126.4 C45—C46—H46B 109.3
C16—C17—H17 126.4 H46A—C46—H46B 108.0
C17—C18—C19 107.31 (13) C46—N6—H6A 109.2 (15)
C17—C18—H18 126.3 C46—N6—H6B 114.0 (16)
C19—C18—H18 126.3 H6A—N6—H6B 104 (2)
N4—C19—C20 126.10 (13) N6B—C46B—C45 116.8 (7)
N4—C19—C18 109.61 (13) N6B—C46B—H46C 108.1
C20—C19—C18 124.29 (13) C45—C46B—H46C 108.1
C1—C20—C19 125.69 (13) N6B—C46B—H46D 108.1
C1—C20—C39 119.08 (13) C45—C46B—H46D 108.1
C19—C20—C39 115.23 (13) H46C—C46B—H46D 107.3
C22—C21—C26 118.74 (15) C46B—N6B—H6C 110 (3)
C22—C21—C5 121.41 (15) C46B—N6B—H6D 109 (3)
C26—C21—C5 119.76 (14) H6C—N6B—H6D 102 (4)
C23—C22—C21 120.74 (18) C47—O3—H3O 109.5
C23—C22—H22 119.6 O3—C47—H47A 109.5
C21—C22—H22 119.6 O3—C47—H47B 109.5
C24—C23—C22 120.11 (19) H47A—C47—H47B 109.5
C24—C23—H23 119.9 O3—C47—H47C 109.5
C22—C23—H23 119.9 H47A—C47—H47C 109.5
C25—C24—C23 119.88 (17) H47B—C47—H47C 109.5
C4—N1—C1—C20 −172.69 (14) C14—C15—C16—C17 −173.90 (15)
Zn1—N1—C1—C20 21.5 (2) C33—C15—C16—C17 4.1 (2)
C4—N1—C1—C2 8.29 (16) N4—C16—C17—C18 1.83 (19)
Zn1—N1—C1—C2 −157.56 (10) C15—C16—C17—C18 −176.45 (15)
N1—C1—C2—O1 113.02 (14) C16—C17—C18—C19 −0.5 (2)
C20—C1—C2—O1 −66.03 (18) C16—N4—C19—C20 −177.20 (14)
N1—C1—C2—C3 −6.94 (16) Zn1—N4—C19—C20 3.4 (2)
C20—C1—C2—C3 174.00 (14) C16—N4—C19—C18 2.20 (17)
O1—C2—C3—O2 7.86 (17) Zn1—N4—C19—C18 −177.24 (11)
C1—C2—C3—O2 125.94 (13) C17—C18—C19—N4 −1.09 (19)
O1—C2—C3—C4 −115.04 (13) C17—C18—C19—C20 178.32 (15)
C1—C2—C3—C4 3.04 (15) N1—C1—C20—C19 −3.6 (2)
C1—N1—C4—C5 173.14 (14) C2—C1—C20—C19 175.28 (14)
Zn1—N1—C4—C5 −21.0 (2) N1—C1—C20—C39 175.45 (13)
C1—N1—C4—C3 −6.09 (17) C2—C1—C20—C39 −5.6 (2)
Zn1—N1—C4—C3 159.75 (10) N4—C19—C20—C1 −10.3 (2)
O2—C3—C4—N1 −122.20 (14) C18—C19—C20—C1 170.36 (15)
C2—C3—C4—N1 1.50 (16) N4—C19—C20—C39 170.55 (14)
O2—C3—C4—C5 58.54 (19) C18—C19—C20—C39 −8.8 (2)
C2—C3—C4—C5 −177.76 (13) C4—C5—C21—C22 −108.81 (18)
N1—C4—C5—C6 7.8 (2) C6—C5—C21—C22 74.97 (19)
C3—C4—C5—C6 −173.08 (14) C4—C5—C21—C26 74.7 (2)
N1—C4—C5—C21 −168.03 (14) C6—C5—C21—C26 −101.57 (18)
C3—C4—C5—C21 11.1 (2) C26—C21—C22—C23 0.7 (3)
C9—N2—C6—C5 176.68 (14) C5—C21—C22—C23 −175.87 (17)
Zn1—N2—C6—C5 4.2 (2) C21—C22—C23—C24 −0.1 (3)
C9—N2—C6—C7 −1.77 (16) C22—C23—C24—C25 −0.6 (3)
Zn1—N2—C6—C7 −174.29 (10) C23—C24—C25—C26 0.7 (4)
C4—C5—C6—N2 1.8 (2) C22—C21—C26—C25 −0.6 (3)
C21—C5—C6—N2 177.74 (14) C5—C21—C26—C25 176.01 (18)
C4—C5—C6—C7 −179.92 (15) C24—C25—C26—C21 −0.1 (3)
C21—C5—C6—C7 −4.0 (2) C9—C10—C27—C32 110.01 (18)
N2—C6—C7—C8 0.94 (18) C11—C10—C27—C32 −68.0 (2)
C5—C6—C7—C8 −177.54 (15) C9—C10—C27—C28 −69.78 (19)
C6—C7—C8—C9 0.26 (18) C11—C10—C27—C28 112.19 (17)
C6—N2—C9—C10 −175.80 (14) C32—C27—C28—C29 0.5 (2)
Zn1—N2—C9—C10 −3.2 (2) C10—C27—C28—C29 −179.74 (14)
C6—N2—C9—C8 1.93 (16) C27—C28—C29—C30 −1.6 (2)
Zn1—N2—C9—C8 174.49 (10) C28—C29—C30—C31 1.3 (3)
C7—C8—C9—N2 −1.36 (18) C29—C30—C31—C32 0.1 (3)
C7—C8—C9—C10 176.39 (15) C30—C31—C32—C27 −1.2 (3)
N2—C9—C10—C11 −5.4 (2) C28—C27—C32—C31 0.9 (3)
C8—C9—C10—C11 177.25 (15) C10—C27—C32—C31 −178.87 (16)
N2—C9—C10—C27 176.78 (13) C16—C15—C33—C34 −123.99 (15)
C8—C9—C10—C27 −0.6 (2) C14—C15—C33—C34 54.12 (19)
C14—N3—C11—C10 −173.52 (14) C16—C15—C33—C38 55.03 (19)
Zn1—N3—C11—C10 24.5 (2) C14—C15—C33—C38 −126.86 (15)
C14—N3—C11—C12 3.29 (16) C38—C33—C34—C35 0.5 (2)
Zn1—N3—C11—C12 −158.64 (10) C15—C33—C34—C35 179.57 (14)
C9—C10—C11—N3 −6.2 (2) C33—C34—C35—C36 −0.4 (2)
C27—C10—C11—N3 171.62 (13) C34—C35—C36—C37 −0.2 (3)
C9—C10—C11—C12 177.44 (15) C35—C36—C37—C38 0.6 (3)
C27—C10—C11—C12 −4.7 (2) C36—C37—C38—C33 −0.4 (3)
N3—C11—C12—C13 −1.97 (17) C34—C33—C38—C37 −0.1 (2)
C10—C11—C12—C13 174.82 (15) C15—C33—C38—C37 −179.16 (14)
C11—C12—C13—C14 −0.14 (17) C1—C20—C39—C44 −65.50 (19)
C11—N3—C14—C15 173.12 (13) C19—C20—C39—C44 113.68 (16)
Zn1—N3—C14—C15 −25.2 (2) C1—C20—C39—C40 117.69 (17)
C11—N3—C14—C13 −3.37 (16) C19—C20—C39—C40 −63.13 (19)
Zn1—N3—C14—C13 158.29 (10) C44—C39—C40—C41 −0.9 (2)
C12—C13—C14—N3 2.20 (17) C20—C39—C40—C41 176.05 (15)
C12—C13—C14—C15 −174.24 (14) C39—C40—C41—C42 1.1 (3)
N3—C14—C15—C16 7.9 (2) C40—C41—C42—C43 −0.2 (3)
C13—C14—C15—C16 −176.19 (14) C41—C42—C43—C44 −0.8 (3)
N3—C14—C15—C33 −170.08 (13) C40—C39—C44—C43 −0.2 (2)
C13—C14—C15—C33 5.8 (2) C20—C39—C44—C43 −177.06 (14)
C19—N4—C16—C15 175.79 (14) C42—C43—C44—C39 1.0 (2)
Zn1—N4—C16—C15 −4.8 (2) Zn1—N5—C45—C46B −78.92 (16)
C19—N4—C16—C17 −2.47 (17) Zn1—N5—C45—C46 −78.92 (16)
Zn1—N4—C16—C17 176.96 (11) N5—C45—C46—N6 −69.5 (3)
C14—C15—C16—N4 8.1 (2) N5—C45—C46B—N6B −38.3 (15)
C33—C15—C16—N4 −173.93 (13)

[cis-7,8-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)–ethylenediamine–methanol (1/1/0.136) (2PhZn) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N6i 0.99 1.73 2.710 (3) 168
O1—H1···N6Bi 0.99 1.54 2.510 (17) 165
O2—H2A···O1i 0.99 1.82 2.8056 (18) 171
C2—H2···O3i 1.00 2.53 3.460 (14) 155
N5—H5A···O1i 0.88 (2) 2.38 (2) 3.2442 (18) 166 (2)
C46—H46A···N2 0.99 2.49 3.368 (2) 148
N6—H6A···O3 0.90 (2) 2.08 (2) 2.932 (14) 159 (3)
C46B—H46C···N2 0.99 2.68 3.368 (2) 126
O3—H3O···N4ii 0.84 2.20 2.992 (14) 157

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z.

Funding Statement

This work was funded by National Science Foundation, Directorate for Mathematical and Physical Sciences grants CHE-1625543 and CHE-1800361 to M. Zeller and C. Brückner.

References

  1. Banerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576–588.
  2. Brückner, C. (2016). Acc. Chem. Res. 49, 1080–1092. [DOI] [PubMed]
  3. Brückner, C., Atoyebi, A. O., Girouard, D., Lau, K. S. F., Akhigbe, J., Samankumara, L., Damunupola, D., Khalil, G. E., Gouterman, M., Krause, J. A. & Zeller, M. (2020). Eur. J. Org. Chem. pp. 475–482.
  4. Brückner, C. & Dolphin, D. (1995a). Tetrahedron Lett. 36, 3295–3298.
  5. Brückner, C. & Dolphin, D. (1995b). Tetrahedron Lett. 36, 9425–9428.
  6. Brückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094–2098.
  7. Bruhn, T. & Brückner, C. (2015). J. Org. Chem. 80, 4861–4868. [DOI] [PubMed]
  8. Bruker (2019). APEX3 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.
  9. Bruker (2021). APEX4. Bruker Nano Inc., Madison, Wisconsin, USA.
  10. Buchler, J. W. (1978). The Porphyrins, edited by D. Dolphin, pp. 389–483, New York: Academic Press.
  11. Daniell, H. W., Williams, S. C., Jenkins, H. A. & Brückner, C. (2003). Tetrahedron Lett. 44, 4045–4049.
  12. Flitsch, W. (1988). Adv. Heterocycl. Chem. 43, 73–126.
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Hewage, N., Daddario, P., Lau, K. S. F., Guberman-Pfeffer, M. J., Gascón, J. A., Zeller, M., Lee, C. O., Khalil, G. E., Gouterman, M. & Brückner, C. (2019). J. Org. Chem. 84, 239–256. [DOI] [PubMed]
  15. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  16. Hyland, M. A., Morton, M. D. & Brückner, C. (2012). J. Org. Chem. 77, 3038–3048. [DOI] [PubMed]
  17. Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760.
  18. Kratky, C., Waditschatka, R., Angst, C., Johansen, J. E., Plaquevent, J. C., Schreiber, J. & Eschenmoser, A. (1985). Helv. Chim. Acta, 68, 1312–1337.
  19. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  20. Lindsey, J. S. (2015). Chem. Rev. 115, 6534–6620. [DOI] [PMC free article] [PubMed]
  21. Liu, Y., Zhang, S. & Lindsey, J. S. (2018). Nat. Prod. Rep. 35, 879–901. [DOI] [PubMed]
  22. Luciano, M. P., Atoyebi, A. O., Tardie, W., Zeller, M. & Brückner, C. (2020). J. Org. Chem. 85, 15273–15286. [DOI] [PubMed]
  23. Macalpine, J. K., Boch, R. & Dolphin, D. (2002). J. Porphyrins Phthalocyanines, 06, 146–155.
  24. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  25. Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010). Org. Biomol. Chem. 8, 1951–1965. [DOI] [PubMed]
  26. Senge, M. O. (2000). The Porphyrin Handbook, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–218. San Diego: Academic Press.
  27. Senge, M. O., Kalisch, W. W. & Bischoff, I. (2000). Chem. Eur. J. 6, 2721–2738. [DOI] [PubMed]
  28. Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). Inorg. Chem. 56, 11490–11502. [DOI] [PubMed]
  29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Shelnutt, J. A., Song, X.-Z., Ma, J.-G., Jentzen, W. & Medforth, C. J. (1998). Chem. Soc. Rev. 27, 31–41.
  33. Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.
  34. Spaulding, L. D., Andrews, L. C. & Williams, G. J. B. (1977). J. Am. Chem. Soc. 99, 6918–6923. [DOI] [PubMed]
  35. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  36. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  37. Starnes, S. D., Rudkevich, D. M. & Rebek, J. Jr (2000). Org. Lett. 2, 1995–1998. [DOI] [PubMed]
  38. Starnes, S. D., Rudkevich, D. M. & Rebek, J. Jr (2001). J. Am. Chem. Soc. 123, 4659–4669. [DOI] [PubMed]
  39. Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344–535. [DOI] [PubMed]
  40. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  41. Worlinsky, J. L., Zarate, G., Zeller, M., Ghandehari, M., Khalil, G. & Brückner, C. (2013). J. Porphyrins Phthalocyanines, 17, 836–849.
  42. Wu, Z.-Y., Xue, H., Wang, T., Guo, Y., Meng, Y.-S., Li, X., Zheng, J., Brückner, C., Rao, G., Britt, R. D. & Zhang, J.-L. (2020). ACS Catal. 10, 2177–2188.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 2PhH2, 2PhZn. DOI: 10.1107/S2056989022002729/dj2044sup1.cif

e-78-00392-sup1.cif (3MB, cif)

Structure factors: contains datablock(s) 2PhH2. DOI: 10.1107/S2056989022002729/dj20442PhH2sup2.hkl

Structure factors: contains datablock(s) 2PhZn. DOI: 10.1107/S2056989022002729/dj20442PhZnsup3.hkl

e-78-00392-2PhZnsup3.hkl (599.8KB, hkl)

CCDC references: 2157745, 2157746

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES