Skip to main content
IUCrData logoLink to IUCrData
. 2022 Jan 28;7(Pt 1):x220083. doi: 10.1107/S2414314622000839

N-Phenyl-N-[(E)-2-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)ethen­yl]aniline

Yuki Hatayama a, Kazuto Akagi a, Tsunehisa Okuno a,*
Editor: E R T Tiekinkb
PMCID: PMC9028550  PMID: 36337091

The title compound features a polarized π-system due to resonance between the N—C(H)=C(H)—B and ionic N+=C(H)—C(H)=B canonical forms.

Keywords: crystal structure, dioxaborolan-2-yl, resonance

Abstract

The title compound, C20H24BNO2, has a polarized π-system due to significant resonance between the N—C(H)=C(H)—B and ionic N+=C(H)—C(H)=B canonical forms. The dihedral angles between the NC2B plane (r.m.s. deviation 0.0223 Å) and the C3N (r.m.s. deviation 0.0025 Å) and BCO2 (r.m.s. deviation 0.0044 Å) planes are 2.51 (12) and 3.09 (19)°, respectively. This indicates the lone pair of the nitro­gen atom and a vacant p orbital of the boron atom are conjugated with the central C=C bond. In comparison with the carbazole analogue [Hatayama & Okuno (2012). Acta Cryst. E68, o84], the C—N and C—B bonds are shorter. The results are well explained by the increase in the contribution of the N+=C(H)—C(H)=B canonical form in the title compound. graphic file with name x-07-x220083-scheme1-3D1.jpg

Structure description

The title compound, C20H24BNO2, has a hybrid π-conjugated system within the N—C(H)=C(H)—B fragment. The insertion of a π-conjugated system in the N—B bond affords a highly polarized π-system owing to the contribution of an ionic canonical structure, i.e. N+= C(H)—C(H)=B. The contribution of the ionic canonical structure is small when p-phenyl­ene is inserted into the N—B bond (Yuan et al., 2006). However, when a C≡C bond is inserted into the N—B bond (Onuma et al., 2015), a relatively large contribution of the ionic canonical structure is apparent. The structure of the C=C bond inserted system, namely 9-[(E)-2-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)ethen­yl]-9H-carbazole has been reported (Hatayama & Okuno, 2012). In the title compound, the carbazole unit of the former is replaced by a di­phenyl­amino residue (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H are atoms shown as small spheres.

The dihedral angles between the C13/C14/B1/N1 plane (r.m.s. deviation 0.0223 Å) and the N1/C1/C7/C13 (r.m.s. deviation 0.0025 Å) and B1/O1/O2/C14 (r.m.s. deviation 0.0044 Å) planes are 2.51 (12) and 3.09 (19)°, respectively, indicating the lone pair of the nitro­gen atom and a vacant p orbital of the boron are conjugated with the central C=C bond. The C13—N1 [1.3824 (19) Å] and C14—B1 [1.532 (2) Å] bonds are shortened, compared with those in the carbazole analogue of 1.396 (3) Å and 1.537 (3) Å, respectively; the central C=C bond at 1.341 (2) Å is experimentally equivalent to that of 1.336 (4) Å in the carbazolyl derivative. The results are well explained by the increase in the contribution of the N+=C(H)—C(H)=B canonical structure in the title compound. This is presumably because the nitro­gen atom of di­phenyl­amino group donates its lone pair to the π-system more effectively compared to that of the carbazolyl group, which leads to a decrease in the contribution of the N+=C(H)—C(H)=B canonical structure in the latter.

Synthesis and crystallization

The title compound was obtained by hydro­boration of N-ethynyl-N-phenyl­aniline (Tokutome & Okuno, 2013) with 4,4,5,5-tetra­methyl-1,3,2-dioxaborolane in 16% yield. 1H NMR (CDCl3): δ 1.25 (s, 12H), 4.17 (d, J = 15.6 Hz, 1H), 7.07 (d, J = 7.7 Hz, 4H), 7.12 (t, J = 7.7 Hz, 2H), 7.31 (t, J = 7.7 Hz, 4H), 7.64 (d, J = 15.6 Hz, 1H).

Single crystals were obtained by recrystallization from hexane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Table 1. Experimental details.

Crystal data
Chemical formula C20H24BNO2
M r 321.23
Crystal system, space group Monoclinic, C2/c
Temperature (K) 93
a, b, c (Å) 32.071 (11), 6.011 (2), 22.219 (8)
β (°) 122.590 (4)
V3) 3609 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.13 × 0.11 × 0.05
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999)
T min, T max 0.991, 0.996
No. of measured, independent and observed [F 2 > 2.0σ(F 2)] reflections 13892, 3869, 3041
R int 0.084
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.052, 0.147, 1.09
No. of reflections 3869
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.27

Computer programs: CrystalClear (Rigaku, 2008), CrystalStructure (Rigaku, 2019), SHELXS and SHELXL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314622000839/tk4073sup1.cif

x-07-x220083-sup1.cif (525.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622000839/tk4073Isup2.hkl

x-07-x220083-Isup2.hkl (212.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622000839/tk4073Isup3.cml

CCDC reference: 2129837

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C20H24BNO2 F(000) = 1376.00
Mr = 321.23 Dx = 1.182 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71075 Å
a = 32.071 (11) Å Cell parameters from 5341 reflections
b = 6.011 (2) Å θ = 1.5–31.1°
c = 22.219 (8) Å µ = 0.07 mm1
β = 122.590 (4)° T = 93 K
V = 3609 (2) Å3 Prism, colourless
Z = 8 0.13 × 0.11 × 0.05 mm

Data collection

Rigaku Saturn724+ diffractometer 3041 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1 Rint = 0.084
ω scans θmax = 27.0°, θmin = 1.5°
Absorption correction: numerical (NUMABS; Rigaku, 1999) h = −33→40
Tmin = 0.991, Tmax = 0.996 k = −7→7
13892 measured reflections l = −28→26
3869 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0758P)2 + 0.8943P] where P = (Fo2 + 2Fc2)/3
3869 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. The Uiso(H) values were set at 1.2Ueq(Csp2) and 1.5 Ueq(Csp3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.34742 (4) 0.98270 (18) 0.51068 (5) 0.0221 (3)
O2 0.41736 (4) 0.82168 (18) 0.60407 (5) 0.0218 (3)
N1 0.36028 (5) 0.6152 (2) 0.35305 (7) 0.0199 (3)
C1 0.32337 (5) 0.6584 (3) 0.28043 (8) 0.0190 (3)
C2 0.29881 (6) 0.8631 (3) 0.25973 (8) 0.0218 (3)
H2 0.3090 0.9801 0.2936 0.026*
C3 0.25961 (6) 0.8955 (3) 0.18984 (8) 0.0242 (4)
H3 0.2427 1.0342 0.1764 0.029*
C4 0.24475 (6) 0.7281 (3) 0.13936 (8) 0.0242 (4)
H4 0.2173 0.7497 0.0919 0.029*
C5 0.27059 (6) 0.5283 (3) 0.15912 (8) 0.0239 (4)
H5 0.2613 0.4146 0.1244 0.029*
C6 0.30963 (6) 0.4925 (3) 0.22861 (8) 0.0217 (3)
H6 0.3271 0.3555 0.2412 0.026*
C7 0.39973 (5) 0.4638 (2) 0.36945 (8) 0.0186 (3)
C8 0.40344 (6) 0.2606 (3) 0.40195 (8) 0.0220 (3)
H8 0.3798 0.2207 0.4133 0.026*
C9 0.44182 (6) 0.1166 (3) 0.41769 (8) 0.0237 (3)
H9 0.4446 −0.0221 0.4401 0.028*
C10 0.47629 (6) 0.1748 (3) 0.40080 (8) 0.0246 (4)
H10 0.5025 0.0757 0.4115 0.030*
C11 0.47247 (6) 0.3772 (3) 0.36832 (8) 0.0248 (4)
H11 0.4960 0.4166 0.3567 0.030*
C12 0.43426 (6) 0.5225 (3) 0.35273 (8) 0.0226 (3)
H12 0.4317 0.6617 0.3307 0.027*
C13 0.35865 (6) 0.7131 (2) 0.40803 (8) 0.0194 (3)
H13 0.3305 0.8029 0.3942 0.023*
C14 0.39193 (6) 0.6968 (3) 0.47847 (8) 0.0206 (3)
H14 0.4197 0.6011 0.4957 0.025*
C15 0.34973 (6) 1.0522 (3) 0.57530 (8) 0.0210 (3)
C16 0.40496 (6) 1.0063 (3) 0.63455 (8) 0.0226 (3)
C17 0.31353 (6) 0.9064 (3) 0.58176 (10) 0.0296 (4)
H17A 0.3140 0.9481 0.6247 0.036*
H17B 0.2801 0.9272 0.5396 0.036*
H17C 0.3232 0.7500 0.5851 0.036*
C18 0.33465 (6) 1.2945 (3) 0.56815 (9) 0.0261 (4)
H18A 0.3361 1.3421 0.6115 0.031*
H18B 0.3573 1.3857 0.5616 0.031*
H18C 0.3008 1.3124 0.5267 0.031*
C19 0.41396 (7) 0.9327 (3) 0.70589 (9) 0.0344 (4)
H19A 0.4058 1.0548 0.7270 0.041*
H19B 0.3931 0.8038 0.6988 0.041*
H19C 0.4488 0.8920 0.7380 0.041*
C20 0.43914 (6) 1.1987 (3) 0.64438 (10) 0.0311 (4)
H20A 0.4321 1.3267 0.6648 0.037*
H20B 0.4737 1.1530 0.6767 0.037*
H20C 0.4336 1.2400 0.5980 0.037*
B1 0.38529 (6) 0.8323 (3) 0.53116 (9) 0.0188 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0242 (6) 0.0246 (6) 0.0168 (6) 0.0045 (4) 0.0105 (5) −0.0009 (4)
O2 0.0246 (6) 0.0227 (6) 0.0180 (6) 0.0047 (4) 0.0114 (5) −0.0001 (4)
N1 0.0220 (7) 0.0207 (6) 0.0176 (6) 0.0024 (5) 0.0110 (6) −0.0006 (5)
C1 0.0176 (7) 0.0236 (8) 0.0171 (7) −0.0014 (6) 0.0101 (6) 0.0001 (6)
C2 0.0258 (8) 0.0213 (8) 0.0214 (8) −0.0001 (6) 0.0149 (7) −0.0009 (6)
C3 0.0248 (8) 0.0283 (8) 0.0242 (8) 0.0046 (6) 0.0164 (7) 0.0051 (6)
C4 0.0211 (8) 0.0338 (9) 0.0172 (8) −0.0005 (6) 0.0101 (7) 0.0024 (6)
C5 0.0247 (8) 0.0298 (8) 0.0201 (8) −0.0048 (6) 0.0139 (7) −0.0042 (6)
C6 0.0239 (8) 0.0219 (8) 0.0233 (8) 0.0005 (6) 0.0154 (7) −0.0004 (6)
C7 0.0178 (7) 0.0201 (7) 0.0159 (7) 0.0012 (6) 0.0077 (6) −0.0024 (6)
C8 0.0215 (8) 0.0241 (8) 0.0224 (8) −0.0025 (6) 0.0132 (7) −0.0023 (6)
C9 0.0256 (8) 0.0209 (8) 0.0231 (8) 0.0005 (6) 0.0121 (7) −0.0002 (6)
C10 0.0215 (8) 0.0267 (8) 0.0226 (8) 0.0024 (6) 0.0099 (7) −0.0038 (6)
C11 0.0216 (8) 0.0312 (9) 0.0244 (8) −0.0018 (6) 0.0143 (7) −0.0035 (7)
C12 0.0253 (8) 0.0236 (8) 0.0206 (8) −0.0007 (6) 0.0135 (7) −0.0002 (6)
C13 0.0210 (8) 0.0183 (7) 0.0241 (8) −0.0015 (6) 0.0155 (7) −0.0021 (6)
C14 0.0202 (8) 0.0212 (7) 0.0216 (8) 0.0012 (6) 0.0121 (7) −0.0011 (6)
C15 0.0252 (8) 0.0207 (7) 0.0203 (8) 0.0021 (6) 0.0143 (7) −0.0009 (6)
C16 0.0272 (8) 0.0227 (8) 0.0195 (8) 0.0014 (6) 0.0136 (7) −0.0011 (6)
C17 0.0329 (9) 0.0244 (8) 0.0404 (10) −0.0022 (7) 0.0256 (8) −0.0032 (7)
C18 0.0313 (9) 0.0214 (8) 0.0286 (9) 0.0041 (6) 0.0182 (8) 0.0009 (6)
C19 0.0430 (10) 0.0406 (10) 0.0193 (8) 0.0060 (8) 0.0166 (8) 0.0008 (7)
C20 0.0280 (9) 0.0308 (9) 0.0300 (9) −0.0045 (7) 0.0127 (8) −0.0091 (7)
B1 0.0193 (8) 0.0187 (8) 0.0203 (9) −0.0020 (6) 0.0118 (7) −0.0007 (6)

Geometric parameters (Å, º)

O1—B1 1.380 (2) C10—H10 0.9500
O1—C15 1.4585 (18) C11—C12 1.388 (2)
O2—B1 1.375 (2) C11—H11 0.9500
O2—C16 1.4623 (18) C12—H12 0.9500
N1—C13 1.3824 (19) C13—C14 1.341 (2)
N1—C1 1.419 (2) C13—H13 0.9500
N1—C7 1.4369 (19) C14—B1 1.532 (2)
C1—C2 1.398 (2) C14—H14 0.9500
C1—C6 1.403 (2) C15—C18 1.516 (2)
C2—C3 1.388 (2) C15—C17 1.522 (2)
C2—H2 0.9500 C15—C16 1.560 (2)
C3—C4 1.386 (2) C16—C19 1.516 (2)
C3—H3 0.9500 C16—C20 1.526 (2)
C4—C5 1.390 (2) C17—H17A 0.9800
C4—H4 0.9500 C17—H17B 0.9800
C5—C6 1.384 (2) C17—H17C 0.9800
C5—H5 0.9500 C18—H18A 0.9800
C6—H6 0.9500 C18—H18B 0.9800
C7—C12 1.390 (2) C18—H18C 0.9800
C7—C8 1.391 (2) C19—H19A 0.9800
C8—C9 1.387 (2) C19—H19B 0.9800
C8—H8 0.9500 C19—H19C 0.9800
C9—C10 1.390 (2) C20—H20A 0.9800
C9—H9 0.9500 C20—H20B 0.9800
C10—C11 1.386 (2) C20—H20C 0.9800
B1—O1—C15 107.10 (11) N1—C13—H13 116.0
B1—O2—C16 107.02 (12) C13—C14—B1 120.13 (14)
C13—N1—C1 121.41 (13) C13—C14—H14 119.9
C13—N1—C7 119.53 (13) B1—C14—H14 119.9
C1—N1—C7 119.05 (12) O1—C15—C18 109.14 (12)
C2—C1—C6 118.90 (14) O1—C15—C17 106.93 (13)
C2—C1—N1 120.80 (14) C18—C15—C17 110.29 (13)
C6—C1—N1 120.25 (14) O1—C15—C16 102.26 (12)
C3—C2—C1 120.12 (15) C18—C15—C16 114.30 (13)
C3—C2—H2 119.9 C17—C15—C16 113.29 (13)
C1—C2—H2 119.9 O2—C16—C19 108.47 (13)
C4—C3—C2 120.84 (15) O2—C16—C20 106.72 (13)
C4—C3—H3 119.6 C19—C16—C20 110.72 (14)
C2—C3—H3 119.6 O2—C16—C15 102.24 (12)
C3—C4—C5 119.03 (15) C19—C16—C15 115.10 (14)
C3—C4—H4 120.5 C20—C16—C15 112.83 (13)
C5—C4—H4 120.5 C15—C17—H17A 109.5
C6—C5—C4 120.93 (15) C15—C17—H17B 109.5
C6—C5—H5 119.5 H17A—C17—H17B 109.5
C4—C5—H5 119.5 C15—C17—H17C 109.5
C5—C6—C1 120.06 (15) H17A—C17—H17C 109.5
C5—C6—H6 120.0 H17B—C17—H17C 109.5
C1—C6—H6 120.0 C15—C18—H18A 109.5
C12—C7—C8 120.28 (14) C15—C18—H18B 109.5
C12—C7—N1 119.38 (14) H18A—C18—H18B 109.5
C8—C7—N1 120.34 (13) C15—C18—H18C 109.5
C9—C8—C7 119.68 (14) H18A—C18—H18C 109.5
C9—C8—H8 120.2 H18B—C18—H18C 109.5
C7—C8—H8 120.2 C16—C19—H19A 109.5
C8—C9—C10 120.11 (15) C16—C19—H19B 109.5
C8—C9—H9 119.9 H19A—C19—H19B 109.5
C10—C9—H9 119.9 C16—C19—H19C 109.5
C11—C10—C9 120.09 (15) H19A—C19—H19C 109.5
C11—C10—H10 120.0 H19B—C19—H19C 109.5
C9—C10—H10 120.0 C16—C20—H20A 109.5
C10—C11—C12 120.06 (15) C16—C20—H20B 109.5
C10—C11—H11 120.0 H20A—C20—H20B 109.5
C12—C11—H11 120.0 C16—C20—H20C 109.5
C11—C12—C7 119.77 (15) H20A—C20—H20C 109.5
C11—C12—H12 120.1 H20B—C20—H20C 109.5
C7—C12—H12 120.1 O2—B1—O1 112.71 (13)
C14—C13—N1 127.95 (14) O2—B1—C14 123.48 (14)
C14—C13—H13 116.0 O1—B1—C14 123.79 (14)
C13—N1—C1—C2 30.2 (2) C1—N1—C13—C14 −176.36 (15)
C7—N1—C1—C2 −150.72 (14) C7—N1—C13—C14 4.5 (2)
C13—N1—C1—C6 −147.37 (14) N1—C13—C14—B1 175.57 (14)
C7—N1—C1—C6 31.7 (2) B1—O1—C15—C18 145.27 (13)
C6—C1—C2—C3 3.7 (2) B1—O1—C15—C17 −95.43 (14)
N1—C1—C2—C3 −173.86 (13) B1—O1—C15—C16 23.86 (15)
C1—C2—C3—C4 −1.1 (2) B1—O2—C16—C19 146.11 (14)
C2—C3—C4—C5 −1.8 (2) B1—O2—C16—C20 −94.56 (14)
C3—C4—C5—C6 2.1 (2) B1—O2—C16—C15 24.11 (14)
C4—C5—C6—C1 0.6 (2) O1—C15—C16—O2 −28.89 (14)
C2—C1—C6—C5 −3.4 (2) C18—C15—C16—O2 −146.69 (13)
N1—C1—C6—C5 174.15 (13) C17—C15—C16—O2 85.81 (15)
C13—N1—C7—C12 −113.40 (16) O1—C15—C16—C19 −146.25 (14)
C1—N1—C7—C12 67.48 (19) C18—C15—C16—C19 95.96 (17)
C13—N1—C7—C8 66.41 (19) C17—C15—C16—C19 −31.54 (19)
C1—N1—C7—C8 −112.71 (16) O1—C15—C16—C20 85.36 (15)
C12—C7—C8—C9 0.0 (2) C18—C15—C16—C20 −32.44 (18)
N1—C7—C8—C9 −179.76 (14) C17—C15—C16—C20 −159.93 (13)
C7—C8—C9—C10 −0.2 (2) C16—O2—B1—O1 −10.22 (17)
C8—C9—C10—C11 0.2 (2) C16—O2—B1—C14 168.01 (14)
C9—C10—C11—C12 0.1 (2) C15—O1—B1—O2 −9.76 (17)
C10—C11—C12—C7 −0.3 (2) C15—O1—B1—C14 172.01 (14)
C8—C7—C12—C11 0.3 (2) C13—C14—B1—O2 178.88 (14)
N1—C7—C12—C11 −179.94 (13) C13—C14—B1—O1 −3.1 (2)

References

  1. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  2. Hatayama, Y. & Okuno, T. (2012). Acta Cryst. E68, o84. [DOI] [PMC free article] [PubMed]
  3. Onuma, K., Suzuki, K. & Yamashita, M. (2015). Chem. Lett. 44, 405–407.
  4. Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  5. Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  6. Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tokutome, Y. & Okuno, T. (2013). J. Mol. Struct. 1047, 136–142.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  10. Yuan, Z., Entwistle, C. D., Collings, J. C., Albesa-Jové, D., Batsanov, A. S., Howard, J. A. K., Taylor, N. J., Kaiser, H. M., Kaufmann, D. E., Poon, S. Y., Wong, W. Y., Jardin, C., Fathallah, S., Boucekkine, A., Halet, J. F. & Marder, T. B. (2006). Chem. Eur. J. 12, 2758–2771. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314622000839/tk4073sup1.cif

x-07-x220083-sup1.cif (525.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622000839/tk4073Isup2.hkl

x-07-x220083-Isup2.hkl (212.4KB, hkl)

Supporting information file. DOI: 10.1107/S2414314622000839/tk4073Isup3.cml

CCDC reference: 2129837

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES