Skip to main content
. 2022 Mar 31;12(4):312. doi: 10.3390/metabo12040312

Table 4.

The table shows the prediction of stroke by using AI.

SN Citations IC DS GT FE TOC ML vs. DL ACC % AUC
1 Soun et al. [194] (2021) LBBM (CT) 209 Stroke NN AlexNet DL 96.09 0.96
2 Reva et al. [195] (2021) OBBM, LBBM 200 Stroke, CT NB DT, RF, SVM ML 85.32 NR
3 Murray et al. [9] (2020) OBBM, LBBM 341 LVO, Stroke RF CNN HDL 85.00 NR
4 Mouridsen et al. [196] (2020) OBBM, LBBM, CUSIP 16 Stroke, MRI NR CNN DL 74.00 0.74
5 Yu et al. [147] (2020) OBBM, LBBM (EMG) 287 Stroke, EMG SVM RF, LSTM ML 98.33 0.98
6 Ain et al. [197] (2020) OBBM, LBBM 130 Stroke, non-stroke NB NB ML 84.00 NR
7 Badriyah et al. [198] (2020) OBBM (CT) 29 Stroke NB DT, RF, SVM HDL 94.30 NR

SN: serial number, IC: input covariates, DS: data size, GT: Gground truth, OBBM: office-based biomarker, LBBM: laboratory based biomarkers, FE: feature extraction, TOC: type of classifier, ACC: percentage accuracy, CT: computer tomography, EMG: electromyography, MRI: magnetic resonance imagining, NR: not reported.