Skip to main content
IUCrData logoLink to IUCrData
. 2022 Jan 28;7(Pt 1):x220061. doi: 10.1107/S241431462200061X

β-d-Galacto­pyranosyl-(1→4)–2-amino-2-de­oxy-α-d-gluco­pyran­ose hydro­chloride monohydrate (lactosamine)

Valeri V Mossine a,*, Steven P Kelley b, Thomas P Mawhinney a
Editor: J F Gallagherc
PMCID: PMC9028551  PMID: 36337090

The amino­disaccharide adopts a conformation close to that of the parent α-lactose and is immersed in an extensive hydrogen-bonding network.

Keywords: crystal structure, glycosidic bond geometry, Heyns rearrangement, hydrogen bonding

Abstract

The title compound, C12H24NO10 +·Cl·H2O, (I), crystallizes in the monoclinic space group P21 and exists as a monohydrate of a monosubstituted ammonium chloride salt, with the reducing carbohydrate portion existing exclusively as the α-pyran­ose tautomer. The glycosidic bond geometry in (I) is stabilized by an intra­molecular hydrogen bond and is close to that found in crystalline α-lactose. All heteroatoms except gluco­pyran­ose ring O4 participate in an extensive hydrogen-bonding network, which propagates in all directions in the crystal structure of (I). graphic file with name x-07-x220061-scheme1-3D1.jpg

Structure description

Lactosamine is an important endogenous and food-related glycoepitope that provides for recognition of glycoproteins by both plant and animal β-galactoside-specific lectins, such as tomato lectin (Acarin et al., 1994) or a family of mammalian galectins (Boscher et al., 2011; Mossine et al., 2008). In free and oligomeric form, N-acetyl­lactosamine is present in human milk and is believed to participate in the immune protection of infants (Kulinich & Liu, 2016). Therefore, structural aspects of lactosamine inter­action with carbohydrate-recognizing proteins are of significant inter­est to the biomedical glycobiology field (Seetharaman et al., 1998; Guardia et al., 2011). As a part of our research program on the structure and anti-tumorigenic potential of amino­glycoconjugates (Glinskii et al., 2012; Mossine et al., 2018), we have prepared a number of 2-amino-2-de­oxy­saccharides, including lactosamine. Although the crystal parameters and hydrogen-bonding geometry of (I) were previously reported in a patent (Dekany et al., 2014), no other structural data have been provided. Here we report details of the mol­ecular geometry of (I) and compare it to related disaccharide structures.

The mol­ecular structure and atomic numbering for the title compound (I) are shown in Fig. 1. Lactosamine is a disaccharide made of the non-reducing β-d-galactoside unit and the d-glucosa­mine portion, which is a reducing end sugar moiety and thus can exist in several tautomeric forms, such as α- and β-pyran­ose, or α- and β-furan­ose. In the crystalline state of (I), the d-glucosa­mine residue exists exclusively as the α-pyran­ose anomer, which is also a predominant tautomer in aqueous solutions of lactosamine (Dekany et al., 2014). The amino group in (I) is fully protonated, as would be expected for a hydro­chloride salt. The conformation of the d-glucosa­mine α-pyran­ose ring is a relaxed 4 C 1 chair, with puckering parameters Q 1 = 0.579 (8) Å, θ 1 = 1.0 (8)°, and φ 1 = 100 (27)°. The d-galactoside β-pyran­ose ring similarly adopts the 4 C 1 conformation, with puckering parameters Q 2 = 0.607 (8) Å, θ 2 = 2.0 (8)°, and φ 2 = 123 (38)°.

Figure 1.

Figure 1

Atomic numbering and displacement ellipsoids at the 50% probability level for (I). Hydrogen bonds are shown as dotted lines.

The conformation around the β1→4 glycosidic link in disaccharide (I) is an important structural characteristic and, for the purpose of the structure comparison, can be conventionally described by the valence angle C4—O5—C7 (also referred to as ‘τ′), torsion angles C4—O5—C7—O10 (‘Φ′) and C3—C4—O5—C7 (‘Ψ’). As can be seen in Table 1, values of these angles are typical for other Gal-β1→4-Glc disaccharides, with α-lactose monohydrate (Smith et al., 2005) being conformationally the closest structure to (I). It is believed that the O10⋯H—O2 intra­molecular hydrogen bond linking the two carbohydrate units is primarily responsible for stabilization of the spatial arrangement around the glycosidic bond, both in the crystal state and in solutions of Gal-β1→4-Glc di- and oligosaccharides (Imberty et al. 1991). Moreover, this contact may be further stabilized by its involvement in multicenter hydrogen-bonding patterns. For instance, the H2 proton is involved in bifurcated hydrogen bonding with the O5 and O10 acceptors in (I) and α-lactose (Tables 2 and 3), while in N-acetyl­lactosamine (Longchambon et al., 1981) and N-acetyl­lactosyl­amine (Lakshmanan et al., 2001), additional intra­molecular links between the galacto­pyran­oside and gluco­pyran­ose moieties are represented by the O5⋯H6—O6 and the O9⋯H2—O2 contacts, respectively (Table 2).

Table 1. Conformational features (Å, °) of the glycosidic bond in (I) and related disaccharide structures with the Gal-β1→4-Glc link.

Sugar Tautomer, conformation τ Φ Ψ Intra­molecular contacts around glycosidic bond (O⋯H; O⋯O; O⋯H—O)
Gal-β1→4-GlcNH3 +Cl·H2O (I) a α-pyran­ose, 4 C 1 116.0 −95.2 +90.7 O10⋯H—O2 (1.98; 2.743; 159) O5⋯H—O2 (2.64; 2.964; 106)
Gal-β1→4-GlcNHCOCH3·H2O (N-acetyl­lactosamine, LacNAc·H2O) b α-pyran­ose, 4 C 1 b 116.3 −88.1 +97.8 O10⋯H—O2 (1.98; 2.787; 139) O5⋯H—O6 (2.40; 2.868; 122)
LacNAc/ toad galectin c α-pyran­ose, 4C1 118.2; 113.6 −66.9; −67.8 +132.4; +132.6 Not reported
LacNAc calculations d α-pyran­ose, 4 C 1 d 117.1 −75 +135 O10⋯H—O2
Gal-β1→4-Glc·H2O (α-lactose) e α-pyran­ose, 4 C 1 116.9 −93.4 +95.9 O10⋯H—O2 (2.02; 2.819; 159) O5⋯H—O2 (2.65; 2.992; 106)
Gal-β1→4-Glc (β-lactose) f β-pyran­ose, 4 C 1 116.5 −76.3 +106.4 O10⋯H—O2 (n.d.; 2.707; 101)
Gal-β1→4-GlcNHCOCH3·2H2O (N-acetyl­lactosyl­amine) g β-pyran­ose, 4 C 1 117.4 −89.3 +81.5 O10⋯H—O2 (2.06; 2.767; 144) O9⋯H—O2 (2.45; 3.126; 141)

Notes: (a) This work; (b) Longchambon et al. (1981); (c) Bianchet et al. (2000); (d) Imberty et al. (1991); (e) Smith et al. (2005); (f) Hirotsu & Shimada (1974); (g) Lakshmanan et al. (2001).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.83 (5) 2.28 (6) 3.075 (6) 163 (9)
O2—H2⋯O10 0.80 (5) 1.98 (6) 2.743 (7) 159 (8)
O3—H3⋯Cl1i 0.82 (5) 2.31 (6) 3.130 (7) 172 (9)
O6—H6⋯O9ii 0.82 (5) 1.84 (6) 2.654 (8) 171 (9)
O7—H7⋯O2iii 0.81 (5) 1.92 (6) 2.697 (8) 158 (9)
O8—H8⋯Cl1iv 0.78 (5) 2.32 (6) 3.080 (5) 166 (8)
O9—H9⋯O6v 0.83 (5) 1.88 (5) 2.707 (8) 178 (9)
N1—H1A⋯O1W 0.90 (4) 1.96 (5) 2.819 (9) 159 (7)
N1—H1B⋯O7vi 0.90 (4) 2.26 (7) 2.862 (8) 124 (6)
N1—H1B⋯O8vi 0.90 (4) 2.16 (6) 2.922 (8) 142 (7)
N1—H1C⋯O1 0.91 (4) 2.34 (8) 2.787 (9) 110 (6)
N1—H1C⋯O1W vii 0.91 (4) 2.35 (6) 3.162 (11) 149 (7)
O1W—H1WA⋯O3viii 0.90 (6) 1.85 (7) 2.746 (8) 170 (10)
O1W—H1WB⋯Cl1ix 0.89 (6) 2.50 (7) 3.335 (7) 156 (9)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic ; (vii) Inline graphic ; (viii) Inline graphic ; (ix) Inline graphic .

Table 3. Additional D—H⋯A contacts (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.80 (7) 2.64 (8) 2.964 (8) 106 (6)
N1—H1B⋯O2 0.90 (6) 2.55 (7) 2.855 (9) 101 (5)
O7—H7⋯O6 0.81 (8) 2.63 (8) 2.847 (8) 97 (8)
C2—H2A⋯O1i 0.98 2.34 3.199 (10) 146
C9—H9A⋯O8i 0.98 2.58 3.309 (9) 132
C10—H10⋯Cl1ii 0.98 2.82 3.741 (9) 157

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y, z − 1.

The mol­ecular packing of (I) features an extensive inter­molecular hydrogen-bonding network (Table 2), which propagates in all directions (Fig. 2). The ammonium groups, chloride ions, and water mol­ecules serve as the hydrogen-bonding network ‘hubs’, each being in short, H-mediated, contact with four or five heteroatoms. For the ammonium group, these are O1, O7, O8, and two different O1W; the chloride ions are in contact with O1, O3, O8, and O1W; the water mol­ecules are involved in the network by serving as both donors (to Cl1 and O3) and acceptors (to two different H1A—N1—H1C groups) of strong hydrogen bonding (Table 2). In this way, each mol­ecule of lactosamine is surrounded by four hydrogen-bonded mol­ecules of lactosamine, three water mol­ecules, and three chloride ions (Fig. 3); each water mol­ecule coordinates three lactosamines and one chloride (Fig. 4); every chloride is hydrogen-bonded to three lactosamines and one water as well (Fig. 2).

Figure 2.

Figure 2

The mol­ecular packing in (I) as viewed along the c axis. Hydrogen bonds are shown as cyan dotted lines.

Figure 3.

Figure 3

Hydrogen-bonded lactosamine mol­ecular ions, chloride ions, and water mol­ecules surrounding the central lactosamine mol­ecular ion in the crystal structure of (I).

Figure 4.

Figure 4

Hydrogen-bonded coordination sphere around the water mol­ecule in the crystal structure of (I)

Synthesis and crystallization

The synthesis of (I) was performed following a Heyns rearrangement protocol described previously by Wrodnigg & Stütz (1999). A mixture of 34.2 g (100 mmoles) of d-lactulose and 75 ml (700 mmoles) of benzyl­amine was stirred for 18 h in a screw-capped glass flask at 318 K. The reaction progress was followed by TLC. The excess of benzyl­amine was removed by four successive extractions with benzene (2 L total), the residue was dissolved in 500 ml MeOH containing 20 ml of glacial acetic acid and left for 18 h at room temperature. The reaction mixture was then hydrogenated in the presence of 2.0 g of 10% Pd/C and 5 ml of 80% formic acid, until the reaction was judged complete by TLC. After filtration, the solvents were removed under reduced pressure, a syrupy residue was dissolved in 1.5 L of water and passed through a column charged with 250 ml of ion-exchange resin Amberlite IRN-77 (H+-form). The column was washed with water and eluted with 0.2 M ammonium acetate. The eluate fractions containing lactosamine were pooled, evaporated to a syrup, re-dissolved in 0.5 L of water and passed through a column filled with 1L of Amberlite IRN-78 (Cl). The eluate fractions containing (I) were pooled, evaporated to a syrup, and the syrup was kept at 277 K to produce crystalline material suitable for the X-ray diffraction studies.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. The Flack absolute structure parameter determined [0.02 (11) for 729 quotients (Parsons et al., 2013)] is consistent with the (3S,4R,5R,7S,8R,9S,10S,11R) configuration, which was assigned for this system on the basis of the known configuration for the starting material d-lactulose (McNaught, 1996). Data were collected out to 0.80 Å; however, because of the small size of the crystal, most of the high-angle diffraction peaks are effectively indistinguishable from the noise. The inclusion of this high-angle data results in a high value for R int, and the precision of the bond distances is low (ca 0.01 Å) because most of the high-angle data are not usable for refinement.

Table 4. Experimental details.

Crystal data
Chemical formula C12H24NO10 +·Cl·H2O
M r 395.79
Crystal system, space group Monoclinic, P21
Temperature (K) 273
a, b, c (Å) 4.785 (4), 13.523 (11), 13.254 (11)
β (°) 93.940 (9)
V3) 855.5 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.08 × 0.05 × 0.01
 
Data collection
Diffractometer Bruker APEXII area detector
Absorption correction Multi-scan (AXScale; Bruker, 2016)
T min, T max 0.483, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11475, 3787, 2216
R int 0.133
(sin θ/λ)max−1) 0.643
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.066, 0.131, 1.01
No. of reflections 3787
No. of parameters 262
No. of restraints 26
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.37
Absolute structure Flack x determined using 729 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.02 (11)

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXS (Sheldrick, 2008), SHELXL2017/1 (Sheldrick, 2015), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462200061X/gg4007sup1.cif

x-07-x220061-sup1.cif (352.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462200061X/gg4007Isup2.hkl

x-07-x220061-Isup2.hkl (301.9KB, hkl)

CCDC reference: 2119923

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C12H24NO10+·Cl·H2O F(000) = 420
Mr = 395.79 Dx = 1.536 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 4.785 (4) Å Cell parameters from 1276 reflections
b = 13.523 (11) Å θ = 3.0–20.6°
c = 13.254 (11) Å µ = 0.28 mm1
β = 93.940 (9)° T = 273 K
V = 855.5 (12) Å3 Plate, colourless
Z = 2 0.08 × 0.05 × 0.01 mm

Data collection

Bruker APEXII area detector diffractometer 2216 reflections with I > 2σ(I)
Radiation source: Sealed Source Mo with TRIUMPH optics Rint = 0.133
ω and phi scans θmax = 27.2°, θmin = 1.5°
Absorption correction: multi-scan (AXScale; Bruker, 2016) h = −6→6
Tmin = 0.483, Tmax = 0.746 k = −17→17
11475 measured reflections l = −17→16
3787 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0475P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3787 reflections Δρmax = 0.44 e Å3
262 parameters Δρmin = −0.37 e Å3
26 restraints Absolute structure: Flack x determined using 729 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.02 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydroxy and nitrogen-bound H atoms were located in difference-Fourier analyses and were allowed to refine fully. Other H atoms were placed at calculated positions and treated as riding. All chemically equivalent N—H and O—H bond distances were restrained to be equal within 0.05 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.3280 (4) 0.75359 (14) 0.61589 (14) 0.0286 (5)
O1 −0.1394 (11) 0.7867 (4) 0.4014 (4) 0.0272 (13)
H1 −0.195 (16) 0.765 (7) 0.455 (5) 0.041*
O1W 0.6240 (15) 1.0329 (4) 0.4269 (5) 0.0462 (19)
H1WA 0.71 (2) 1.021 (8) 0.488 (6) 0.069*
H1WB 0.58 (2) 1.096 (5) 0.433 (8) 0.069*
O2 0.2355 (12) 0.8551 (4) 0.1351 (4) 0.0260 (14)
H2 0.186 (17) 0.830 (6) 0.082 (5) 0.039*
O3 0.1487 (12) 0.4761 (4) 0.3861 (4) 0.0341 (14)
H3 0.18 (2) 0.416 (4) 0.387 (7) 0.051*
O4 0.2482 (10) 0.6815 (4) 0.3919 (4) 0.0253 (13)
O5 0.1019 (10) 0.6413 (4) 0.1208 (4) 0.0223 (12)
O6 0.3161 (10) 0.4684 (4) 0.0307 (4) 0.0263 (12)
H6 0.175 (14) 0.446 (6) 0.055 (6) 0.039*
O7 0.3237 (11) 0.4742 (4) −0.1838 (4) 0.0266 (13)
H7 0.431 (16) 0.434 (5) −0.157 (6) 0.040*
O8 −0.0409 (10) 0.6292 (4) −0.2120 (4) 0.0229 (12)
H8 −0.091 (17) 0.658 (6) −0.261 (5) 0.034*
O9 0.1635 (11) 0.9157 (4) −0.1046 (4) 0.0255 (13)
H9 0.321 (13) 0.933 (6) −0.082 (6) 0.038*
O10 0.1420 (10) 0.7280 (3) −0.0250 (4) 0.0226 (13)
N1 0.1495 (15) 0.9460 (5) 0.3249 (5) 0.0267 (17)
H1A 0.270 (14) 0.978 (6) 0.369 (5) 0.040*
H1B 0.104 (16) 0.980 (6) 0.268 (4) 0.040*
H1C −0.023 (11) 0.946 (6) 0.350 (6) 0.040*
C1 0.1489 (16) 0.7791 (5) 0.4024 (6) 0.0250 (18)
H1D 0.231817 0.807016 0.465797 0.030*
C2 0.2409 (16) 0.8418 (5) 0.3134 (6) 0.0227 (18)
H2A 0.445983 0.840893 0.315433 0.027*
C3 0.1292 (16) 0.7968 (5) 0.2135 (6) 0.0228 (18)
H3A −0.076034 0.799022 0.208350 0.027*
C4 0.2270 (15) 0.6906 (6) 0.2095 (6) 0.0224 (18)
H4 0.431371 0.689282 0.207687 0.027*
C5 0.1419 (16) 0.6315 (6) 0.3013 (5) 0.0226 (17)
H5 −0.062765 0.627481 0.300031 0.027*
C6 0.2641 (17) 0.5292 (6) 0.3051 (6) 0.030 (2)
H6A 0.219239 0.495436 0.241483 0.036*
H6B 0.466372 0.532736 0.316291 0.036*
C7 0.2534 (15) 0.6458 (6) 0.0341 (5) 0.0222 (17)
H7A 0.453220 0.655704 0.052771 0.027*
C8 0.2081 (16) 0.5518 (5) −0.0258 (6) 0.0217 (17)
H8A 0.007235 0.542472 −0.042707 0.026*
C9 0.3596 (16) 0.5604 (5) −0.1230 (5) 0.0204 (17)
H9A 0.559991 0.570369 −0.105595 0.024*
C10 0.2464 (15) 0.6483 (6) −0.1834 (6) 0.0213 (17)
H10 0.350340 0.656234 −0.244111 0.026*
C11 0.2853 (15) 0.7402 (6) −0.1168 (5) 0.0220 (17)
H11 0.485554 0.750477 −0.099407 0.026*
C12 0.1643 (16) 0.8313 (5) −0.1692 (6) 0.0241 (18)
H12A 0.272384 0.846504 −0.226525 0.029*
H12B −0.026310 0.817433 −0.194879 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0323 (11) 0.0230 (11) 0.0302 (10) −0.0014 (9) −0.0006 (8) 0.0045 (10)
O1 0.027 (3) 0.023 (3) 0.032 (4) 0.002 (2) 0.004 (3) 0.004 (3)
O1W 0.075 (5) 0.027 (4) 0.034 (4) −0.003 (3) −0.012 (3) −0.002 (3)
O2 0.035 (3) 0.021 (3) 0.022 (3) −0.010 (2) −0.001 (3) 0.001 (2)
O3 0.056 (4) 0.016 (3) 0.030 (3) −0.003 (3) 0.004 (3) 0.007 (3)
O4 0.033 (3) 0.017 (3) 0.026 (3) −0.002 (2) −0.001 (3) 0.000 (2)
O5 0.027 (3) 0.021 (3) 0.020 (3) −0.005 (2) 0.002 (2) 0.001 (2)
O6 0.025 (3) 0.021 (3) 0.033 (3) 0.001 (3) 0.005 (2) 0.006 (3)
O7 0.032 (3) 0.016 (3) 0.031 (3) 0.005 (2) −0.001 (2) −0.001 (3)
O8 0.025 (3) 0.019 (3) 0.024 (3) −0.001 (2) −0.001 (2) 0.004 (2)
O9 0.026 (3) 0.019 (3) 0.032 (3) 0.000 (2) 0.001 (3) −0.003 (3)
O10 0.024 (3) 0.017 (3) 0.026 (3) 0.003 (2) 0.003 (2) 0.003 (2)
N1 0.035 (4) 0.021 (4) 0.023 (4) −0.005 (3) −0.006 (3) 0.004 (3)
C1 0.030 (5) 0.018 (4) 0.026 (4) −0.002 (3) −0.001 (3) 0.003 (3)
C2 0.025 (4) 0.016 (4) 0.026 (5) −0.003 (3) −0.001 (4) 0.004 (3)
C3 0.023 (4) 0.021 (4) 0.024 (4) −0.002 (3) 0.002 (3) 0.008 (3)
C4 0.020 (4) 0.019 (4) 0.029 (5) −0.004 (3) 0.000 (3) 0.000 (4)
C5 0.029 (4) 0.016 (4) 0.023 (4) −0.009 (3) −0.001 (3) 0.002 (3)
C6 0.037 (5) 0.023 (5) 0.028 (5) −0.003 (4) 0.000 (4) 0.003 (4)
C7 0.023 (4) 0.021 (4) 0.023 (4) 0.001 (3) 0.002 (3) 0.004 (4)
C8 0.024 (4) 0.015 (4) 0.026 (5) 0.003 (3) −0.002 (3) 0.005 (3)
C9 0.021 (4) 0.016 (4) 0.024 (4) 0.002 (3) 0.002 (3) −0.001 (4)
C10 0.020 (4) 0.019 (4) 0.025 (4) −0.002 (3) 0.004 (3) 0.003 (3)
C11 0.021 (4) 0.020 (4) 0.027 (4) −0.001 (3) 0.007 (3) −0.002 (4)
C12 0.026 (4) 0.014 (4) 0.032 (5) 0.001 (3) 0.004 (4) 0.000 (4)

Geometric parameters (Å, º)

O1—C1 1.382 (9) N1—H1C 0.91 (4)
O1—H1 0.83 (5) C1—C2 1.541 (10)
O1W—H1WA 0.90 (6) C1—H1D 0.9800
O1W—H1WB 0.89 (6) C2—C3 1.521 (10)
O2—C3 1.426 (9) C2—H2A 0.9800
O2—H2 0.80 (5) C3—C4 1.512 (10)
O3—C6 1.434 (10) C3—H3A 0.9800
O3—H3 0.82 (5) C4—C5 1.533 (10)
O4—C1 1.414 (9) C4—H4 0.9800
O4—C5 1.440 (8) C5—C6 1.502 (11)
O5—C7 1.402 (9) C5—H5 0.9800
O5—C4 1.445 (9) C6—H6A 0.9700
O6—C8 1.431 (9) C6—H6B 0.9700
O6—H6 0.82 (5) C7—C8 1.507 (10)
O7—C9 1.420 (9) C7—H7A 0.9800
O7—H7 0.81 (5) C8—C9 1.526 (10)
O8—C10 1.424 (9) C8—H8A 0.9800
O8—H8 0.78 (5) C9—C10 1.513 (10)
O9—C12 1.426 (9) C9—H9A 0.9800
O9—H9 0.83 (5) C10—C11 1.528 (10)
O10—C7 1.441 (8) C10—H10 0.9800
O10—C11 1.447 (8) C11—C12 1.510 (10)
N1—C2 1.486 (10) C11—H11 0.9800
N1—H1A 0.90 (4) C12—H12A 0.9700
N1—H1B 0.90 (4) C12—H12B 0.9700
C1—O1—H1 110 (6) C6—C5—H5 109.6
H1WA—O1W—H1WB 101 (9) C4—C5—H5 109.6
C3—O2—H2 108 (6) O3—C6—C5 108.5 (7)
C6—O3—H3 115 (7) O3—C6—H6A 110.0
C1—O4—C5 114.7 (5) C5—C6—H6A 110.0
C7—O5—C4 116.0 (5) O3—C6—H6B 110.0
C8—O6—H6 102 (6) C5—C6—H6B 110.0
C9—O7—H7 105 (6) H6A—C6—H6B 108.4
C10—O8—H8 112 (6) O5—C7—O10 106.7 (5)
C12—O9—H9 114 (6) O5—C7—C8 109.3 (6)
C7—O10—C11 111.5 (5) O10—C7—C8 109.3 (5)
C2—N1—H1A 110 (5) O5—C7—H7A 110.5
C2—N1—H1B 117 (5) O10—C7—H7A 110.5
H1A—N1—H1B 114 (7) C8—C7—H7A 110.5
C2—N1—H1C 109 (6) O6—C8—C7 110.8 (6)
H1A—N1—H1C 109 (8) O6—C8—C9 109.1 (6)
H1B—N1—H1C 97 (7) C7—C8—C9 108.7 (6)
O1—C1—O4 114.2 (6) O6—C8—H8A 109.4
O1—C1—C2 106.8 (6) C7—C8—H8A 109.4
O4—C1—C2 108.8 (6) C9—C8—H8A 109.4
O1—C1—H1D 109.0 O7—C9—C10 108.6 (6)
O4—C1—H1D 109.0 O7—C9—C8 111.8 (6)
C2—C1—H1D 109.0 C10—C9—C8 109.5 (6)
N1—C2—C3 112.4 (6) O7—C9—H9A 109.0
N1—C2—C1 109.9 (6) C10—C9—H9A 109.0
C3—C2—C1 110.2 (6) C8—C9—H9A 109.0
N1—C2—H2A 108.1 O8—C10—C9 107.6 (6)
C3—C2—H2A 108.1 O8—C10—C11 112.3 (6)
C1—C2—H2A 108.1 C9—C10—C11 107.9 (6)
O2—C3—C4 111.9 (7) O8—C10—H10 109.7
O2—C3—C2 106.9 (6) C9—C10—H10 109.7
C4—C3—C2 108.6 (6) C11—C10—H10 109.7
O2—C3—H3A 109.8 O10—C11—C12 106.9 (6)
C4—C3—H3A 109.8 O10—C11—C10 110.3 (6)
C2—C3—H3A 109.8 C12—C11—C10 111.7 (6)
O5—C4—C3 110.8 (6) O10—C11—H11 109.3
O5—C4—C5 106.7 (6) C12—C11—H11 109.3
C3—C4—C5 111.6 (6) C10—C11—H11 109.3
O5—C4—H4 109.3 O9—C12—C11 113.2 (6)
C3—C4—H4 109.3 O9—C12—H12A 108.9
C5—C4—H4 109.3 C11—C12—H12A 108.9
O4—C5—C6 106.8 (6) O9—C12—H12B 108.9
O4—C5—C4 108.6 (6) C11—C12—H12B 108.9
C6—C5—C4 112.5 (7) H12A—C12—H12B 107.7
O4—C5—H5 109.6

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···Cl1 0.83 (5) 2.28 (6) 3.075 (6) 163 (9)
O2—H2···O10 0.80 (5) 1.98 (6) 2.743 (7) 159 (8)
O3—H3···Cl1i 0.82 (5) 2.31 (6) 3.130 (7) 172 (9)
O6—H6···O9ii 0.82 (5) 1.84 (6) 2.654 (8) 171 (9)
O7—H7···O2iii 0.81 (5) 1.92 (6) 2.697 (8) 158 (9)
O8—H8···Cl1iv 0.78 (5) 2.32 (6) 3.080 (5) 166 (8)
O9—H9···O6v 0.83 (5) 1.88 (5) 2.707 (8) 178 (9)
N1—H1A···O1W 0.90 (4) 1.96 (5) 2.819 (9) 159 (7)
N1—H1B···O7vi 0.90 (4) 2.26 (7) 2.862 (8) 124 (6)
N1—H1B···O8vi 0.90 (4) 2.16 (6) 2.922 (8) 142 (7)
N1—H1C···O1 0.91 (4) 2.34 (8) 2.787 (9) 110 (6)
N1—H1C···O1Wvii 0.91 (4) 2.35 (6) 3.162 (11) 149 (7)
O1W—H1WA···O3viii 0.90 (6) 1.85 (7) 2.746 (8) 170 (10)
O1W—H1WB···Cl1ix 0.89 (6) 2.50 (7) 3.335 (7) 156 (9)

Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x, y−1/2, −z; (iii) −x+1, y−1/2, −z; (iv) x, y, z−1; (v) −x+1, y+1/2, −z; (vi) −x, y+1/2, −z; (vii) x−1, y, z; (viii) −x+1, y+1/2, −z+1; (ix) −x, y+1/2, −z+1.

Funding Statement

Funding for this research was provided by: University of Missouri, Agriculture Experiment Station Chemical Laboratories; National Institute of Food and Agriculture (grant No. Hatch 1023929).

References

  1. Acarin, L., Vela, J. M., González, B. & Castellano, B. (1994). J. Histochem. Cytochem. 42, 1033–1041. [DOI] [PubMed]
  2. Bianchet, M. A., Ahmed, H., Vasta, G. R. & Amzel, L. M. (2000). Proteins, 40, 378–388. [DOI] [PubMed]
  3. Boscher, C., Dennis, J. W. & Nabi, I. R. (2011). Curr. Opin. Cell Biol. 23, 383–392. [DOI] [PubMed]
  4. Bruker (2016). APEX, SAINT and AXScale. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dekany, G., Ágoston, K., Bajza, I., Bøjstrup, M., Pérez, I. F., Kröger, L. & Röhrig, C. H. (2014). US Patent 8,796,434.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Glinskii, O. V., Sud, S., Mossine, V. V., Mawhinney, T. P., Anthony, D. C., Glinsky, G. V., Pienta, K. J. & Glinsky, V. V. (2012). Neoplasia, 14, 65–73. [DOI] [PMC free article] [PubMed]
  8. Guardia, C. M. A., Gauto, D. F., Di Lella, S., Rabinovich, G. A., Martí, M. A. & Estrin, D. A. (2011). J. Chem. Inf. Model. 51, 1918–1930. [DOI] [PubMed]
  9. Hirotsu, K. & Shimada, A. (1974). Bull. Chem. Soc. Jpn, 47, 1872–1879.
  10. Imberty, A., Delage, M. M., Bourne, Y., Cambillau, C. & Perez, S. (1991). Glycoconjugate J. 8, 456–483. [DOI] [PubMed]
  11. Kulinich, A. & Liu, L. (2016). Carbohydr. Res. 432, 62–70. [DOI] [PubMed]
  12. Lakshmanan, T., Sriram, D. & Loganathan, D. (2001). Acta Cryst. C57, 825–826. [DOI] [PubMed]
  13. Longchambon, F., Ohanessian, J., Gillier-Pandraud, H., Duchet, D., Jacquinet, J.-C. & Sinaÿ, P. (1981). Acta Cryst. B37, 601–607.
  14. McNaught, A. D. (1996). Pure Appl. Chem. 68, 1919–2008.
  15. Mossine, V. V., Byrne, T. S., Barnes, C. L. & Mawhinney, T. P. (2018). J. Carbohydr. Chem. 37, 153–162.
  16. Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2008). In Galectins, edited by A. A. Klyosov, D. Platt & Z. J. Witczak, pp. 235-270. John Wiley & Sons.
  17. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  18. Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S. H. & Rini, J. M. (1998). J. Biol. Chem. 273, 13047–13052. [DOI] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Smith, J. H., Dann, S. E., Elsegood, M. R. J., Dale, S. H. & Blatchford, C. G. (2005). Acta Cryst. E61, o2499–o2501.
  22. Wrodnigg, T. M. & Stütz, A. E. (1999). Angew. Chem. Int. Ed. 38, 827–828. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462200061X/gg4007sup1.cif

x-07-x220061-sup1.cif (352.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462200061X/gg4007Isup2.hkl

x-07-x220061-Isup2.hkl (301.9KB, hkl)

CCDC reference: 2119923

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES