Skip to main content
IUCrData logoLink to IUCrData
. 2022 Jan 14;7(Pt 1):x220046. doi: 10.1107/S2414314622000463

Bis­(di­methylamine-κN)bis[4-(1,2,4-triazol-1-yl)benzoato-κO]copper(II)

Lin Liu a, Zheng-Bo Han a,*
Editor: M Weilb
PMCID: PMC9028552  PMID: 36337093

A three-dimensional supermolecule based on 4-(1,2,4-triazol-1-yl)benzoic acid was prepared under solvothermal conditions. In the crystal, inter­molecular N—H⋯N hydrogen bonds between the amine function and the central N atom of the triazole ring lead to the formation of ribbons parallel to [1 Inline graphic 1].

Keywords: crystal structure, coordination polymer, hydrogen bond

Abstract

In the title compound, [Cu(C9H6N3O2)2(C2H7N)2], the Cu2+ cation is situated on an inversion center and is coordinated by the N atoms of two di­methyl­amine ligands and the carboxyl­ate O atoms of two 4-(1,2,4-triazol-1-yl)benzoate anions, leading to a slightly distorted square-planar N2O2 coordination environment. In the crystal, inter­molecular N—H⋯N hydrogen bonds between the amine function and the central N atom of the triazole ring lead to the formation of ribbons parallel to [1 Inline graphic 1]. Weak inter­molecular C—H⋯O hydrogen-bonding inter­actions are also observed that consolidate the crystal packing. graphic file with name x-07-x220046-scheme1-3D1.jpg

Structure description

The rational design of coordination polymers is based on the combination of metal ions and versatile organic ligands, resulting in various supra­molecular assemblies. The resulting crystal structures determine the potential applications of the coordination polymers. Different polymers based on 4-(1,2,4-triazol-1-yl)benzoic acid complexes have been reported (Du et al., 2014). They not only feature structural varieties, but also can be applied in gas storage (Wang et al., 2012). In this context we have investigated crystals formed from a copper(II) solution and 4-(1,2,4-triazol-1-yl)benzoic acid under solvothermal conditions.

As shown in Fig. 1, the asymmetric unit of the title compound comprises one CuII atom, one 4-(1,2,4-triazol-1-yl)benzoate ligand, and one di­methyl­amine mol­ecule generated in situ from the decomposition of the solvent dimethyl formamide. The complete mol­ecule is generated by inversion symmetry. The CuII atom has a distorted square-planar coordination environment, being coordinated by two symmetry-related benzoato O atoms [Cu—O1 = 1.9611 (14) Å] and two symmetry-related N atoms [Cu—N4 = 2.0096 (19) Å of the amine ligands. The second carboxyl­ate O atom of the anion seems to be too far away [Cu—O2 = 2.80136 (19) Å] to contribute to a significant bonding. Nevertheless, the non-bonding O2 atom is involved as an acceptor in weak C—H⋯O hydrogen-bonding inter­actions (Table 1, Fig. 2). Stronger N—H⋯N hydrogen bonds between the amine NH group and the central N atom of the triazole ring are also observed.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (A) −x + 2, −y, −z + 1.]

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N3i 0.91 2.17 3.034 (3) 160
C9—H9A⋯O2ii 0.93 2.50 3.428 (3) 173

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 2.

Figure 2

The crystal packing of the complex mol­ecules. Hydrogen-bonding inter­actions are shown as dashed lines.

Synthesis and crystallization

A mixture of Cu(NO3)2·3H2O (0.0725 mg, 0.3 mmol), 4-(1,2,4-triazol-1-yl)benzoic acid (0.057 g, 0.3 mmol), di­methyl­formamide (5 ml), ethanol (5 ml) and water (5 ml) was placed in a Teflon reactor with a 23 ml capacity, which was heated at 433 K for 3 days and then cooled to room temperature at a rate of 10 K h−1. Blue block-shaped crystals of the title compound were obtained in 52% yield after being washed with di­methyl­formamide and dried in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Cu(C9H6N3O2)2(C2H7N)2]
M r 530.06
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 6.3657 (5), 8.1428 (7), 12.1896 (11)
α, β, γ (°) 72.595 (2), 89.376 (2), 87.805 (2)
V3) 602.47 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.95
Crystal size (mm) 0.36 × 0.32 × 0.27
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2002)
T min, T max 0.727, 0.785
No. of measured, independent and observed [I > 2σ(I)] reflections 3971, 2727, 2345
R int 0.017
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.093, 1.03
No. of reflections 2727
No. of parameters 160
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.20

Computer programs: SMART and SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL (Sheldrick, 2015), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622000463/wm4159sup1.cif

x-07-x220046-sup1.cif (134.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622000463/wm4159Isup2.hkl

x-07-x220046-Isup2.hkl (218.1KB, hkl)

CCDC reference: 2141669

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Cu(C9H6N3O2)2(C2H7N)2] Z = 1
Mr = 530.06 F(000) = 275
Triclinic, P1 Dx = 1.461 Mg m3
a = 6.3657 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.1428 (7) Å Cell parameters from 1477 reflections
c = 12.1896 (11) Å θ = 2.6–26.4°
α = 72.595 (2)° µ = 0.95 mm1
β = 89.376 (2)° T = 293 K
γ = 87.805 (2)° Block, blue
V = 602.47 (9) Å3 0.36 × 0.32 × 0.27 mm

Data collection

Bruker SMART CCD diffractometer 2727 independent reflections
Radiation source: fine-focus sealed tube 2345 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1 Rint = 0.017
ω scan θmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −8→8
Tmin = 0.727, Tmax = 0.785 k = −10→10
3971 measured reflections l = −10→15

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1332P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2727 reflections Δρmax = 0.28 e Å3
160 parameters Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.000000 0.000000 0.500000 0.03668 (13)
O1 0.8278 (3) 0.19597 (19) 0.40688 (13) 0.0456 (4)
N4 0.8929 (3) −0.1440 (2) 0.40592 (16) 0.0478 (5)
H4 0.834029 −0.069234 0.342060 0.072*
O2 1.0899 (3) 0.2218 (2) 0.28158 (16) 0.0564 (5)
N3 0.3345 (3) 0.9752 (2) −0.18059 (16) 0.0470 (5)
C8 0.1967 (4) 0.9638 (3) −0.0944 (2) 0.0475 (5)
H8A 0.069359 1.026329 −0.105518 0.057*
N1 0.4455 (3) 0.7973 (2) −0.01740 (15) 0.0357 (4)
C1 0.9149 (3) 0.2671 (3) 0.31047 (18) 0.0397 (5)
C2 0.7914 (3) 0.4135 (2) 0.22845 (17) 0.0347 (4)
C3 0.8841 (3) 0.5111 (3) 0.1285 (2) 0.0443 (5)
H3A 1.024977 0.489576 0.114867 0.053*
C4 0.7728 (3) 0.6395 (3) 0.0487 (2) 0.0462 (5)
H4A 0.838250 0.704495 −0.017864 0.055*
C5 0.5630 (3) 0.6712 (2) 0.06815 (17) 0.0332 (4)
C6 0.4692 (3) 0.5793 (3) 0.16901 (19) 0.0429 (5)
H6A 0.329651 0.603747 0.183663 0.052*
C7 0.5831 (3) 0.4506 (3) 0.24845 (18) 0.0438 (5)
H7A 0.518902 0.388216 0.316208 0.053*
C9 0.4888 (4) 0.8692 (3) −0.12927 (18) 0.0437 (5)
H9A 0.611277 0.846901 −0.165463 0.052*
N2 0.2529 (3) 0.8588 (2) 0.00657 (16) 0.0467 (5)
C11 1.0630 (5) −0.2323 (4) 0.3597 (3) 0.0766 (9)
H11A 1.164757 −0.150450 0.321505 0.115*
H11B 1.129585 −0.320275 0.421504 0.115*
H11C 1.005285 −0.283743 0.305845 0.115*
C10 0.7338 (6) −0.2657 (4) 0.4651 (3) 0.0853 (10)
H10A 0.624985 −0.205376 0.494376 0.128*
H10B 0.674023 −0.317305 0.411925 0.128*
H10C 0.798323 −0.353837 0.527585 0.128*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0456 (2) 0.0340 (2) 0.02439 (18) 0.00871 (14) −0.00500 (14) −0.00062 (13)
O1 0.0569 (9) 0.0417 (8) 0.0312 (7) 0.0137 (7) −0.0080 (7) −0.0019 (6)
N4 0.0643 (12) 0.0411 (10) 0.0328 (9) 0.0055 (9) −0.0129 (9) −0.0034 (8)
O2 0.0430 (9) 0.0580 (10) 0.0580 (11) 0.0168 (8) −0.0055 (8) −0.0038 (8)
N3 0.0571 (11) 0.0418 (10) 0.0366 (10) 0.0088 (8) −0.0123 (9) −0.0043 (8)
C8 0.0512 (13) 0.0448 (12) 0.0427 (12) 0.0162 (10) −0.0140 (10) −0.0089 (10)
N1 0.0387 (9) 0.0317 (8) 0.0330 (8) 0.0042 (7) −0.0060 (7) −0.0045 (7)
C1 0.0453 (12) 0.0350 (10) 0.0360 (11) 0.0061 (9) −0.0121 (9) −0.0069 (8)
C2 0.0388 (10) 0.0325 (9) 0.0305 (10) 0.0036 (8) −0.0075 (8) −0.0060 (8)
C3 0.0333 (10) 0.0467 (12) 0.0446 (12) 0.0055 (9) −0.0017 (9) −0.0018 (10)
C4 0.0398 (11) 0.0451 (12) 0.0412 (12) 0.0019 (9) 0.0036 (9) 0.0055 (9)
C5 0.0365 (10) 0.0288 (9) 0.0315 (10) 0.0025 (8) −0.0064 (8) −0.0051 (7)
C6 0.0350 (10) 0.0496 (12) 0.0366 (11) 0.0087 (9) 0.0009 (9) −0.0027 (9)
C7 0.0449 (12) 0.0460 (12) 0.0311 (10) 0.0067 (9) 0.0029 (9) 0.0017 (9)
C9 0.0482 (12) 0.0427 (11) 0.0349 (11) 0.0050 (9) −0.0043 (9) −0.0040 (9)
N2 0.0425 (10) 0.0498 (11) 0.0407 (10) 0.0145 (8) −0.0048 (8) −0.0049 (8)
C11 0.100 (2) 0.0749 (19) 0.0628 (18) 0.0288 (17) −0.0177 (17) −0.0357 (16)
C10 0.103 (3) 0.082 (2) 0.065 (2) −0.0332 (19) −0.0135 (18) −0.0088 (17)

Geometric parameters (Å, º)

Cu1—O1 1.9611 (14) C2—C3 1.380 (3)
Cu1—O1i 1.9612 (14) C2—C7 1.384 (3)
Cu1—N4 2.0096 (19) C3—C4 1.375 (3)
Cu1—N4i 2.0096 (19) C3—H3A 0.9300
O1—C1 1.276 (3) C4—C5 1.382 (3)
N4—C10 1.470 (4) C4—H4A 0.9300
N4—C11 1.475 (4) C5—C6 1.377 (3)
N4—H4 0.9071 C6—C7 1.382 (3)
O2—C1 1.240 (3) C6—H6A 0.9300
N3—C9 1.314 (3) C7—H7A 0.9300
N3—C8 1.345 (3) C9—H9A 0.9300
C8—N2 1.315 (3) C11—H11A 0.9600
C8—H8A 0.9300 C11—H11B 0.9600
N1—C9 1.343 (3) C11—H11C 0.9600
N1—N2 1.368 (2) C10—H10A 0.9600
N1—C5 1.421 (2) C10—H10B 0.9600
C1—C2 1.507 (3) C10—H10C 0.9600
O1—Cu1—O1i 180.00 (8) C3—C4—C5 119.5 (2)
O1—Cu1—N4 89.16 (7) C3—C4—H4A 120.2
O1i—Cu1—N4 90.84 (7) C5—C4—H4A 120.2
O1—Cu1—N4i 90.84 (7) C6—C5—C4 119.96 (18)
O1i—Cu1—N4i 89.16 (7) C6—C5—N1 120.69 (18)
N4—Cu1—N4i 180.00 (7) C4—C5—N1 119.34 (18)
C1—O1—Cu1 111.32 (13) C5—C6—C7 119.81 (19)
C10—N4—C11 111.0 (2) C5—C6—H6A 120.1
C10—N4—Cu1 113.77 (18) C7—C6—H6A 120.1
C11—N4—Cu1 112.97 (17) C6—C7—C2 120.9 (2)
C10—N4—H4 108.7 C6—C7—H7A 119.6
C11—N4—H4 103.5 C2—C7—H7A 119.6
Cu1—N4—H4 106.2 N3—C9—N1 110.8 (2)
C9—N3—C8 102.46 (18) N3—C9—H9A 124.6
N2—C8—N3 116.0 (2) N1—C9—H9A 124.6
N2—C8—H8A 122.0 C8—N2—N1 101.72 (18)
N3—C8—H8A 122.0 N4—C11—H11A 109.5
C9—N1—N2 109.03 (17) N4—C11—H11B 109.5
C9—N1—C5 129.63 (18) H11A—C11—H11B 109.5
N2—N1—C5 121.27 (17) N4—C11—H11C 109.5
O2—C1—O1 124.09 (19) H11A—C11—H11C 109.5
O2—C1—C2 119.7 (2) H11B—C11—H11C 109.5
O1—C1—C2 116.21 (18) N4—C10—H10A 109.5
C3—C2—C7 118.30 (18) N4—C10—H10B 109.5
C3—C2—C1 119.88 (19) H10A—C10—H10B 109.5
C7—C2—C1 121.79 (19) N4—C10—H10C 109.5
C4—C3—C2 121.5 (2) H10A—C10—H10C 109.5
C4—C3—H3A 119.3 H10B—C10—H10C 109.5
C2—C3—H3A 119.3
C9—N3—C8—N2 −0.1 (3) C9—N1—C5—C4 17.1 (3)
Cu1—O1—C1—O2 −2.6 (3) N2—N1—C5—C4 −166.2 (2)
Cu1—O1—C1—C2 176.67 (13) C4—C5—C6—C7 −2.7 (3)
O2—C1—C2—C3 −8.7 (3) N1—C5—C6—C7 176.47 (19)
O1—C1—C2—C3 172.0 (2) C5—C6—C7—C2 0.5 (4)
O2—C1—C2—C7 169.3 (2) C3—C2—C7—C6 1.6 (3)
O1—C1—C2—C7 −10.0 (3) C1—C2—C7—C6 −176.4 (2)
C7—C2—C3—C4 −1.6 (4) C8—N3—C9—N1 0.0 (3)
C1—C2—C3—C4 176.4 (2) N2—N1—C9—N3 0.0 (3)
C2—C3—C4—C5 −0.5 (4) C5—N1—C9—N3 177.02 (19)
C3—C4—C5—C6 2.7 (3) N3—C8—N2—N1 0.1 (3)
C3—C4—C5—N1 −176.5 (2) C9—N1—N2—C8 0.0 (2)
C9—N1—C5—C6 −162.0 (2) C5—N1—N2—C8 −177.35 (18)
N2—N1—C5—C6 14.7 (3)

Symmetry code: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4···N3ii 0.91 2.17 3.034 (3) 160
C9—H9A···O2iii 0.93 2.50 3.428 (3) 173

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x+2, −y+1, −z.

Funding Statement

Funding for this research was provided by: Scientific Research Foundation of the Education Department of Liaoning Province (grant No. LJC202004).

References

  1. Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Du, M., Li, C.-P., Chen, M., Ge, Z.-W., Wang, X., Wang, L. & Liu, C.-S. (2014). J. Am. Chem. Soc. 136, 10906–10909. [DOI] [PubMed]
  3. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  6. Wang, Y.-L., Fu, J.-H., Wei, J.-J., Xu, X., Li, X.-F. & Liu, Q.-Y. (2012). Cryst. Growth Des. 12, 4663–4668.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314622000463/wm4159sup1.cif

x-07-x220046-sup1.cif (134.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314622000463/wm4159Isup2.hkl

x-07-x220046-Isup2.hkl (218.1KB, hkl)

CCDC reference: 2141669

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES