Skip to main content
Conservation Physiology logoLink to Conservation Physiology
. 2022 Apr 6;10(1):coac018. doi: 10.1093/conphys/coac018

A meta-analysis of impacts of immune response and infection on oxidative status in vertebrates

David Costantini 1,
Editor: Steven Cooke
PMCID: PMC9040321  PMID: 35492421

Abstract

Inferring from patterns observed in biomedical research, ecoimmunological theory predicts that oxidative stress is a ubiquitous physiological cost that contributes to generating variation in immune function between individuals or species. This prediction is, however, often challenged by empirical studies testing the relationship between immune response or infection and oxidative status markers. This points out the importance of combining ecological immunology and oxidative stress ecology to further our understanding of the proximate causes and fitness consequences of individual variation in health, and adaptability to natural and anthropogenic environmental changes. I reviewed evidence and performed phylogenetic meta-analyses of changes in oxidative status markers owing to either injection of an antigen or infection in captive and free-living vertebrates (141 studies, 1262 effect sizes, 97 species). The dataset was dominated by studies on fish, birds and mammals, which provided 95.8% of effect sizes. Both antigen injection and parasite exposure were associated with changes of oxidative status. There were significant effects of taxonomic class and experimental environment (captivity vs. wild). In contrast with my predictions, age category (young vs. adult), study design (correlational vs. experimental) and proxies of pace of life (clutch size, litter size, and body mass; for birds and mammals only) were negligible in this dataset. Several methodological aspects (type of immunostimulant, laboratory assay, tissue analysed) showed significant effects on both strength and direction of effect. My results suggest that alterations of oxidative status are a widespread consequence of immune function across vertebrates. However, this work also identified heterogeneity in strength and direction of effect sizes, which suggests that immune function does not necessarily result in oxidative stress. Finally, this work identifies methodological caveats that might be relevant for the interpretation and comparability of results and for the application in conservation programs.

Keywords: wildlife diseases, oxidative stress, life-history trade-offs, inflammation, ecoimmunology, antioxidant

Introduction

Immunological function plays a crucial role in the maintenance of physiological homeostasis of living organisms, recognizing and protecting against infectious agents. Parasites and pathogens can have detrimental effects on survival and Darwinian fitness in animals. Infections are often associated with reductions in host energetic stores, harm to tissues, changes in behaviour, or impaired reproduction (e.g. Moore, 2002; Graham et al., 2011; Watson, 2013; Asghar et al., 2015; Sánchez et al., 2018). Consequently, while individuals with well-functioning immune responses should be maintained by natural selection, poorly functioning ones should be counterselected. Thus, why is there large variation among individuals in immunological function? One answer to this question might lie with the factors that shape immune function, and the costs and benefits of an immune reaction, which in turn influence host–parasite relationships, disease outcomes and success of conservation actions (Mangalmurti and Hunter, 2020; Martin et al., 2011; Ohmer et al., 2021; Sheldon and Verhulst, 1996; Sorci et al., 2013; Sorci et al., 2017). For example, several authors proposed that physiological costs associated with an immune response might favour the maintenance of immunological variation because these costs are likely to vary with individual condition, environment, sex, age and high diversity of pathogens the hosts are exposed to (e.g. Klasing, 2004; Maizels and Nussey, 2013; Martin et al., 2008; Seppälä and Jokela, 2010; Sheldon and Verhulst, 1996).

Immune responses require various kinds of resources, which can lead to trade-offs with other physiological processes. Estimated energetic costs (percentage of increment in resting metabolic rate as compared to controls) of mounting an immune response during vaccination or sepsis may vary from 10% to 57% in humans or laboratory rodents (Lochmiller and Deerenberg, 2000). In birds, resting metabolic rates of several species increased from 5% to 15% following activation of humoral and cell-mediated immunities (Hasselquist and Nilsson, 2012). Apart from the dietary energy supply, nutritional modulation of the immune system is also reliant on the typology of micronutrients and macronutrients that are available. Growing evidence suggests that shortage of certain nutrients may impair immune functions, including reduced resistance to infections (e.g. Calder and Jackson, 2000; Gombart et al., 2020; Maggini et al., 2018; Wu et al., 2019).

Immune responses can also have other physiological effects. A hypothesis of immune-oxidative ecology states that perturbations of cellular oxidative status following an immune response might be costly for the organism (reviewed in Costantini, 2014). These perturbations, generally referred to as oxidative stress, may manifest as oxidative damage to biomolecules, oxidation of the key cellular antioxidant glutathione or changes in concentrations of antioxidant enzymes. It is increasingly recognized that oxidative stress might affect the risk of chronic diseases, cell senescence, fertility or longevity (reviewed in Costantini, 2014, 2019). Several lines of evidence provide strong support for a mechanistic link between immune response (including inflammation) and oxidative stress (Sorci and Faivre, 2009). For example, immune cells produce pro-oxidant chemicals (oxidative burst) to kill invading microorganisms (Sorci and Faivre, 2009). Pathogens with impaired antioxidant defences are more sensitive to phagocytic killing mediated by reactive oxygen species, supporting a role for pro-oxidant chemicals as microbicidal agents in living organisms (Halliwell and Gutteridge, 2015). Also, studies on knock-out mice (lacking a functional NADPH phagocyte oxidase or iNOS) suggested that individuals incapable of producing pro-oxidants are susceptible to severe bacterial or fungal infections (e.g. Mastroeni et al., 2000; Nathan and Shiloh, 2000). Beyond oxidative burst, immune response also raises oxygen consumption of cells (Hasselquist and Nilsson, 2012; Lochmiller and Deerenberg, 2000), which in turn might contribute to an increase in the generation of pro-oxidants.

Pro-oxidants produced by immune cells do not specifically target pathogens, so that they can also cause oxidative modifications to biomolecules (e.g. lipids, proteins, DNA), resulting in mutation, inflammation and tissue injury (Sorci and Faivre, 2009). Immune cells can themselves be damaged by their own pro-oxidants. For example, neutrophils with impaired glutathione reductase activity are more rapidly inactivated during phagocytosis than normal neutrophils (Halliwell and Gutteridge, 2015). Thus, hosts may experience trade-offs resulting from altered investment in immune function in relation to the need of regulating their oxidative status. However, empirical studies show that relationships between oxidative status markers, immunological reactions or infections can vary in strength and direction. For example, studies on bats and birds show large within- and among-species variation in the effects of immune response on oxidative status (e.g. Costantini and Møller, 2009; Cram et al., 2015; Fritze et al., 2019; Norte et al., 2018; Schneeberger et al., 2013; Sepp et al., 2012).

In this article, I reviewed evidence and used a phylogenetic meta-analytical approach to evaluate strength and direction of changes in oxidative status markers following immune response owing to antigen injection (any substance that is capable of stimulating an immune response; https://www.britannica.com/science/antigen) or exposure (natural or experimentally induced) to live parasites in vertebrates. I included free-living and captive populations for comparison to gain insight into what extent environmental variation in available resources can affect the physiological consequences of immune response. I expected that effect sizes would be larger for free-living animals than for captive animals because free-living animals might not readily recover from the costs of an immune response owing to stronger resource-based trade-offs. I also compared young (i.e. individuals sampled before sexual maturity) and adult individuals; I expected young individuals to suffer more oxidative stress than adults because they have immature antioxidant mechanisms (e.g. Fontagné et al., 2008; Surai, 2002). I also tested the effects of methodological aspects of study designs on effect sizes to assess the degree to which we need to refine our methods to improve interpretability and comparability of results. Finally, I tested the relationships between effect sizes and traits related to the pace of life in birds and in mammals, such as clutch size, litter size and body mass (e.g. Grainger and Levine, 2021; Sepp et al., 2018). I expected that species with faster paces of life would experience higher costs of immune response because of their higher metabolism and stronger investment in reproduction, which would come at a cost of antioxidant protection.

Materials and methods

Literature search

I performed a literature search (Supplementary Fig. S1) in the Web of Science All Databases for studies published between January 1950 and March 2021 about changes of oxidative status markers in relation to (i) injection of antigens, (ii) experimentally induced infections with live parasites (e.g. injection of a pathogen into the peritoneum) and (iii) comparisons between naturally infected and non-infected individuals in both captive and wild vertebrates, with the exclusion of laboratory mice or highly domesticated taxa because artificial selection might generate phenotypic responses that are not comparable to those observed in wild animals. Relying on the keywords used for the search on online databases, additional searches were carried out through the screening of cited literature in the selected articles from which data were taken. Finally, I have also consulted Google Scholar and PubMed, but I could not find any additional articles. As keywords, I used the following terms: ((immu* OR pathog* OR infect* OR parasit*) AND (antiox* OR oxida*) NOT (clinic* OR hospital OR mouse OR chicken OR human OR industry OR plant* OR agric* OR rat OR patient OR crab OR shrimp OR in vivo OR cell culture OR in vitro OR mutant)). The search was refined by selecting the following categories in WoS, which enabled me to collect only papers that fell into one of these categories: ecology or veterinary sciences or fisheries or marine freshwater biology or evolutionary biology or parasitology or behavioural sciences or environmental sciences or zoology or ornithology or biodiversity conservation. After the completion of this search, I screened all papers applying these following exclusion criteria: (i) studies that measured only the expression of antioxidant genes because I was interested in the biochemical outcomes, such as oxidation products or concentration of given antioxidants, which provide a more direct representation of cellular oxidative status; (ii) studies that only quantified the free radical generation because assays are not specific for a given free radical nor do they allow to infer about oxidative damage (e.g. Jaguezeski et al., 2020; Tobler et al., 2011); and (iii) studies that were not carried out on vertebrates.

I categorized oxidative status markers as follows: (i) oxidation [e.g. protein carbonyls, dROMs (reactive oxygen metabolites), MDA (malondialdehyde), TBARS (thiobarbituric acid reactive substances), GSSG (oxidized glutathione)]; (ii) non-enzymatic antioxidants [e.g. GSH (reduced glutathione), total thiols, assays of antioxidant capacity (OXY)]; and (iii) antioxidant enzymes [e.g. CAT (catalase), GST (glutathione-S-transferase), GPx (glutathione peroxidase), SOD (superoxide dismutase), GR (glutathione reductase)]. I also categorized the oxidative status markers by the typology of laboratory assay used (e.g. TBARS, MDA by HPLC, d-ROMs, KRL, GSH) and by tissue (e.g. blood, brain, liver, muscle; Supplementary Table S1). From each paper, I also extracted information about age category of experimental animals, which included young (before sexual maturity) and adult individuals, species, experimental environment (captivity vs. wild), type of parasite (e.g. worm, virus; Supplementary Table S2), type of antigen injection (e.g. LPS, PHA) and time elapsed from antigen injection or parasite exposure to final tissue sampling. Information on sex was available for a small number of studies, so that it could not be considered in subsequent analyses. I used all these metrics as moderators in the models.

Calculation of effect sizes

I used the compute.es package (del Re, 2013) in R version 4.0.5 to calculate the standardized effect size Hedges’ g and its sampling variance from descriptive statistics (means and standard deviations) and sample sizes or test statistics (e.g. t-values or F ratios). If data were not reported in the text or tables, I extracted them from graphs using the software GetData Graph Digitizer (Fedorov, 2014). When extraction of data was not possible, I contacted first and/or last authors. I made requests for 44 articles; only 7 did not respond, and their articles were excluded from the work. In total, I extracted 1262 effect sizes, of which 1209 were derived from descriptive statistics.

In the statistical analyses, as dependent variables, I used the unsigned and the signed effect sizes in separate models, respectively. Unsigned effect sizes indicate the strength of the difference in a given marker between groups (i.e. the magnitude of the effect). However, unsigned effect sizes do not provide information on the direction of the change, e.g. if oxidative damage increased or decreased in immune-challenged individuals. This is relevant information to make inferences about oxidative stress. Thus, I also used signed effect sizes. To do so, effect sizes were given a (i) positive value when either oxidative damage was higher or a given antioxidant was lower in immunostimulated or infected animals than in control animals and (ii) a negative value when either oxidative damage was lower or a given antioxidant was higher in immunostimulated or infected animals than in control animals. A positive effect size would imply higher biochemical oxidative stress (for a similar approach, see Costantini and Møller, 2009).

Phylogenetic meta-analyses

Analyses were carried out following Nakagawa and Cuthill (2007), Hadfield (2010), Nakagawa and Santos (2012), Garamszegi (2014) and Nakagawa et al. (2022). Note that, as the distribution of unsigned effect sizes is a folded normal distribution (Morryssey, 2016a, 2016b), I did not derive effect sizes because, while contrasts between estimates are reliable because they are placed on the same scale, magnitudes can be inflated. Moreover, for the goals of this work, signed effect sizes were granted as more relevant for ecological and conservation sciences.

First, I ran a phylogenetic meta-analysis in R using the package MCMCglmm to calculate the meta-analytical mean for signed effect sizes for the whole dataset. I also included the sampling variance associated with each effect size inserting the mev argument of the MCMCglmm package. To account for pseudo-replication, I included multiple random factors: species (non-independence of multiple effect sizes obtained from the same species), phylogenetic relatedness, article (non-independence of effect sizes from the same study), tissue where a given marker was analysed (variation in tissues analysed across studies), laboratory assay (variation in assays performed across studies) and type of immunostimulant (injection of an antigen or exposure to a given parasite). The phylogeny used to compute a phylogenetic covariance matrix was obtained from http://www.timetree.org. Eight species were replaced with closely related species in order to build the tree; the exclusion of these species did not affect outcomes (Supplementary Table S4), so that they were retained in the final models. The phylogenetic signal was calculated as lambda (λ) using the package phytools.

Then, I conducted two phylogenetic meta-analyses on the full dataset including the unsigned and the signed effect sizes as response variables, separately. In both models, I included the taxonomic class, the experimental environment (captivity or wild), the age category (young, adult or mix for studies that used a pool of young and adults), the marker category (oxidation, antioxidant enzyme or non-enzymatic antioxidant) and the study design (experimental or non-experimental) as fixed explanatory variables (termed moderators in meta-analysis). Note that studies carried out on captive and wild animals included both non-experimental (correlative) and experimental studies. I also included the sampling variance associated with each effect size using the mev argument. As random factors, I included the same factors as those used to calculate the meta-analytical means.

In a second set of analyses, I focussed on the effects of methodological approaches, which vary largely among studies. I ran meta-analyses on sub-sets of data including the following factors: hours elapsed from immunostimulation to final sampling (included as a covariate) and the random factors (species + phylogeny + article + tissue + assay + type of immunostimulant); hours elapsed from the start of infection to final sampling (included as a covariate) and the random factors (species + phylogeny + article + tissue + assay + type of immunostimulant); type of immunostimulant as fixed factor for the categories with sample sizes >40 and the random factors (species + phylogeny + article + tissue + assay); laboratory assay of oxidative status marker as fixed factor for the categories with sample sizes >40 and the random factors (species + phylogeny + article + tissue + type of immunostimulant); and tissue analysed as fixed factor for the categories with sample sizes >40 and the random factors (species + phylogeny + article + assay + type of immunostimulant). In each of these additional meta-analyses, I always included the sampling variance associated with each effect size using the mev argument.

Finally, I ran two separate meta-analyses for birds and mammals, respectively, to test the effects of proxies of pace of life (clutch size for birds and litter size for mammals; body mass for both birds and mammals; data obtained from https://worldspecies.org/). In each of these two models, I included the experimental environment, the age, the marker and the study design as additional fixed factors, and the sampling variance associated with each effect size using the mev argument. As random factors, I included species, article, laboratory assay, tissue, type of immunostimulant and phylogeny.

I ran all the Markov chain Monte Carlo models for 150 000 iterations, with sampling every 50 iterations with the first 50 000 removed as burn-in (e.g. Sanders, Frago et al., 2021). Then I tested the autocorrelation using the function autocorr.diag: lag values were always <0.1, indicating that autocorrelation between subsequent iterations was negligible. Convergence of the chains was also inspected visually to ensure that there were no trends in the chain and that posterior distributions were not skewed (for full datasets, see Supplementary Figs S2 and S3). Since I did not have any a priori knowledge on the distribution of data, I used flat priors: V = 1 and nu = 0.002. To assess the influence of the informativeness of the priors (nu) on the models, I repeated the analyses with different priors, with no detectable effect on the results. I reported significance as the pMCMC. Effect sizes were considered to be small when g = 0.2 (1% of the variance explained by a factor with a g value of 0.2), intermediate when g = 0.5 (9% of the variance explained by a factor with a g value of 0.5) or large when g = 0.8 (25% of the variance explained by a factor with a g value of 0.8) as described by Cohen (1988) and Møller and Jennions (2002).

Publication bias was assessed by examining funnel plots of effect sizes against the log10 of sample sizes for the full dataset (Møller and Jennions, 2001) and by performing full multi-level meta-regressions including log10 of sample sizes and the effective sample size as described by Nakagawa et al. (2022), respectively. In so doing, the publication bias test is conditioned on all the various sources affecting heterogeneity (i.e. fixed effects and random effects included in the model for the full dataset). Additionally, I tested for the presence of a time trend in signed effect sizes by fitting a continuous year variable in an MCMC model that included the taxonomic class, the experimental environment, the age category, the marker and the study design as fixed explanatory variables; species + phylogeny + article + tissue + assay + type of immunostimulant as random effects; and the sampling variance associated with each effect size using the mev argument.

Results

Dataset description

My final dataset included 141 studies that involved 1262 effect sizes from 97 species (Table 1): 4 amphibians (44 effect sizes), 34 birds (253 effect sizes), 33 fish (790 effect sizes), 22 mammals (166 effect sizes) and 4 reptiles (9 effect sizes). There were 803 and 459 effect sizes from captivity and wild studies, respectively; 766 and 496 from experimental and non-experimental studies, respectively; 631, 247 and 384 from enzymatic antioxidants, non-enzymatic antioxidants and oxidation markers, respectively; 490, 503 and 269 from studies using adults, young and both adults and young (mix), respectively. The time elapsed from the injection of an antigen to final sampling varied from 6 to 1440 hours and was available for 49 studies; the time elapsed from the start of infection to final sampling varied from 6 to 7392 hours and was available for 78 studies.

Table 1.

List of 97 species and 141 articles included in the meta-analysis

Taxonomic class Species Article
Amphibians Amietophrynus regularis Akinsanya et al., 2020
Amphibians Elachistocleis bicolor Ghirardi et al., 2020
Amphibians Lithobates pipiens Marcogliese et al., 2021
Amphibians Physalaemus albonotatus Ghirardi et al., 2018
Birds Accipiter gentilis Hanssen et al., 2013
Birds Acrocephalus sechellensis van de Crommenacker et al., 2012
Birds Agelaius phoeniceus Schoenle et al., 2017
Birds Alectoris rufa Perez-Rodriguez et al., 2008; Mougeot et al., 2009
Birds Arachnothera longirostra Messina et al., 2022
Birds Carduelis chloris Hõrak et al. 2006, 2007; Sepp et al., 2012; Pap et al., 2014
Birds Colinus virginianus Baylor and Butler, 2019; Armour et al., 2020
Birds Columba livia Razavi et al., 2016
Birds Diomedea exulans Costantini et al. 2015b
Birds Falco naumanni Rodríguez et al. 2014
Birds Falco tinnunculus Costantini and Dell’Omo 2006; Casagrande et al., unpublished results
Birds Ficedula hypoleuca López-Arrabé et al. 2015
Birds Fregata magnificens Sebastiano et al., 2017, 2018
Birds Geopelia cuneata Casagrande et al., 2012
Birds Haemorhous mexicanus Giraudeau et al., 2014; Zhang et al., 2021
Birds Haliaeetus albicilla Hanssen et al., 2013
Birds Lagopus lagopus Mougeot et al., 2010
Birds Malacocincla malaccensis Messina et al., 2022
Birds Malacocincla sepiaria Messina et al., 2022
Birds Malacopteron cinereum Messina et al., 2022
Birds Parus major Losdat et al., 2011; De Coster et al., 2012; Isaksson et al., 2013; Marri and Richner, 2015; Wegmann et al., 2015; Delhaye et al., 2016; De Angeli et al., 2017; Maronde et al., 2018
Birds Passer domesticus Pap et al., 2011; Broggi et al., 2016
Birds Perdix perdix Vitula et al., 2011
Birds Phasianus colchicus Orledge et al., 2012
Birds Plocepasser mahali Cram et al., 2015
Birds Serinus canaria Delhaye et al., 2018
Birds Stachyris poliocephala Messina et al., 2022
Birds Sturnus vulgaris Serra et al., 2012; Costantini et al. 2015a
Birds Sula nebouxii Torres and Velando, 2007
Birds Taeniopygia guttata Alonso-Alvarez et al., 2004; Bertrand et al., 2006; Casasole et al., 2016
Birds Trichastoma bicolor Messina et al., 2022
Birds Tricholestes criniger Messina et al., 2022
Birds Turdus merula Hau et al., 2015; Norte et al., 2018
Birds Zenaida macroura Sweazea et al., 2015
Fish Anguilla anguilla Schneebauer et al., 2016
Fish Argyrosomus regius Peixoto et al., 2017
Fish Astyanax aeneus Espinal-Carrion and López-Lopez 2010
Fish Carassius gibelio Xu et al., 2020
Fish Channa argus Li et al., 2020; Zhu et al., 2020
Fish Clarias gariepinus Adeyemi, 2014
Fish Ctenopharyngodon idella Kim, Ke, and Zhang, 2009; Baldissera et al., 2019; Zhao et al., 2019
Fish Cyprinus carpio Dautremepuits et al., 2003; Chen et al., 2020; Giri et al., 2020; Sun et al., 2020
Fish Gasterosteus aculeatus Le Guernic et al., 2016
Fish Gobio occitaniae Petitjean et al., 2021a,b
Fish Labeo rohita Roy et al., 2019; Harikrishnan et al., 2020; Pal et al. 2020
Fish Lutjanus peru Guzmán-Villanueva et al., 2014
Fish Megalobrama amblycephala Abasubong et al., 2018; Geng et al., 2019
Fish Merlangius merlangus Skuratovskaya et al., 2015
Fish Misgurnus anguillicaudatus Yun et al., 2019
Fish Oncorhynchus mykiss Tkachenko et al., 2016; Azimzadeh and Amniattalab, 2017; Şahan et al. 2017
Fish Oreochromis niloticus Ali et al., 2011; Zahran and Risha, 2013; Zahran et al., 2018; Zahran et al., 2019; Abdelkhalek et al., 2020; El-Son et al., 2020; Ren et al., 2020
Fish Pangasianodon hypophthalmus Kumar et al., 2017
Fish Paralichthys olivaceus Kim et al., 2020
Fish Pelteobagrus fulvidraco Liu et al., 2020
Fish Perca flavescens Marcogliese et al., 2005; Marcogliese et al., 2010
Fish Pimephales promelas Stumbo et al., 2012
Fish Ponticola eurycephalus Skuratovskaya et al., 2020
Fish Rhamdia quelen Bello et al. 2000; Garcia et al., 2011; Tancredo et al., 2015; Baldissera et al., 2017; da Rosa et al., 2019
Fish Rutilus rutilus Jolly et al., 2014
Fish Salmo salar Du et al., 2015
Fish Salmo trutta Kurhalyuk et al., 2009; Tkachenko et al., 2014; Kurhalyuk and Tkachenko, 2011; Kurhalyuk et al., 2011; Hoogenboom et al., 2012; Stauffer et al., 2017; Tkachenko et al., 2011
Fish Scophthalmus maximus Rodríguez-Quiroga et al., 2017
Fish Seriola quinqueradiata Ito et al., 2000
Fish Siganus oramin Jiang et al., 2017
Fish Sparus aurata Balasch et al., 2019.
Fish Squalius cephalus Molbert et al., 2020
Fish Zosterisessor ophiocephalus Skuratovskaya et al., 2020
Mammals Bubalus bubalis Allaam et al., 2014
Mammals Camelus dromedarius Saleh et al., 2009; Heidarpour et al., 2012; Azma et al., 2015; Amin et al., 2020
Mammals Carollia perspicillata Schneeberger et al., 2013
Mammals Equus hemionus Costantini et al., 2018
Mammals Equus quagga Costantini et al., 2018
Mammals Macaca mulatta Srivastava et al., 1992
Mammals Mandrillus sphinx Charpentier et al., 2019
Mammals Meriones unguiculatus Dkhil et al., 2013; Tonin et al., 2014
Mammals Mesocricetus auratus Charoensuk et al., 2011; Sobroza et al., 2014
Mammals Microtus arvalis Devevey et al., 2010.
Mammals Myotis brandtii Lilley et al., 2014
Mammals Myotis daubentonii Lilley et al., 2014
Mammals Myotis lucifugus Moore et al., 2013
Mammals Myotis myotis Fritze et al., 2019, 2021
Mammals Myotis mystacinus Lilley et al., 2014
Mammals Myotis vivesi Hernández-Arciga et al., 2020
Mammals Octodon degus Ramirez-Otarola et al., 2019, 2021
Mammals Oryctolagus cuniculus Pacios-Palma et al., 2018
Mammals Pipistrellus nathusii Voigt et al., 2020.
Mammals Plecotus auritus Lilley et al., 2014
Mammals Sus scrofa Gassó et al., 2016
Mammals Urocitellus columbianus Roth et al., 2019
Reptiles Chelonia mydas da Silva et al., 2016
Reptiles Ctenophorus pictus Tobler et al., 2015
Reptiles Uta stansburiana Alaasam et al., 2021
Reptiles Thamnophis sirtalis Neuman-Lee et al., 2019

Results of full dataset

Meta-analytical mean of signed effect sizes was intermediate and the 95% CI included zero (0.567, −0.160/1.281, PMCMC = 0.099; Fig. 1). Unsigned effect sizes were significantly larger in studies on captive animals than in those on free-living animals and marginally smaller in birds than in fish or mammals (Supplementary Table S3). By contrast, age category, marker category or study design did not explain variation in effect sizes (Supplementary Table S3). The lambda phylogenetic signal was 0.0441 (posterior mode = 0.0015, HPD interval = 0.0001/0.2132). Signed effect sizes were significantly larger for oxidation markers than for enzymatic or non-enzymatic antioxidant markers (Fig. 1; Supplementary Table S3). Taxonomic class, age category, experimental environment and study design did not explain variation in effect sizes. The lambda phylogenetic signal was 0.1377 (posterior mode = 0.0019, HPD interval = 0.00005/0.4018). Results of models for both unsigned and signed effect sizes were unchanged if very large effect sizes (>10, n = 48) were removed from the models (Supplementary Table S5).

Figure 1.

Figure 1

Summary of the evidence for changes in oxidative status markers in individuals challenged with an immunostimulant (antigen or live parasite). Forest plots show predictions of models for the overall meta-analytical mean with 95% credible intervals and for the effects of moderators on this mean. Outcomes of contrasts between levels are shown as letters: shared letters (e.g. both levels with a) indicate that the two levels of a given moderator do not differ significantly. The dataset included 141 studies that involved 1262 effect sizes from 97 species.

Effect of sampling time

Models included 158 and 518 effect sizes for antigen type and for infection with a parasite, respectively. Results show that both unsigned and signed effect sizes were not related to the time elapsed from antigen injection to final sampling nor to the time elapsed since the start of the infection until the final sampling, with or without centering of the covariate (Supplementary Table S6).

Effects of immunostimulant type, laboratory assay and tissue

The most common types of immunostimulant in the dataset (with a number of effect sizes >40) were bacterial infection (428), fungal infection (102), LPS Escherichia coli injection (94), protozoan infection (180), viral infection (59) and worm infection (170), which represented altogether 81.9% of effect sizes. The model testing the effects of immunostimulant type (1033 effect sizes) shows that unsigned effect sizes were similar among these six types of immunostimulant, with the exception of LPS E. coli injection whose effect size was significantly larger than that of worm infection (Supplementary Table S7). Signed effect sizes of LPS E. coli injection and of fungal infection were the only types of immunostimulant to differ significantly from zero (Fig. 1; Supplementary Table S6). Effect sizes of LPS E. coli injection were significantly larger than bacterial infection and worm infection; effect sizes of fungal infection were significantly larger than bacterial infection (Supplementary Table S7).

The model testing the laboratory assay effect (1093 effect sizes) included 10 assays with a number of effect sizes >40, which represented altogether 86.6% of effect sizes: three assays of oxidative damage [dROMs (52), TBARS (218) and protein carbonyls (41)], two non-enzymatic antioxidants [OXY (49), GSH (102)] and five enzymatic antioxidants [SOD (189), GPx (99), catalase (177), GST (87) and GR (79)]. Effect size of (i) protein carbonyls was significantly larger than that of all other assays with the exceptions of GPx and GST, (ii) GST was significantly larger than that of SOD and of OXY and (iii) GPx was significantly larger than that of OXY, SOD and GR (Supplementary Table S8). Signed effect sizes were significantly different from zero for protein carbonyls and TBARS (Fig. 2; Supplementary Table S8). Effect size of (i) protein carbonyls was significantly larger than that of all other assays; (ii) TBARS was significantly larger than that of CAT, GPX, GSH, GST, OXY, SOD and GR; and (iii) GST was significantly smaller than that of CAT, dROMs, GPx, GSH and SOD (Supplementary Table S8).

Figure 2.

Figure 2

Summary of the evidence for effect of laboratory assay of oxidative status markers. Forest plot show predictions of models (mean with 95% credible intervals). Outcomes of contrasts between levels are shown as letters: shared letters (e.g. both levels with a) indicate that the two levels of a given moderator do not differ significantly.

Finally, the model testing the effect of tissue (1183 effect sizes) included blood (499), gills (120), gut (52), kidney (42), liver (294), muscle (132) and spleen (44), which were the most common tissues analysed, representing altogether 93.7% of effect sizes. Unsigned effect size of (i) gut was significantly larger than that of any other tissue, (ii) blood was significantly smaller than liver and muscle and (iii) kidney was significantly smaller than that of liver and muscle (Supplementary Table S9). Signed effect sizes were significantly different from zero for gut and muscle (Fig. 3; Supplementary Table S9). Effect size of (i) gut was significantly larger than that of gills and liver and (ii) muscle was significantly larger than that of blood, gills, liver and kidney (Fig. 3; Supplementary Table S9).

Figure 3.

Figure 3

Summary of the evidence for effect of tissue analysed. Forest plot show predictions of models (mean with 95% credible intervals). Outcomes of contrasts between levels are shown as letters: shared letters (e.g. both levels with a) indicate that the two levels of a given moderator do not differ significantly.

Pace of life

Models testing the effects of pace of life included 253 and 166 effect sizes for birds and mammals, respectively. Results showed that neither clutch size nor body mass were significantly related to both unsigned and signed effects sizes in birds (Supplementary Table S10). Similarly, in mammals, results showed that neither litter size nor body mass were significantly related to both unsigned and signed effect sizes (Supplementary Table S10).

Publication bias

The plot calculated on the full dataset appears in the shape of a ‘funnel’ (Supplementary Fig. S4). A meta-regression model showed that signed effect sizes were not related to the log10 of sample size (estimate/ci.lb/ci.ub: −0.169/−0.864/0.499, pMCMC = 0.623) nor to the effect sample size (estimate/ci.lb/ci.ub: 0.00002/−0.00483/0.00491). There was no time trend in effect sizes for both unsigned (publication year: postmean and 95% CI: −0.006, −0.047/0.036) and signed (publication year: postmean and 95% CI: −0.021, −0.080/0.031) effect sizes. These results are indicative of absence of publication bias.

Discussion

Inferring from the patterns observed in humans and laboratory rodents, ecoimmunology predicts that alterations of the cellular oxidative status are one relevant physiological cost of immune function that might impinge on fitness. The outcomes of these phylogenetic meta-analyses suggest that immune response owing to both antigen injection and exposure to a parasite cause change of oxidative status in vertebrates. These meta-analyses also show that there is substantial variation in the direction and strength of effects across studies. Thus, a change in oxidative status did not necessarily result in strong oxidative stress. These results were robust for variation among studies in laboratory assays used to assess the oxidative status, the tissue analysed or the type of immunostimulant, which were all controlled for in the models.

Immune response caused significant and strong changes of oxidative status markers across all five classes of vertebrates. The directionality of these changes was similar across vertebrates, but it was very variable within each class. These results suggest that immune response did not always necessarily result in increased oxidative damage or decreased antioxidant levels in any taxonomic class. My sample size was not, however, sufficiently high to draw robust conclusions about amphibians and reptiles. The dataset was actually dominated by studies on fish, birds and mammals, which provided 95.8% of effect sizes. This similarity in effect sizes among these three taxonomic classes suggests that endothermy or reproductive mode might not have a strong influence on general patterns of oxidative status variation in immune-challenged vertebrates. A recent meta-analysis found that relationships between infection and metrics of body condition (indicative of energetic status) were generally more strongly negative among endotherms than ectotherms, possibly because warm-blooded animals pay a metabolic cost of body temperature regulation and offer a constant endogenous environment that might favour parasite replication (Sánchez et al., 2018). By contrast, oxidative status might not be strongly linked to these metabolic costs because (i) immune function also affects oxidative status through pathways that are independent from energetic balance (e.g. oxidative burst in leukocytes; Sorci and Faivre, 2009) and (ii) increased metabolic demands caused by immune response do not induce proportional increases in generation of pro-oxidants (e.g. through the uncoupling between mitochondrial energy production and free radical generation; Herrero and Barja, 1997). Costs of immunity, however, can be highly variable depending on the type of infection and the tolerance/resistance of the infected species and show up in different ways (e.g. the emergence of immunopathologies). The results of my meta-analyses actually show heterogeneity in effect sizes, which might be due to some degree to this variation in costs among types of immunostimulant, masking any relationships between proxies of pace of life and effect sizes.

Contrary to my expectations, unsigned effect sizes were significantly larger in studies on captive animals than in those on free-living animals. This result does not confirm the preliminary observations from Costantini and Møller (2009) indicating that the oxidative status homeostasis of free-living birds might be less resistant or resilient to an immune challenge than that of captive birds. This greater sensitivity of captive animals might be attributable to a high investment of resources into the immune response. As compared to wild animals, laboratory animals are not subject to a full complement of natural and sexual selection pressures. For example, food is provided ad libitum and metabolic costs for foraging or mating are kept at minimum. Trade-offs would therefore be less stringent under the conditions of relaxed selection in captivity. As a consequence, captive animals might have invested more resources in the immune response, which came at a cost for the oxidative status homeostasis. On the other hand, captive animals might also experience different parasite loads or suboptimal conditions, such as space constraints that favour social stress, inadequate nutrient intakes and stressful abiotic conditions (e.g. temperature, humidity or light regimes), that might further impair physiological homeostasis. Also, captive and wild co-specific individuals might rely on different immune strategies that could generate heterogeneity in effect sizes. For example, Seeber et al. (2020) found that energetically cheap markers of constitutive innate immunity were lower in captive than in wild zebras, whereas energetically costly markers of the induced innate immunity were more highly expressed in captive zebras. Flies et al. (2015) show that wild hyenas have significantly higher serum antibody concentrations, natural antibodies and autoantibodies than do captive hyenas, but similar bacterial killing capacity of sera between captive and wild hyenas. Thus, captive animals might not be always adequate models to estimate the costs of immune function in wild animals.

This dataset included both correlational and experimental studies. A larger effect in correlational studies would indicate that co-variation between effect sizes and a given moderator might not be causal (e.g. Simons et al., 2012). This aspect of research design was negligible in this dataset. Effect sizes were indeed similar between experimental and correlational studies, indicating that differences in oxidative status between naturally infected and non-infected individuals in observational studies might reflect a cause-effect relationship. This result is not in line with a meta-analysis that found that relationships between infection and metrics of body condition were more strongly negative for experimental (e.g. parasite removal or manipulation of host nutritional state) than for observational studies (Sánchez et al., 2018). As discussed previously, alterations of oxidative status can also be induced by factors (e.g. oxidative burst) that operate independently from energetic status. Thus, relying on a single category of metrics to estimate costs of immune function might not be adequate for capturing the complexity of the multifaceted nature of these physiological effects.

The present meta-analyses also show that young and adult individuals have similar effect sizes. In vertebrates, individuals are born with the innate arm of the immune system, which matures and acquires memory with time, and then declines in old age (reviewed in Georgountzou and Papadopoulos, 2017). Similarly, levels of endogenous antioxidants are low in young and increase from birth to adulthood (e.g. Surai, 2002; Fontagné et al., 2008; reviewed in Costantini, 2014). This result suggests that maturations of immune function and of oxidative status might be synergistically co-programmed and canalized to some degree in order to balance costs and benefits. This comparison between young and adult individuals is, however, limited by the lack of control for individual age (e.g. middle-age adults vs. senescent adults) that might affect senescence of the immune function (Peters et al., 2019) or control of metabolic demands of growth in young individuals, which have a significant effect on oxidative stress (Smith et al., 2016).

This work also identifies methodological caveats that might be relevant for the interpretation and comparability of results. Both the time elapsed from (i) the injection of an antigen to final sampling and (ii) the start of infection with a living parasite to final sampling did not have a significant effect on effect sizes in the present dataset. By contrast, these meta-analyses detected significant effects of the type of immunostimulant, the laboratory assay of oxidative status and the tissue analysed. LPS E. coli injection and fungal infection generated strong effects as compared to other immunostimulants. It is becoming clear that parasites differ in their modes of interaction with the host immune defences, including oxidative burst and antioxidant levels (Paiva and Bozza, 2014). For example, different types of viruses sustain their replication cycle by promoting a pro-oxidant environment in the infected cell, actively interfering with its redox homeostasis and antioxidant defence systems (Camini et al., 2017). By contrast, parasites of the genus Leishmania may inhibit the production of pro-oxidants by phagocytes (Panaro et al., 1998), while helminths can release a number of metabolites with pro-oxidant properties that may result in mutagenic and carcinogenic effects (Brindley et al., 2015). Sampling design might also generate variation in effect sizes among types of immunostimulants. A total of 11 out of 16 LPS studies of which information on sampling was available collected samples for oxidative status analyses within 24 hours from antigen injection. This is because LPS studies aim to test acute inflammatory effects of innate immune response to a simulated bacterial infection. By contrast, sampling in studies that infected the animals experimentally with live parasites was carried out on average many days after parasite injection (e.g. 392 hours for bacterial infection; 1269 hours for worm infection). Thus, while LPS studies provide relevant information about acute effects, they might not be appropriate to infer adequately about long-term effects on oxidative status associated with prolonged infections. Hosts might also detoxify from parasites or start to tolerate them better and have a milder response because the parasite replication is dampened. Dose of antigen injected into the animal and parasite load might be two additional relevant factors that generate variation in effect sizes. I could not test for their effects because of the limited information available. Comparisons of groups of animals that were experimentally injected with different amounts of a given pathogen showed that oxidative damage is not always higher in those animals that were exposed to higher parasite concentrations, possibly because the amount injected weakly reflected the actual individual parasite load (e.g. Adeyemi, 2014; Armour et al., 2020; Sun et al., 2020). On the other hand, several studies suggested that the dose of antigen has an effect on the immune response (e.g. Fehr and Ochsenbein, 2004; Munang'andu et al., 2013; Rothoeft et al., 2003), and might also have a significant effect on the change of oxidative status (Armour et al., 2020).

Second, when investigating the effects of immune response or infection on oxidative status, I found that effect sizes for markers of oxidation were significantly larger than those of non-enzymatic antioxidant or enzymatic antioxidant markers. A closer investigation into the effect of each particular assay suggests that the choice of laboratory assay might affect results of an immunostimulation experiment. Two markers of oxidative damage (protein carbonyls and TBARS) showed a strong increase in immunostimulated individuals, indicating that they might be candidate tools to assess the physiological consequences of infections or the effects of pharmacological treatments on sick animals. By contrast, there was some variation in the direction of the response among non-enzymatic and enzymatic antioxidants. These results suggest that the antioxidant response to immunostimulation might not be easily predictable without consideration of factors that might affect it, such as the individual condition or quality, the phase of the immune response, life-history stage or the quality of diet (e.g. van de Crommenacker et al., 2012; Garcia et al., 2011; Zhao et al., 2019). For example, the up- or down-regulation of antioxidant enzymes might be regulated in such a manner in order to maintain an efficient immune response. The pro-oxidant hydrogen peroxide is produced by immune cells, and it can also be precursor of other compounds, such as the hypochlorous acid, which is a powerful antibacterial and antifungal pro-oxidant (Halliwell and Gutteridge, 2015; Winterbourn, 2002). Thus, a strict regulation of antioxidant enzymes, such as catalase or glutathione peroxidase that both remove hydrogen peroxide from tissues, might be important to not compromise the activity of immune cells in the initial stages of an immune response.

A third caveat of this study is that effect sizes differed among tissues, and the stronger effects were detected for gut and muscle. This result is not surprising because it is widely accepted that tissues differ in sensitivity to oxidative stress or antioxidant expression (Halliwell and Gutteridge, 2015). The adaptive meaning of this tissue effect is not understood yet. It might be that animals strategically displace oxidative costs on those tissues that have a lower impact on fitness under particular circumstances. This hypothesis has been proposed several times to explain why the effects of reproductive investment or of migratory status on the oxidative status vary among tissues (e.g. Marasco et al., 2021; Yang et al., 2013). This hypothesis has not received, however, any formal investigation so far.

Another caveat of this study is that individuals facing with an experimental immunostimulation or an infection might suppress other functions (e.g. metabolic rate, foraging activity or reproduction) that in turn affect the oxidative status, generating heterogeneity in strength and direction of effect sizes. For example, immune-challenged Egyptian fruit bats (Rousettus aegyptiacus) reduce significantly their foraging activity compared to control bats (Moreno et al., 2021). Finally, the similarity in effect sizes between correlational and experimental studies suggests that the pro-oxidants produced by parasites might have a small effect on the host oxidative status. This topic has, however, been poorly investigated so far.

Finally, this work also identified several gaps and needs in current literature. Firstly, more work is needed for amphibians and reptiles, which were very underrepresented. This is particularly relevant given the high vulnerability of these two taxa to emerging infectious diseases and their deteriorating conservation status (e.g. Ferguson et al., 2018; Price et al., 2014). Secondly, I could not test any effects of sex because most studies did not assess whether oxidative costs of immune response differ between females and males. This is unfortunate because there is variation in immune function and oxidative status, as well as life-history trade-offs between sexes (Costantini, 2018; Klein and Flanagan, 2016). Thirdly, we need more long-term longitudinal studies to identify mechanisms that determine the costs of chronic infections and of co-infections, the roles of resistance-tolerance mechanisms, the relevance of selective disappearance, and the seasonality in responses. Fourthly, we also need more experimental manipulations of key resources (e.g. food quality and quantity, competition, pollutant exposure) that might influence the relationship between immune function and oxidative status. Finally, developing models that account for effects of physiological costs on immunological performance might be interesting, illuminating and important for (i) understanding the persistence and spatial spread of infectious agents, and the host–pathogen coevolution and (ii) implementing effective conservation actions.

Conclusions

The findings of these phylogenetic meta-analyses show congruent patterns in the link between either immune response or infection status and oxidative status across taxonomic classes. These results were consistent across experimental and correlational studies indicating that results of observational studies might suggest cause-effect relationships between infection and oxidative status. In contrast to my predictions, effect sizes were significantly larger in studies on captive animals than in those on free-living animals. Also, contrary to my predictions, oxidative costs of immune response were similar between young and adult individuals and were not associated with the species’ pace of life. These meta-analyses also show that it is very important to take into careful consideration some methodological aspects of study designs because they might affect interpretation and comparability of results and help understanding the mechanisms underlying the impacts of the type of immunostimulant and of tissue on oxidative status.

In conclusion, the outcomes of these meta-analyses show that perturbations of oxidative status are one widespread physiological effect of immune function across vertebrates that should be considered carefully when addressing the causes and consequences of variation in immunological performance in animal populations of conservation concern. Understanding physiological impacts of pathogens on organisms will be critical to assessing individual health and maintaining viable captive and wild populations.

Data availability statement

The full dataset is provided as supplementary material.

Supplementary Material

Web_Material_coac018

Acknowledgements

I thank Michael Beaulieu, Sophie Bourgeon, Michael Butler, Marie Charpentier, Philippe Christe, Janske van de Crommenacker, Greet De Coster, Jessica Delhaye, Tapio Eeva, Samia Elbahnaswy, Michel Fournier, Susannah S. French, Marcus Fritze, Andrée Gendron, Sveinn Are Hanssen, Ulalume Hernández-Arciga, Junyan Jin, Jimena López-Arrabé, Sylvain Losdat, Han Liu, David Marcogliese, Juan Moreno, Lorin A. Neuman-Lee, Claudia Norte, Bernd Pelster, Quentin Petitjean, Jeffrey D. Roth, Diego Rubolini, Karin Schneeberger, Lorenzo Serra, José Luis Soengas, Halyna Tkachenko and Eman Zaharan El-Naggar for kindly providing information needed for the calculation of effect sizes; Jarrod Hadfield, László Zsolt Garamszegi and Simone Messina for kindly providing statistical advice; Gabor Czirjak for valuable suggestions on the interpretation of results; and three anonymous reviewers for their thoughtful inputs that help me to revise and improve the article.

References

  1. Abasubong  KP, Liu  WB, Zhang  DD, Yuan  XY, Xia  SL, Xu  C, Li  XF (2018) Fishmeal replacement by rice protein concentrate with xylooligosaccharides supplement benefits the growth performance, antioxidant capability and immune responses against Aeromonas hydrophila in blunt snout bream (Megalobrama amblycephala). Fish Shellfish Immunol  78: 177–186. [DOI] [PubMed] [Google Scholar]
  2. Abdelkhalek  NK, Risha  E, El-Adl  MA, Salama  MF, Dawood  MAO (2020) Antibacterial and antioxidant activity of clove oil against Streptococcus iniae infection in Nile tilapia (Oreochromis niloticus) and its effect on hepatic hepcidin expression. Fish Shellfish Immunol  104: 478–488. [DOI] [PubMed] [Google Scholar]
  3. Adeyemi  JA (2014) Oxidative stress and antioxidant enzymes activities in the african catfish, Clarias gariepinus, experimentally challenged with Escherichia coli and vibrio fischeri. Fish Physiol Biochem  40: 347–354. [DOI] [PubMed] [Google Scholar]
  4. Akinsanya  B, Isibor  PO, Onadeko  B, Tinuade  AA (2020) Impacts of trace metals on african common toad, Amietophrynus regularis (Reuss, 1833) and depuration effects of the toad's enteric parasite, Amplicaecum africanum (Taylor, 1924) sampled within Lagos Metropolis, Nigeria. Heliyon  6: e03570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alaasam  VJ, Keehn  JE, Durso  AM, French  SS, Feldman  CR (2021) Ectoparasite load is reduced in side-blotched lizards (Uta stansburiana) at wind farms: implications for oxidative stress. Physiol Biochem Zool  94: 35–49. [DOI] [PubMed] [Google Scholar]
  6. Ali  EH, Hashem  M, Al-Salahy  MB (2011) Pathogenicity and oxidative stress in Nile tilapia caused by Aphanomyces laevis and Phoma herbarum isolated from farmed fish. Diseas Aquat Organis  94: 17–28. [DOI] [PubMed] [Google Scholar]
  7. Allaam  MA, Allam  TS, Elkhatam  AO (2014) Biochemical and circulating oxidative stress biomarkers in egyptian buffaloes (Bubalus bubalis) infested by sarcoptic mange. Glob Vet  13: 656–661. [Google Scholar]
  8. Alonso-Alvarez  C, Bertrand  S, Devevey  G, Gaillard  M, Prost  J, Faivre  B, Sorci  G (2004) An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am Nat  164: 651–659. [DOI] [PubMed] [Google Scholar]
  9. Amin  YA, Noseer  EA, Fouad  SS, Ali  RA, Mahmoud  H (2020) Changes of reproductive indices of the testis due to Trypanosoma evansi infection in dromedary bulls (Camelus dromedarius): semen picture, hormonal profile, histopathology, oxidative parameters, and hematobiochemical profile. J Adv Vet Anim Res  7: 537–545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Armour  EM, Bruner  TL, Hines  JK, Butler  MW (2020) Low-dose immune challenges result in detectable levels of oxidative damage. J Exp Biol  223: jeb220095. [DOI] [PubMed] [Google Scholar]
  11. Asghar  M, Hasselquist  D, Zehtindjiev  P, Westerdahl  H, Bensch  S (2015) Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science  347: 436–438. [DOI] [PubMed] [Google Scholar]
  12. Azimzadeh  K, Amniattalab  A (2017) Total sialic acid, oxidative stress and histopathological changes in rainbow trout saprolegniasis (Oncorhynchus mykiss). Kafkas Universitesi Veteriner Fakultesi Dergisi  23: 55–62. [Google Scholar]
  13. Azma  F, Razavi  SM, Nazifi  S, Rakhshandehroo  E, Sanati  AR (2015) A study on the status of inflammatory systems in camels naturally infected with Toxoplasma gondii. Trop Anim Health Prod  47: 909–914. [DOI] [PubMed] [Google Scholar]
  14. Balasch  JC, Vargas  R, Brandts  I, Tvarijonaviciute  A, Reyes-López  F, Tort  L, Teles  M (2019) Divergent personalities influence the myogenic regulatory genes myostatin, myogenin and ghr2 transcript responses to vibrio anguillarum vaccination in fish fingerlings (Sparus aurata). Physiol Behav  212: 112697. [DOI] [PubMed] [Google Scholar]
  15. Baldissera  MD, Souza  CF, Moreira  KLS, da  Rocha  M, da  Veiga  ML, Baldisserotto  B (2017) Melaleuca alternifolia essential oil prevents oxidative stress and ameliorates the antioxidant system in the liver of silver catfish (Rhamdia quelen) naturally infected with Ichthyophthirius multifiliis. Aquaculture  480: 11–16. [Google Scholar]
  16. Baldissera  MD, Souza  CF, Descovi  SN, Verdi  CM, Zeppenfeld  CC, da  Silva  AS, Santos  RCV, Baldisserotto  B (2019) Grape pomace flour ameliorates Pseudomonas aeruginosa-induced bioenergetic dysfunction in gills of grass carp. Aquaculture  506: 359–366. [Google Scholar]
  17. Baylor  JL, Butler  MW (2019) Immune challenge-induced oxidative damage may be mitigated by biliverdin. J Exp Biol  222: jeb200055. [DOI] [PubMed] [Google Scholar]
  18. Bello  ARR, Fortes  E, Bello-Klein  A, Bello  AA, Llesuy  SF, Robaldo  RB, Bianchini  A (2000) Lipid peroxidation induced by Clinostomum detruncatum in muscle of the freshwater fish Rhamdia quelen. Dis Aquat Org  42: 233–236. [DOI] [PubMed] [Google Scholar]
  19. Bertrand  S, Criscuolo  F, Faivre  B, Sorci  G (2006) Immune activation increases susceptibility to oxidative tissue damage in zebra finches. Funct Ecol  20: 1022–1027. [Google Scholar]
  20. Brindley  PJ, da  Costa  JMC, Sripa  B (2015) Why does infection with some helminths cause cancer?  Trends Cancer  1: 174–182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Broggi  J, Soriguer  RC, Figuerola  J (2016) Transgenerational effects enhance specific immune response in a wild passerine. PeerJ  4: e1766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Calder  PC, Jackson  AA (2000) Undernutrition, infection and immune function. Nutr Res Rev  13: 3–29. [DOI] [PubMed] [Google Scholar]
  23. Camini  FC, da  Silva Caetano  CC, Almeida  LT, de  Brito Magalhães  CL (2017) Implications of oxidative stress on viral pathogenesis. Arch Virol  162: 907–917. [DOI] [PubMed] [Google Scholar]
  24. Casagrande  S, Costantini  D, Groothuis  TGG (2012) Interaction between sexual steroids and immune response in affecting oxidative status of birds. Comp Biochem Physiol Part A  163: 296–301. [DOI] [PubMed] [Google Scholar]
  25. Casasole  G, Costantini  D, Cichon  M, Rutkowska  J (2016) The effect of maternal immunization on female oxidative status, yolk antioxidants and offspring survival in a songbird. Comp Biochem Physiol Part A  194: 56–61. [DOI] [PubMed] [Google Scholar]
  26. Charoensuk  L, Pinlaor  P, Prakobwong  S, Hiraku  Y, Laothong  U, Ruangjirachuporn  W, Yongvanit  P, Pinlaor  S (2011) Curcumin induces a nuclear factor-erythroid 2-related factor 2-driven response against oxidative and nitrative stress after praziquantel treatment in liver fluke-infected hamsters. Int J Parasitol  41: 615–626. [DOI] [PubMed] [Google Scholar]
  27. Charpentier  MJE, Boundenga  L, Beaulieu  M, Dibakou  SE, Arnathau  C, Sidobre  C, Willaume  E, Mercier-Delarue  S, Simon  F, Rougeron  V  et al. (2019) A longitudinal molecular study of the ecology of malaria infections in free-ranging mandrills. Int J Parasitol  10: 241–251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Chen  JJ, Liu  NN, Zhang  HJ, Zhao  YD, Cao  XL (2020) The effects of Aeromonas hydrophila infection on oxidative stress, nonspecific immunity, autophagy, and apoptosis in the common carp. Dev Comp Immunol  105: 103587. [DOI] [PubMed] [Google Scholar]
  29. Cohen  J (1988) Statistical Power Analysis for the Behavioral Sciences. Lawrence Earlbaum Associates, Hillsdale, NJ, USA [Google Scholar]
  30. Costantini  D (2014) Oxidative Stress and Hormesis in Evolutionary Ecology and Physiology: A Marriage Between Mechanistic and Evolutionary Approaches. Springer, Berlin Heidelberg [Google Scholar]
  31. Costantini  D (2018) Meta-analysis reveals that reproductive strategies are associated with sexual differences in oxidative balance across vertebrates. Curr Zool  64: 1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Costantini  D (2019) Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. J Exp Biol  222: jeb194688. [DOI] [PubMed] [Google Scholar]
  33. Costantini  D, Dell’Omo  G (2006) Effects of t-cell-mediated immune response on avian oxidative stress. Comp Biochem Physiol Part A  145: 137–142. [DOI] [PubMed] [Google Scholar]
  34. Costantini  D, Møller  AP (2009) Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Physiol Part A  153: 339–344. [DOI] [PubMed] [Google Scholar]
  35. Costantini  D, Casagrande  S, Casasole  G, AbdElgawad  H, Asard  H, Pinxten  R, Eens  M (2015a) Immunization reduces vocal communication but does not increase oxidative stress in a songbird species. Behav Ecol Sociobiol  69: 829–839. [Google Scholar]
  36. Costantini  D, Goutte  A, Barbraud  C, Faivre  B, Sorci  G, Weimerskirch  H, Delord  K, Chastel  O (2015b) Demographic responses to oxidative stress and inflammation in the wandering albatross (Diomedea exulans). PLoS One  10: e0133967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Costantini  D, Seeber  PA, Soilemetzidou  SE, Azab  W, Bohner  J, Buuveibaatar  B, Czirjak  GA, East  ML, Greunz  EM, Kaczensky  P  et al. (2018) Physiological costs of infection: herpesvirus replication is linked to blood oxidative stress in equids. Sci Rep  8: 10347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Cram  DL, Blount  JD, York  JE, Young  AJ (2015) Immune response in a wild bird is predicted by oxidative status, but does not cause oxidative stress. PLoS One  10: e0122421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van de  Crommenacker  J, Richardson  DS, Koltz  AM, Hutchings  K, Komdeur  J (2012) Parasitic infection and oxidative status are associated and vary with breeding activity in the Seychelles warbler. Proc R Soc Lond B  279: 1466–1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Dautremepuits  C, Betoulle  S, Vernet  G (2003) Stimulation of antioxidant enzymes levels in carp (Cyprinus carpio L.) infected by Ptychobothrium sp. (Cestoda). Fish Shellfish Immunol  15: 467–471. [DOI] [PubMed] [Google Scholar]
  41. De Angeli  DD, Silveira  P, Ramos  JA, Sousa  JP, Braga  ÉM, Norte  AC (2017) Haemosporidian infections affect antioxidant defences in great tits Parus major but are not related to exposure to aerial pollutants. Parasitol Open  3: e4. [Google Scholar]
  42. De Coster  G, De Neve  L, Verhulst  S, Lens  L (2012) Maternal effects reduce oxidative stress in female nestlings under high parasite load. J Avian Biol  43: 177–185. [Google Scholar]
  43. Del Re  AC (2013) Compute.es: compute effect sizes. http://cran.r–project.org/web/packages/compute.es.
  44. Delhaye  J, Jenkins  T, Christe  P (2016) Plasmodium infection and oxidative status in breeding great tits, Parus major. Malar J  15: 531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Delhaye  J, Glaizot  O, Christe  P (2018) The effect of dietary antioxidant supplementation in a vertebrate host on the infection dynamics and transmission of avian malaria to the vector. Parasitol Res  117: 2043–2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Devevey  G, Bize  P, Fournier  S, Person  E, Christe  P (2010) Testing the predictive adaptive response in a host-parasite system. Funct Ecol  24: 178–185. [Google Scholar]
  47. Dkhil  MA, Abdel-Baki  AS, Al-Quraishy  S, Abdel-Moneim  AE (2013) Hepatic oxidative stress in mongolian gerbils experimentally infected with babesia divergens. Ticks Tick Borne Dis  4: 346–351. [DOI] [PubMed] [Google Scholar]
  48. Du  YS, Yi  MM, Xiao  P, Meng  LJ, Li  X, Sun  GX, Liu  Y (2015) The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar). Fish Shellfish Immunol  44: 307–315. [DOI] [PubMed] [Google Scholar]
  49. El-Son  MAM, Elbahnaswy  S, Ibrahim  I (2020) Molecular and histopathological characterization of Photobacterium damselae in naturally and experimentally infected Nile tilapia (Oreochromis niloticus). J Fish Dis  43: 1505–1517. [DOI] [PubMed] [Google Scholar]
  50. Espinal-Carrion  T, Lopez-Lopez  E (2010) Helminths and lipid peroxidation in Astyanax aeneus (pisces: Characidae) from a river in the humid subtropics of southeastern Mexico. Dis Aquat Organ  88: 215–224. [DOI] [PubMed] [Google Scholar]
  51. Fedorov  S (2014). GetData Graph Digitizer, v.2.26.0.20. www.graph-digitizer.com.
  52. Fehr  T, Ochsenbein  AF (2004) Outcome of the antibody response: a question of antigen dose and distribution. Trends Immunol  25: 165–166. [DOI] [PubMed] [Google Scholar]
  53. Ferguson  LV, Kortet  R, Sinclair  BJ (2018) Eco-immunology in the cold: the role of immunity in shaping the overwintering survival of ectotherms. J Exp Biol  221: jeb163873. [DOI] [PubMed] [Google Scholar]
  54. Flies  AS, Mansfield  LS, Grant  CK, Weldele  ML, Holekamp  KE (2015) Markedly elevated antibody responses in wild versus captive spotted hyenas show that environmental and ecological factors are important modulators of immunity. PLoS One  10: e0137679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Fontagné  S, Lataillade  E, Brèque  J, Kaushik  S (2008) Lipid peroxidative stress and antioxidant defence status during ontogeny of rainbow trout (Oncorhynchus mykiss). Br J Nutr  100: 102–111. [DOI] [PubMed] [Google Scholar]
  56. Fritze  M, Costantini  D, Fickel  J, Wehner  D, Czirják  GÁ, Voigt  CC (2019) Immune response of hibernating european bats to a fungal challenge. Biol Open  8: bio046078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Fritze  M, Puechmaille  SJ, Costantini  D, Fickel  J, Voigt  CC, Czirják  GÁ (2021) Determinants of defence strategies of a hibernating european bat species towards the fungal pathogen Pseudogymnoascus destructans. Develop Comp Immunol  119: 104017. [DOI] [PubMed] [Google Scholar]
  58. Garamszegi  LZ (2014) Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice. Springer, Heidelberg [Google Scholar]
  59. Garcia  LO, Becker  AG, Bertuzzi  T, Cunha  MA, Kochhann  D, Finamor  IA, Riffel  APK, Llesuy  S, Pavanato  MA, Baldisserotto  B (2011) Oxidative stress parameters in silver catfish (Rhamdia quelen) juveniles infected with Ichthyophthirius multifiliis and maintained at different levels of water pH. Vet Parasitol  178: 15–21. [DOI] [PubMed] [Google Scholar]
  60. Gasso  D, Vicente  J, Mentaberre  G, Soriguer  R, Rodriguez  RJ, Navarro-Gonzalez  N, Tvarijonaviciute  A, Lavin  S, Fernandez-Llario  P, Segales  J  et al. (2016) Oxidative stress in wild boars naturally and experimentally infected with Mycobacterium bovis. PLoS One  11: e0163971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Geng  RJ, Jia  YY, Chi  ML, Wang  ZG, Liu  H, Wang  WM (2019) RNase1 alleviates the Aeromonas hydrophila-induced oxidative stress in blunt snout bream. Dev Comp Immunol  91: 8–16. [DOI] [PubMed] [Google Scholar]
  62. Georgountzou  A, Papadopoulos  NG (2017) Postnatal innate immune development: from birth to adulthood. Front Immunol  8: 957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Ghirardi  R, Cazenave  J, Lopez  JA, Antoniazzi  CE, Perotti  MG (2018) Evaluation of stress responses to water molds in embryos of Physalaemus albonotatus (Anura: Leptodactylidae). Herpetol Conserv Biol  13: 216–223. [Google Scholar]
  64. Ghirardi  R, Cazenave  J, Lopez  JA, Antoniazzi  CE, Perotti  MG (2020) Water mould exposure induces enzymatic antioxidant defences in embryos of the two-colored oval frog (Elachistocleis bicolor) (Anura: Microhylidae). Can J Zool  98: 411–416. [Google Scholar]
  65. Giraudeau  M, Mousel  M, Earl  S, McGraw  K (2014) Parasites in the city: degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS One  9: e86747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Giri  SS, Kim  HJ, Kim  SG, Kim  SW, Kwon  J, Lee  SB, Sukumaran  V, Park  SC (2020) Effectiveness of the guava leaf extracts against lipopolysaccharide-induced oxidative stress and immune responses in Cyprinus carpio. Fish Shellfish Immunol  105: 164–176. [DOI] [PubMed] [Google Scholar]
  67. Gombart  AF, Pierre  A, Maggini  S (2020) A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients  12: 236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Graham  AL, Shuker  DM, Pollitt  LC, Auld  S, Wilson  AJ, Little  TJ (2011) Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Funct Ecol  25: 5–17. [Google Scholar]
  69. Grainger  TN, Levine  JM (2021) Rapid evolution of life-history traits in response to warming, predation and competition: a meta-analysis. Ecol Lett. 25: 541–554. [DOI] [PubMed] [Google Scholar]
  70. Guzmán-Villanueva  LT, Ascencio-Valle  F, Macías-Rodríguez  ME, Tovar-Ramírez  D (2014) Effects of dietary β-1,3/1,6-glucan on the antioxidant and digestive enzyme activities of pacific red snapper (Lutjanus peru) after exposure to lipopolysaccharides. Fish Physiol Biochem  40: 827–837. [DOI] [PubMed] [Google Scholar]
  71. Hadfield  JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw  33: 1–22.20808728 [Google Scholar]
  72. Halliwell  BH, Gutteridge  JMC (2015) Free Radicals in Biology and Medicine. Oxford University Press, Oxford, UK [Google Scholar]
  73. Hanssen  SA, Bustnes  JO, Schnug  L, Bourgeon  S, Johnsen  TV, Ballesteros  M, Sonne  C, Herzke  D, Eulaers  I, Jaspers  VL  et al. (2013) Antiparasite treatments reduce humoral immunity and impact oxidative status in raptor nestlings. Ecol Evol  3: 5157–5166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Harikrishnan  R, Thamizharasan  S, Devi  G, Van Doan  H, Kumar  TTA, Hoseinifar  SH, Balasundaram  C (2020) Dried lemon peel enriched diet improves antioxidant activity, immune response and modulates immuno-antioxidant genes in Labeo rohita against Aeromonas sorbia. Fish Shellfish Immunol  106: 675–684. [DOI] [PubMed] [Google Scholar]
  75. Hasselquist  D, Nilsson  JA (2012) Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds?  Anim Behav  83: 1303–1312. [Google Scholar]
  76. Hau  M, Haussmann  MF, Greives  TJ, Matlack  C, Costantini  D, Quetting  M, Adelman  JS, Miranda  AC, Partecke  J (2015) Repeated stressors in adulthood increase the rate of biological ageing. Front Zool  12: 4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Heidarpour  M, Mohri  M, Borji  H, Moghdass  E (2012) Oxidative stress and trace elements in camel (Camelus dromedarius) with liver cystic echinococcosis. Vet Parasitol  187: 459–463. [DOI] [PubMed] [Google Scholar]
  78. Hernandez-Arciga  U, Herrera  LG, Konigsberg  M, Valdez  RA, Flores-Martinez  JJ, Romano  MC (2020) Synergetic effects of immune challenge and stress depress cortisol, inflammatory response and antioxidant activity in fish-eating Myotis. J Exp Biol  223: jeb234914. [DOI] [PubMed] [Google Scholar]
  79. Herrero  A, Barja  G (1997) ADP-regulation of mitochondrial free radical production is different with complex I- and complex II-linked substrates: implications for the exercise paradox and brain hypermetabolism. J Bioenerg Biomembr  29: 241–249. [DOI] [PubMed] [Google Scholar]
  80. Hoogenboom  MO, Metcalfe  NB, Groothuis  TGG, de  Vries  B, Costantini  D (2012) Relationship between oxidative stress and circulating testosterone and cortisol in pre-spawning female brown trout. Comp Biochem Physiol Part A  163: 379–387. [DOI] [PubMed] [Google Scholar]
  81. Horak  P, Zilmer  M, Saks  L, Ots  I, Karu  U, Zilmer  K (2006) Antioxidant protection, carotenoids and the costs of immune challenge in greenfinches. J Exp Biol  209: 4329–4338. [DOI] [PubMed] [Google Scholar]
  82. Horak  P, Saks  L, Zilmer  M, Karu  U, Zilmer  K (2007) Notes and comments—do dietary antioxidants alleviate the cost of immune activation? An experiment with greenfinches. Am Nat  170: 625–635. [DOI] [PubMed] [Google Scholar]
  83. Isaksson  C, Sepil  I, Baramidze  V, Sheldon  B (2013) Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress. BMC Ecol  13: 15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Ito  T, Kera  A, Murata  H, Yoshida  T, Sakai  T, Yamauchi  K, Yamasaki  Y, Yamaguchi  T, Ukawa  M (2000) Experimentally induced bacterial hemolytic jaundice of yellowtail and oxidative stress. Nippon Suisan Gakkaishi  66: 50–54. [Google Scholar]
  85. Jaguezeski  AM, da  Silva  AS, Gomes  TMA, Bottari  NB, Lopes  TF, Cechin  RA, Morsch  VM, Schetinger  MRC, Giongo  JL, de A  Vaucher  R (2020) Experimental listeriosis: a study of purinergic and cholinergic inflammatory pathway. Vet Microbiol  241: 108528. [DOI] [PubMed] [Google Scholar]
  86. Jiang  B, Wang  J, Luo  HL, Lu  GL, Li  YW, Li  AX (2017) L-amino acid oxidase expression profile and biochemical responses of rabbitfish (Siganus oramin) after exposure to a high dose of Cryptocaryon irritans. Fish Shellfish Immunol  69: 85–89. [DOI] [PubMed] [Google Scholar]
  87. Jolly  S, Jaffal  A, Delahaut  L, Palluel  O, Porcher  JM, Geffard  A, Sanchez  W, Betoulle  S (2014) Effects of aluminium and bacterial lipopolysaccharide on oxidative stress and immune parameters in roach, Rutilus rutilus L. Environ Sci Pollut Res  21: 13103–13117. [DOI] [PubMed] [Google Scholar]
  88. Kim  YS, Ke  F, Zhang  QY (2009) Effect of beta-glucan on activity of antioxidant enzymes and Mx gene expression in virus infected grass carp. Fish Shellfish Immunol  27: 336–340. [DOI] [PubMed] [Google Scholar]
  89. Kim  JH, Sohn  S, Kim  SK, Hur  YB (2020) Effects on hematological parameters, antioxidant and immune responses, ache, and stress indicators of olive flounders, Paralichthys olivaceus, raised in bio-floc and seawater challenged by Edwardsiella tarda. Fish Shellfish Immunol  97: 194–203. [DOI] [PubMed] [Google Scholar]
  90. Klasing  KC (2004) The costs of immunity. Acta Zool Sin  50: 961–969. [Google Scholar]
  91. Klein  S, Flanagan  K (2016) Sex differences in immune responses. Nat Rev Immunol  16: 626–638. [DOI] [PubMed] [Google Scholar]
  92. Kumar  S, Raman  RP, Prasad  KP, Srivastava  PP, Kumar  S, Rajendran  KV (2017) Modulation of innate immune responses and induction of oxidative stress biomarkers in Pangasianodon hypophthalmus following an experimental infection with Dactylogyrid monogeneans. Fish Shellfish Immunol  63: 334–343. [DOI] [PubMed] [Google Scholar]
  93. Kurhalyuk  N, Tkachenko  H (2011) Induction of oxidative stress and antioxidant defenses in the livers of sea trout, Salmo trutta L., with ulcerative dermal necrosis. Fish Aquat Life  19: 229–240. [Google Scholar]
  94. Kurhalyuk  N, Tkachenko  H, Palczynska  K (2009) Antioxidant enzymes profile in the brown trout (Salmo trutta trutta) with ulcerative dermal necrosis. Bull Vet Inst Pulawy  53: 813–818. [Google Scholar]
  95. Kurhalyuk  N, Tkachenko  H, Palczynska  K (2011) Resistance of erythrocytes from brown trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome. Polish J Vet Sci  14: 443–448. [DOI] [PubMed] [Google Scholar]
  96. Le Guernic  A, Sanchez  W, Palluel  O, Bado-Nilles  A, Floriani  M, Turies  C, Chadili  E, Vedova  CD, Cavalié  I, Adam-Guillermin  C  et al. (2016) Acclimation capacity of the three-spined stickleback (Gasterosteus aculeatus, L.) to a sudden biological stress following a polymetallic exposure. Ecotoxicology  25: 1478–1499. [DOI] [PubMed] [Google Scholar]
  97. Li  MY, Guo  WQ, Guo  GL, Zhu  XM, Niu  XT, Shan  XF, Tian  JX, Wang  GQ, Zhang  DM (2020) Effects of dietary astaxanthin on lipopolysaccharide-induced oxidative stress, immune responses and glucocorticoid receptor (gr)-related gene expression in Channa argus. Aquaculure  517: 734816. [Google Scholar]
  98. Lilley  TM, Stauffer  J, Kanerva  M, Eeva  T (2014) Interspecific variation in redox status regulation and immune defence in five bat species: the role of ectoparasites. Oecologia  175: 811–823. [DOI] [PubMed] [Google Scholar]
  99. Liu  C, Liu  HK, Han  D, Xie  SQ, Jin  JY, Yang  YX, Zhu  XM (2020) Effects of dietary Arthrospira platensis supplementation on the growth performance, antioxidation and immune related-gene expression in yellow catfish (Pelteobagrus fulvidraco). Aquac Rep  17. [Google Scholar]
  100. Lochmiller  RL, Deerenberg  C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity?  Oikos  88: 87–98. [Google Scholar]
  101. Lopez-Arrabe  J, Cantarero  A, Perez-Rodriguez  L, Palma  A, Alonso-Alvarez  C, Gonzalez-Braojos  S, Moreno  J (2015) Nest-dwelling ectoparasites reduce antioxidant defences in females and nestlings of a passerine: a field experiment. Oecologia  179: 29–41. [DOI] [PubMed] [Google Scholar]
  102. Losdat  S, Richner  H, Blount  JD, Helfenstein  F (2011) Immune activation reduces sperm quality in the great tit. PLoS One  6: e22221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Maggini  S, Pierre  A, Calder  PC (2018) Immune function and micronutrient requirements change over the life course. Nutrients  10: 1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Maizels  RM, Nussey  DH (2013) Into the wild: digging at immunology's evolutionary roots. Nat Immunol  14: 879–883. [DOI] [PubMed] [Google Scholar]
  105. Mangalmurti  N, Hunter  CA (2020) Cytokine storms: understanding COVID-19. Immunity  53: 19–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Marasco  V, Sebastiano  M, Costantini  D, Pola  G, Fusani  L (2021) Controlled expression of the migratory phenotype affects oxidative status in birds. J Exp Biol  224: jeb233486. [DOI] [PubMed] [Google Scholar]
  107. Marcogliese  DJ, Brambilla  LG, Gagne  F, Gendron  AD (2005) Joint effects of parasitism and pollution on oxidative stress biomarkers in yellow perch Perca flavescens. Dis Aquat Org  63: 77–84. [DOI] [PubMed] [Google Scholar]
  108. Marcogliese  DJ, Dautremepuits  C, Gendron  AD, Fournier  M (2010) Interactions between parasites and pollutants in yellow perch (Perca flavescens) in the st. Lawrence river, Canada: implications for resistance and tolerance to parasites. Can J Zool  88: 247–258. [Google Scholar]
  109. Marcogliese  DJ, King  KC, Bates  KA (2021) Effects of multiple stressors on northern leopard frogs in agricultural wetlands. Parasitology  148: 827–834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Maronde  L, Losdat  S, Richner  H (2018) Do parasites and antioxidant availability affect begging behaviour, growth rate and resistance to oxidative stress?  J Evol Biol  31: 904–913. [DOI] [PubMed] [Google Scholar]
  111. Marri  V, Richner  H (2015) Immune response, oxidative stress and dietary antioxidants in great tit nestlings. Comp Biochem Physiol Part A  179: 192–196. [DOI] [PubMed] [Google Scholar]
  112. Martin  LB, Weil  ZM, Nelson  RJ (2008) Seasonal changes in vertebrate immune activity: mediation by physiological trade-offs. Phil Trans R Soc B  363: 321–339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Martin  LB, Hawley  DM, Ardia  DR (2011) An introduction to ecological immunology. Funct Ecol  25: 1–4. [Google Scholar]
  114. Mastroeni  P, Vazquez-Torres  A, Fang  FC, Xu  YS, Khan  S, Hormaeche  CE, Dougan  G (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J Exp Med  192: 237–247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Messina  S, Edwards  DP, Van Houtte  N, Tomassi  S, Benedick  S, Eens  M, Costantini  D (2022) Impacts of selective logging on haemosporidian infection and physiological correlates in tropical birds. Int J Parasitol  52: 87–96. [DOI] [PubMed] [Google Scholar]
  116. Molbert  N, Alliot  F, Leroux-Coyau  M, Medoc  V, Biard  C, Meylan  S, Jacquin  L, Santos  R, Goutte  A (2020) Potential benefits of acanthocephalan parasites for chub hosts in polluted environments. Environ Sci Technol  54: 5540–5549. [DOI] [PubMed] [Google Scholar]
  117. Møller  AP, Jennions  MD (2001) Testing and adjusting for publication bias. Trends Ecol Evol  16: 580–586. [Google Scholar]
  118. Møller  A, Jennions  MD (2002) How much variance can be explained by ecologists and evolutionary biologists?  Oecologia  132: 492–500. [DOI] [PubMed] [Google Scholar]
  119. Moore  J (2002) Parasites and the Behavior of Animals. Oxford University Press, Oxford, UK [Google Scholar]
  120. Moore  MS, Reichard  JD, Murtha  TD, Nabhan  ML, Pian  RE, Ferreira  JS, Kunz  TH (2013) Hibernating little brown myotis (Myotis lucifugus) show variable immunological responses to white-nose syndrome. PLoS One  8: e58976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Moreno  KR, Weinberg  M, Harten  L, Ramos  VSB, Herrera  MLG, Czirjak  GA, Yovel  Y (2021) Sick bats stay home alone: fruit bats practice social distancing when faced with an immunological challenge. Ann N Y Acad Sci  1505: 178–190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Morryssey  MB (2016a) Meta-analysis of magnitudes, differences and variation in evolutionary parameters. J Evol Biol  29: 1882–1904. [DOI] [PubMed] [Google Scholar]
  123. Morryssey  MB (2016b) Rejoinder: further considerations for meta-analysis of transformed quantities such as absolute values. J Evol Biol  29: 1922–1931. [DOI] [PubMed] [Google Scholar]
  124. Mougeot  F, Martinez-Padilla  J, Webster  LMI, Blount  JD, Perez-Rodriguez  L, Piertney  SB (2009) Honest sexual signalling mediated by parasite and testosterone effects on oxidative balance. Proc R Soc Lond B  276: 1093–1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Mougeot  F, Martinez-Padilla  J, Blount  JD, Perez-Rodriguez  L, Webster  LMI, Piertney  SB (2010) Oxidative stress and the effect of parasites on a carotenoid-based ornament. J Exp Biol  213: 400–407. [DOI] [PubMed] [Google Scholar]
  126. Munang'andu  HM, Fredriksen  BN, Mutoloki  S, Dalmo  RA, Evensen  Ø (2013) Antigen dose and humoral immune response correspond with protection for inactivated infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L). Vet Res  44: 7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Nakagawa  S, Cuthill  IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev  82: 591–605. [DOI] [PubMed] [Google Scholar]
  128. Nakagawa  S, Santos  ESA (2012) Methodological issues and advances in biological meta-analysis. Evol Ecol  26: 1253–1274. [Google Scholar]
  129. Nakagawa  S, Lagisz  M, Jennions  MD, Koricheva  J, Noble  DW, Parker  TH, Sánchez-Tójar  A, Yang  Y, O'Dea  RE (2022) Methods for testing publication bias in ecological and evolutionary meta-analyses. Meth Ecol Evol  13: 4–21. [Google Scholar]
  130. Nathan  C, Shiloh  MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A  97: 8841–8848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Neuman-Lee  LA, Van Wettere  AJ, French  SS (2019) Interrelations among multiple metrics of immune and physiological function in a squamate, the common gartersnake (Thamnophis sirtalis). Physiol Biochem Zool  92: 12–23. [DOI] [PubMed] [Google Scholar]
  132. Norte  AC, Costantini  D, Araujo  PM, Eens  M, Ramos  JA, Heylen  D (2018) Experimental infection by microparasites affects the oxidative balance in their avian reservoir host the blackbird turdus merula. Ticks Tick Borne Dis  9: 720–729. [DOI] [PubMed] [Google Scholar]
  133. Ohmer  MEB, Costantini  D, Czirják  G, Downs  CJ, Ferguson  LV, Flies  A, Franklin  CE, Kayigwe  AN, Knutie  S, Richards-Zawacki  CL  et al. (2021) Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. Conserv Physiol  9: coab074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Orledge  JM, Blount  JD, Hoodless  AN, Royle  NJ (2012) Antioxidant supplementation during early development reduces parasite load but does not affect sexual ornament expression in adult ring-necked pheasants. Funct Ecol  26: 688–700. [Google Scholar]
  135. Pacios-Palma  I, Moreno  S, Selman  C, Rouco  C (2018) Oxidative stress in wild European rabbits naturally infected with Myxoma virus and rabbit haemorrhagic disease virus. Eur J Wildlife Res  64: 47. [Google Scholar]
  136. Paiva  CN, Bozza  MT (2014) Are reactive oxygen species always detrimental to pathogens?  Antioxid Redox Signal  20: 1000–1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Pal  S, Roy  D, Ray  S, Homechaudhuri  S (2020) Aeromonas hydrophila induced mitochondrial dysfunction and apoptosis in liver and spleen of Labeo rohita mediated by calcium and reactive oxygen species. Turk J Fish Aquat Sci  20: 255–266. [Google Scholar]
  138. Panaro  MA, Lisi  S, Mitolo  V, Acquafredda  A, Fasanella  A, Carelli  MG, Brandonisio  O (1998) Evaluation of killing, superoxide anion and nitric oxide production by Leishmania infantum-infected dog monocytes. Cytobios  95: 151–160. [PubMed] [Google Scholar]
  139. Pap  PL, Vagasi  CI, Czirjak  GA, Titilincu  A, Pintea  A, Osvath  G, Fulop  A, Barta  Z (2011) The effect of coccidians on the condition and immune profile of molting house sparrows (Passer domesticus). Auk  128: 330–339. [Google Scholar]
  140. Pap  PL, Sesarman  A, Vagasi  CI, Buehler  DM, Patras  L, Versteegh  MA, Banciu  M (2014) No evidence for parasitism-linked changes in immune function or oxidative physiology over the annual cycle of an avian species. Physiol Biochem Zool  87: 729–739. [DOI] [PubMed] [Google Scholar]
  141. Peixoto  MJ, Salas-Leiton  E, Brito  F, Pereira  L, Svendsen  J, Baptista  T, Pereira  R, Abreu  H, Reis  P, Gonçalves  JFM  et al. (2017) Effects of dietary Gracilaria sp. and Alaria sp. supplementation on growth performance, metabolic rates and health in meagre (Argyrosomus regius) subjected to pathogen infection. J Appl Phycol  29: 433–447. [Google Scholar]
  142. Perez-Rodriguez  L, Fo  M, Alonso-Alvarez  C, Blas  J, Viñuela  J, Bortolotti  GR (2008) Cell-mediated immune activation rapidly decreases plasma carotenoids but does not affect oxidative stress in red-legged partridges (Alectoris rufa). J Exp Biol  211: 2155–2161. [DOI] [PubMed] [Google Scholar]
  143. Peters  A, Delhey  K, Nakagawa  S, Aulsebrook  A, Verhulst  S (2019) Immunosenescence in wild animals: meta-analysis and outlook. Ecol Lett  22: 1709–1722. [DOI] [PubMed] [Google Scholar]
  144. Petitjean  Q, Jacquin  L, LeHenaff  M, Perrault  A, Cousseau  M, Laffaille  P, Jean  S (2021a) Dose- and time-dependent effects of an immune challenge on fish across biological levels. J Exp Zool Part A  335: 250–264. [DOI] [PubMed] [Google Scholar]
  145. Petitjean  Q, Jacquin  L, Riem  L, Pitout  M, Perrault  A, Cousseau  M, Laffaille  P, Jean  S (2021b) Intraspecific variability of responses to combined metal contamination and immune challenge among wild fish populations. Environ Pollut  272: 116042. [DOI] [PubMed] [Google Scholar]
  146. Price  SJ, Garner  TWJ, Nichols  RA, Balloux  F, Ayres  C, Mora-Cabello de Alba  A, Bosch  J (2014) Collapse of amphibian communities due to an introduced Ranavirus. Curr Biol  24: 2586–2591. [DOI] [PubMed] [Google Scholar]
  147. Ramirez-Otarola  N, Sarria  M, Rivera  DS, Sabat  P, Bozinovic  F (2019) Ecoimmunology in degus: interplay among diet, immune response, and oxidative stress. J Comp Physiol B  189: 143–152. [DOI] [PubMed] [Google Scholar]
  148. Ramirez-Otarola  N, Maldonado  K, Cavieres  G, Bozinovic  F, Sabat  P (2021) Nutritional ecology and ecological immunology in degus: does early nutrition affect the postnatal development of the immune function?  J Exp Zool Part A  335: 239–249. [DOI] [PubMed] [Google Scholar]
  149. Razavi  SM, Nazifi  S, Afsar  M, Yazdanpanah  Z, Rakhshandehroo  E (2016) Evaluation of the blood oxidant-antioxidant interactions in pigeons naturally infected with Haemoproteus columbae. Vet Archiv  86: 395–405. [Google Scholar]
  150. Ren  ZL, Wang  SF, Cai  Y, Wu  Y, Tian  LJ, Liao  JQ, Wang  SQ, Jiang  L, Guo  WL, Zhou  YC (2020) Antioxidant capacity, non-specific immunity, histopathological analysis and immune-related genes expression in Nile tilapia Oreochromis niloticus infected with Aeromonas schubertii. Aquaculture  529: 735642. [Google Scholar]
  151. Rodriguez  A, Broggi  J, Alcaide  M, Negro  JJ, Figuerola  J (2014) Determinants and short-term physiological consequences of pha immune response in lesser kestrel nestlings. J Exp Zool Part A  321: 376–386. [DOI] [PubMed] [Google Scholar]
  152. Rodriguez-Quiroga  JJ, Otero-Rodino  C, Suarez  P, Nieto  TP, Estevez  JMG, San Juan  F, Soengas  JL (2017) Differential effects of exposure to parasites and bacteria on stress response in turbot Scophthalmus maximus simultaneously stressed by low water depth. J Fish Biol  91: 242–259. [DOI] [PubMed] [Google Scholar]
  153. da  Rosa  VM, Ariotti  K, Bressan  CA, da  Silva  EG, Dallaporta  M, Junior  GB, da  Costa  ST, de  Vargas  AC, Baldisserotto  B, Finamor  IA  et al. (2019) Dietary addition of rutin impairs inflammatory response and protects muscle of silver catfish (Rhamdia quelen) from apoptosis and oxidative stress in Aeromonas hydrophila-induced infection. Comp Biochem Physiol Part C  226: 108611. [DOI] [PubMed] [Google Scholar]
  154. Roth  JD, Dobson  FS, Criscuolo  F, Uhlrich  P, Zahariev  A, Bergouignan  A, Viblanc  VA (2019) Subtle short-term physiological costs of an experimental augmentation of fleas in wild columbian ground squirrels. J Exp Biol  222: jeb203588. [DOI] [PubMed] [Google Scholar]
  155. Rothoeft  T, Gonschorek  A, Bartz  H, Anhenn  O, Schauer  U (2003) Antigen dose, type of antigen-presenting cell and time of differentiation contribute to the T helper 1/T helper 2 polarization of naive T cells. Immunology  110: 430–439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Roy  D, Pal  S, Datta Ray  S, Homechaudhuri  S (2019) Evaluating oxidative stress in labeo rohita, infected asypmtomatically with native and invasive aeromonads using biochemical indices. Proc Nat Acad Sci India Section B  89: 973–978. [Google Scholar]
  157. Sahan  A, Duman  S, Colak  SO, Cinar  E, Bilgin  R (2017) Determination of some hematological and non-specific immune defences, oxidative stress and histopathological status in rainbow trout (Oncorhynchus mykiss) fed rosehip (Rosa canina) to Yersinia ruckeri. Turk J Fish Aquat Sci  17: 91–100. [Google Scholar]
  158. Saleh  MA, Al-Salahy  MB, Sanousi  SA (2009) Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Vet Parasitol  162: 192–199. [DOI] [PubMed] [Google Scholar]
  159. Şanchez  CA, Becker  DJ, Teitelbaum  CS, Barriga  P, Brown  LM, Majewska  AA, Hall  RJ, Altizer  S (2018) On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis. Ecol Lett  21: 1869–1884. [DOI] [PubMed] [Google Scholar]
  160. Sanders  D, Frago  E, Kehoe  R, Patterson  C, Gaston  KJ (2021) A meta-analysis of biological impacts of artificial light at night. Nat Ecol Evol  5: 74–81. [DOI] [PubMed] [Google Scholar]
  161. Schneebauer  G, Hanel  R, Pelster  B (2016) Anguillicola crassus impairs the silvering-related enhancements of the ROS defense capacity in swimbladder tissue of the european eel (Anguilla anguilla). J Comp Physiol B  186: 867–877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Schneeberger  K, Czirjak  GA, Voigt  CC (2013) Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal. J Exp Biol  216: 4514–4519. [DOI] [PubMed] [Google Scholar]
  163. Schoenle  LA, Kernbach  M, Haussmann  MF, Bonier  F, Moore  IT (2017) An experimental test of the physiological consequences of avian malaria infection. J Anim Ecol  86: 1483–1496. [DOI] [PubMed] [Google Scholar]
  164. Sebastiano  M, Eens  M, Abd Elgawad  H, de  Thoisy  B, Lacoste  V, Pineau  K, Asard  H, Chastel  O, Costantini  D (2017) Oxidative stress biomarkers are associated with visible clinical signs of a disease in frigatebird nestlings. Sci Rep  7: 1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Sebastiano  M, Eens  M, Messina  S, AbdElgawad  H, Pineau  K, Beemster  GTS, Chastel  O, Costantini  D (2018) Resveratrol supplementation reduces oxidative stress and modulates the immune response in free-living animals during a viral infection. Funct Ecol  32: 2509–2519. [Google Scholar]
  166. Seeber  PA, Morrison  T, Ortega  A, East  ML, Greenwood  AD, Czirják  GA (2020) Immune differences in captive and free-ranging zebras (Equus zebra and E. quagga). Mammal Biol  100: 155–164. [Google Scholar]
  167. Sepp  T, Karu  U, Blount  JD, Sild  E, Manniste  M, Horak  P (2012) Coccidian infection causes oxidative damage in greenfinches. PLoS One  7: e36495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Sepp  T, McGraw  KJ, Kaasik  A, Giraudeau  M (2018) A review of urban impacts on avian life-history evolution: does city living lead to slower pace of life?  Glob Change Biol  24: 1452–1469. [DOI] [PubMed] [Google Scholar]
  169. Seppälä  O, Jokela  J (2010) Maintenance of genetic variation in immune defense of a freshwater snail: role of environmental heterogeneity. Evolution  64: 2397–2407. [DOI] [PubMed] [Google Scholar]
  170. Serra  L, Pirrello  S, Caprioli  M, Griggio  M, Andreotti  A, Romano  A, Pilastro  A, Saino  N, Sacchi  R, Galeotti  P  et al. (2012) Seasonal decline of offspring quality in the European starling Sturnus vulgaris: an immune challenge experiment. Behav Ecol Sociobiol  66: 697–709. [Google Scholar]
  171. Sheldon  BC, Verhulst  S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol  11: 317–321. [DOI] [PubMed] [Google Scholar]
  172. da  Silva  CC, Klein  RD, Barcarolli  IF, Bianchini  A (2016) Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean. Aquat Toxicol  170: 42–51. [DOI] [PubMed] [Google Scholar]
  173. Simons  MJP, Cohen  AA, Verhulst  S (2012) What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds–a meta-analysis. PLoS One  7: e43088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Skuratovskaya  EN, Zav’yalov  AV, Rudneva  II (2015) Black Sea whiting Merlangus merlangus euxinus (Nordmann, 1840) to parasitic nematode Hysterothylacium aduncum (Rudolphi, 1802) infection. Bull Eur Assoc Fish Pathol  35: 170–176. [Google Scholar]
  175. Skuratovskaya  EN, Yurakhno  VM, Chesnokova  II (2020) Biochemical response of two fish species of Gobiidae (Gobiiformes) to Cryptocotyle (Opisthorchiida, Heterophyidae) metacercariae infection from the mouth of the river Chernaya (Black Sea). Ecol Montenegrina  38: 158–165. [Google Scholar]
  176. Smith  SM, Nager  RG, Costantini  D (2016) Meta-analysis indicates that oxidative stress is both a constraint on and a cost of growth. Ecol Evol  6: 2833–2842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Sobroza  AO, Tonin  AA, Da Silva  AS, Dornelles  GL, Wolkmer  P, Duarte  M, Hausen  BS, Sangoi  MB, Moresco  RN, Stefani  LM  et al. (2014) Iron metabolism in hamsters experimentally infected with Leptospira interrogans serovar Pomona: influence on disease pathogenesis. Comp Immunol Microbiol Infect Dis  37: 299–304. [DOI] [PubMed] [Google Scholar]
  178. Sorci  G, Faivre  B (2009) Inflammation and oxidative stress in vertebrate host-parasite systems. Phil Trans R Soc Lond B  364: 71–83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Sorci  G, Cornet  S, Faivre  B (2013) Immune evasion, immunopathology and the regulation of the immune system. Pathogens  2: 71–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Sorci  G, Lippens  C, Lechenault  C, Faivre  B (2017) Benefits of immune protection versus immunopathology costs: a synthesis from cytokine KO models. Infect Genet Evol  54: 491–495. [DOI] [PubMed] [Google Scholar]
  181. Srivastava  P, Puri  SK, Dutta  GP, Pandey  VC (1992) Status of oxidative stress and antioxidant defenses during plasmodium knowlesi infection and chloroquine treatment in Macaca mulatta. Inter J Parasitol  22: 243–245. [DOI] [PubMed] [Google Scholar]
  182. Stauffer  J, Bruneaux  M, Panda  B, Visse  M, Vasemagi  A, Ilmonen  P (2017) Telomere length and antioxidant defense associate with parasite-induced retarded growth in wild brown trout. Oecologia  185: 365–374. [DOI] [PubMed] [Google Scholar]
  183. Stumbo  AD, Goater  CP, Hontela  A (2012) Parasite-induced oxidative stress in liver tissue of fathead minnows exposed to trematode cercariae. Parasitology  139: 1666–1671. [DOI] [PubMed] [Google Scholar]
  184. Sun  LL, Sun  Y, Jiang  M, Luo  LJ, Yu  XB, Yao  WZ, Wu  ZL (2020) Isolation, identification and pathogenicity of Proteus vulgaris from moribund common carp (Cyprinus carpio) farmed in China. Aquaculture  525: 735294. [Google Scholar]
  185. Surai  P (2002) Natural Antioxidants in Avian Nutrition and Reproduction. Nottingham University Press, Nottingham [Google Scholar]
  186. Sweazea  KL, Simperova  A, Juan  T, Gadau  A, Brant  SV, Deviche  P, Jarrett  C (2015) Pathophysiological responses to a schistosome infection in a wild population of mourning doves (Zenaida macroura). Fortschr Zool  118: 386–393. [DOI] [PubMed] [Google Scholar]
  187. Tancredo  KR, Goncalves  ELT, Brum  A, Acchile  M, Hashimoto  GSO, Pereira  SA, Martins  ML (2015) Hemato-immunological and biochemical parameters of silver catfish Rhamdia quelen immunized with live theronts of Ichthyophthirius multifiliis. Fish Shellfish Immunol  45: 689–694. [DOI] [PubMed] [Google Scholar]
  188. Tkachenko  H, Kurhalyuk  N, Palczynska  K (2011) Responses of antioxidant status in the gills of brown trout (Salmo trutta m. trutta L.) with ulcerative dermal necrosis. Baltic Coastal Zone. J Ecol Prot Coastl  15: 145–158. [Google Scholar]
  189. Tkachenko  H, Kurhaluk  N, Andriichuk  A, Gasiuk  E, Beschasniu  S (2014) Oxidative stress biomarkers in liver of sea trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome. Turk J Fish Aquat Sci  14: 391–402. [Google Scholar]
  190. Tkachenko  H, Grudniewska  J, Pekala  A, Terech-Majewska  E (2016) Oxidative stress and antioxidant defence markers in muscle tissue of rainbow trout (Oncorhynchus mykiss) after vaccination against Yersinia ruckeri. J Vet Res  60: 25–33. [Google Scholar]
  191. Tobler  M, Healey  M, Wilson  M, Olsson  M (2011) Basal superoxide as a sex-specific immune constraint. Biol Lett  7: 906–908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Tobler  M, Ballen  C, Healey  M, Wilson  M, Olsson  M (2015) Oxidant trade-offs in immunity: an experimental test in a lizard. PLoS One  10: e0126155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Tonin  AA, da  Silva  AS, Thome  GR, Bochi  GV, Schetinger  MRC, Moresco  RN, Camillo  G, Toscan  G, Vogel  FF, Lopes  STA (2014) Oxidative stress in brain tissue of gerbils experimentally infected with Neospora caninum. J Parasitol  100: 154–156. [DOI] [PubMed] [Google Scholar]
  194. Torres  R, Velando  A (2007) Male reproductive senescence: the price of immune-induced oxidative damage on sexual attractiveness in the blue-footed booby. J Anim Ecol  76: 1161–1168. [DOI] [PubMed] [Google Scholar]
  195. Vitula  F, Peckova  L, Bandouchova  H, Pohanka  M, Novotny  L, Jira  D, Kral  J, Ondracek  K, Osickova  J, Zendulkova  D  et al. (2011) Mycoplasma gallisepticum infection in the grey partridge Perdix perdix: outbreak description, histopathology, biochemistry and antioxidant parameters. BMC Vet Res  7: 34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Voigt  CC, Fritze  M, Lindecke  O, Costantini  D, Petersons  G, Czirjak  GA (2020) The immune response of bats differs between pre-migration and migration seasons. Sci Rep  10: 17384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Watson  MJ (2013) What drives population-level effects of parasites? Meta-analysis meets life-history. Int J Parasitol  2: 190–196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Wegmann  M, Voegeli  B, Richner  H (2015) Physiological responses to increased brood size and ectoparasite infestation: adult great tits favour self-maintenance. Physiol Behav  141: 127–134. [DOI] [PubMed] [Google Scholar]
  199. Winterbourn  CC (2002) Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid. Toxicology  181: 223–227. [DOI] [PubMed] [Google Scholar]
  200. Wu  DY, Lewis  ED, Pae  MY, Meydani  SN (2019) Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front Immunol  9: 3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Xu  WJ, Li  HY, Wu  LY, Jin  JY, Zhu  XM, Han  D, Liu  HK, Yang  YX, Xu  XD, Xie  SQ (2020) Dietary Scenedesmus ovalternus improves disease resistance of overwintering gibel carp (Carassius gibelio) by alleviating toll-like receptor signaling activation. Fish Shellfish Immunol  97: 351–358. [DOI] [PubMed] [Google Scholar]
  202. Yang  D-B, Xu  Y-C, Wang  D-H, Speakman  JR (2013) Effects of reproduction on immunosuppression and oxidative damage, and hence support or otherwise for their roles as mechanisms underpinning life history trade-offs, are tissue and assay dependent. J Exp Biol  216: 4242–4250. [DOI] [PubMed] [Google Scholar]
  203. Yun  S, Giri  SS, Kim  HJ, Kim  SG, Kim  SW, Kang  JW, Han  SJ, Kwon  J, Oh  WT, Chi  C  et al. (2019) Enhanced bath immersion vaccination through microbubble treatment in the cyprinid loach. Fish Shellfish Immunol  91: 12–18. [DOI] [PubMed] [Google Scholar]
  204. Zahran  E, Risha  E (2013) Protective role of adjuvant and potassium permanganate on oxidative stress response of Nile tilapia (Oreochromis niloticus) challenged with Saprolegnia ferax. Springerplus  2: 94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Zahran  E, El-Gawad  EAA, Risha  E (2018) Dietary Withania sominefera root confers protective and immunotherapeutic effects against Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol  80: 641–650. [DOI] [PubMed] [Google Scholar]
  206. Zahran  E, Mahgoub  HA, Abdelhamid  F, Sadeyen  JR, Risha  E (2019) Experimental pathogenesis and host immune responses of enterococcus faecalis infection in Nile tilapia (Oreochromis niloticus). Aquaculture  512: 734319. [Google Scholar]
  207. Zhang  YF, Hill  GE, Ge  ZY, Park  NR, Taylor  HA, Andreasen  V, Tardy  L, Kavazis  AN, Bonneaud  C, Hood  WR (2021) Effects of a bacterial infection on mitochondrial function and oxidative stress in a songbird. Physiol Biochem Zool  94: 71–82. [DOI] [PubMed] [Google Scholar]
  208. Zhao  H, Luo  YE, Wu  ZX, Zhou  Y, Guo  DY, Wang  H, Chen  XX (2019) Hepatic lipid metabolism and oxidative stress responses of grass carp (Ctenopharyngodon idella) fed diets of two different lipid levels against aeromonas hydrophila infection. Aquaculture  509: 149–158. [Google Scholar]
  209. Zhu  XM, Li  MY, Liu  XY, Xia  CG, Niu  XT, Wang  GQ, Zhang  DM (2020) Effects of dietary astaxanthin on growth, blood biochemistry, antioxidant, immune and inflammatory response in lipopolysaccharide-challenged Channa argus. Aquac Res  51: 1980–1991. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Web_Material_coac018

Data Availability Statement

The full dataset is provided as supplementary material.


Articles from Conservation Physiology are provided here courtesy of Oxford University Press

RESOURCES