Skip to main content
RSC Advances logoLink to RSC Advances
. 2021 Nov 29;11(61):38391–38433. doi: 10.1039/d1ra05574g

3-(Bromoacetyl)coumarins: unraveling their synthesis, chemistry, and applications

Moaz M Abdou 1,, Ahmed Abu-Rayyan 2, Ahmed G Bedir 1, S Abdel-Fattah 1, A M A Omar 1, Abdullah A Ahmed 3, El-Sayed I El-Desoky 4, Eslam A Ghaith 4
PMCID: PMC9044231  PMID: 35493203

Abstract

This review emphasizes recent developments in synthetic routes of 3-(bromoacetyl)coumarin derivatives. Also, chemical reactions of 3-(bromoacetyl)coumarins as versatile building blocks in the preparation of critical polyfunctionalized heterocyclic systems and other industrially significant scaffolds are described. Recent advances of 3-(bromoacetyl)coumarins as attractive starting points towards a wide scale of five and six-membered heterocyclic systems such as thiophenes, imidazoles, pyrazoles, thiazoles, triazoles, pyrans, pyridines, thiadiazins as well as fused heterocyclic systems have been reported. Additionally, this review covers a wide range of analytical chemistry, fluorescent sensors, and biological applications of these moieties, covering the literature till May 2021.


This review emphasizes recent developments in synthetic routes of 3-(bromoacetyl)coumarin derivatives.graphic file with name d1ra05574g-ga.jpg

1. Introduction

Coumarins are one of the most common host heterocyclic systems reported in the literature of organic chemistry.1,2 Furthermore, coumarins and their derivatives are seen to be the pivotal components of a plethora of many natural products and pharmaceuticals3 and synthetic dyes.4–9 The pharmacological activities discovered amongst coumarin derivatives include the treatment categories of Alzheimer's10 and haematopoietic necrosis (IHN);11 they have shown potent anticoagulant, antibiotic, antiembolic, antioxidative, and anti-ischemic activities12–16 (Fig. 1).

Fig. 1. Selected structures of coumarin derivatives in biological applications.

Fig. 1

Among these compounds, 3-(bromoacetyl)coumarin 1 and its derivatives are a prominent structural class in the synthesis of various bioactive heterocyclic scaffolds,17,18 they also are important components in drug discovery on account of their biological activities such as antiproliferative, antimicrobial activities,19 and are promising inhibitors of type 2 diabetes mellitus.20 In addition, numerous chemosensors are based on polyfunctional coumarin platforms used to detect multianalyte detection, such as different bioactive elements and various environmental pollutants.21,22 There is no survey available on the biological and chemical applications achieved since the discovery of 3-(bromoacetyl)coumarins. The articles on this type of coumarin are scattered in scientific journals.

In continuation of our investigations on the chemistry of coumarins and their azo/thio isosteric analogs23–28 and based on the above mentioned interesting biological and chemical aspects, this survey mainly highlights the advances in the synthesis of 3-(bromoacetyl)coumarin and its derivatives, besides, their transformations for the construction of different fused heterocyclic systems in detail. Additionally, a wide range of analytical chemistry, fluorescent sensors, and biological applications of these moieties are summarized.

2. Spectral data

Many papers have reported the spectroscopic measurements (IR, 1H NMR, 13C NMR, and Mass) of 3-(bromoacetyl)coumarin.29,30 As IR spectrum of 3-(bromoacetyl)coumarin showed the characteristic ketonic group band at 1674, while C–H stretching vibrations at the aromatic region 3100–3000 cm−1 (ref. 29) and two carbonyl characteristic peaks at ν 1674 and 1729 cm−1 related to α,β-unsaturated ketonic and lactonic, respectively.311H NMR spectrum of parent 3-(bromoacetyl)coumarin 1 shows singlet signal of H-4 at δ = 8.63 ppm, while the CH2 group appears as singlet signal at δ = 4.74 ppm. Also, 13C NMR spectrum of 3-(bromoacetyl)coumarin exhibits characteristic signals at δ = 188.9, 158.9, and 35.6 ppm corresponding to α,β-unsaturated ketonic, lactonic and methylene carbons, respectively.30 In the same context, HRMS/MS is mentioned as characteristic spectrometric data for 3-(bromoacetyl)coumarin 1 shows that m/z 266.9665 (calcd. for C11H879BrO3 [M + H]+ 266.9657).30

In 1991, Vasudevan et al.32 elucidated the structure 3-(bromoacetyl)coumarin 1 through its single-crystal X-ray, which showed that there are two conformers of the structure 1, S-cis (I) or S-trans (II) (Fig. 2).

Fig. 2. S-cis (I) or S-trans (II) conformers of 3-(bromoacetyl)coumarin 1.

Fig. 2

Moreover, Sparkes and coworkers33 reported a polymorph of 3-(bromoacetyl)coumarin (Fig. 3). Whereas, Chennuru et al.34 reported a single-crystal X-ray of 6-chloro-3-(bromoacetyl)coumarin (Fig. 4).

Fig. 3. ORTEP diagram of 3-(bromoacetyl)coumarin 1 [reprinted from ref. 33].

Fig. 3

Fig. 4. ORTEP diagram of 6-chloro-3-(bromoacetyl)coumarin [reprinted from ref. 34].

Fig. 4

3. Synthesis

3.1. Using 3-acetylcoumarins

The reaction of 3-acetylcoumarins 2 with numerous reagents represents a general approach to preparing 3-bromoacetyl coumarin derivatives 1. Several brominating agents have been reported in the last two decades such as tetrabutylammonium tribromide (TBATB), bromine, phenyltrimethylammonium tribromide (PhTAPBr3), N-bromosuccinimide (NBS), and copper(ii) bromide (CuBr2) (Scheme 1).35–47

Scheme 1. Formation of 3-(bromoacetyl)coumarin derivatives 1.

Scheme 1

4. Reactivity

On the treatment of 3-(bromoacetyl)coumarin 1 with various nucleophiles, four possible electrophilic positions are susceptible to attack: the exo-carbonyl group (position 1), bromomethanide group (CH2Br) (position 2), lactonic carbonyl group (position 3) and the bromo atom (position 4) susceptible to attack (Fig. 5). Besides, the typically nucleophilic position for attacking is carbon 4. The reactivity of α-bromoacetylcoumarin towards oxygen, nitrogen, and sulphur nucleophiles is discussed in this review.

Fig. 5. Reactive sites in 3-(bromoacetyl)coumarin.

Fig. 5

5. Reactions

5.1. Amination

Sinnur et al.48 reported a short and efficient synthesis for aminomethyl-3-coumarinyl ketone hydrochloride 4via refluxing 3-(bromoacetyl)coumarin 1 with hexamethylenetetramine 3 in drops of concentrated hydrochloric acid (Scheme 2).

Scheme 2. Synthesis of aminomethyl-3-coumarinyl ketone hydrochloride 4.

Scheme 2

Moreover, 3-(bromoacetyl)coumarin 1 was condensed with an amino group of various heterocyclic derivatives 5 such as 2-aminothiazole, 2-aminobenzothiazole, 2-amino-1,3,4-oxadiazole, 2-amino-1,3,4-thiadiazole, and 3-amino-4H-1,2,4-triazole derivatives in DMF to give the corresponding 2H-chromen-2-ones 6 (Scheme 3).49

Scheme 3. Condensation of 3-(bromoacetyl)coumarin 1 with various heterocyclic amino groups.

Scheme 3

Treatment of 3-(bromoacetyl)coumarin 1 with di(2-picolyl)amine 7 in chloroform under basic condition at room temperature afforded the corresponding 3-(bis(pyridin-2-ylmethyl)glycyl)-2H-chromen-2-one 8 (Scheme 4).50,51

Scheme 4. Reaction of 3-(bromoacetyl)coumarin 1 and di(2-picolyl)amine 7.

Scheme 4

Selective nucleophilic substitution of 3-(bromoacetyl)coumarin 1 was accomplished through stirring with benzimidazole 9 in acetonitrile at ambient temperature afforded corresponding imidazole-1-carbonyl-chromenone 10 (Scheme 5).52

Scheme 5. Treatment of 3-(bromoacetyl)coumarin 1 with benzimidazole 9.

Scheme 5

Valadbeigi et al.53 reported the synthesis of thiazolidinedione derivatives 12 through heating of 3-(bromoacetyl)coumarin 1 with thiazolidine-2,4-dione 11 in alcoholic potassium hydroxide (Scheme 6).

Scheme 6. Transformation of 3-(bromoacetyl)coumarin 1 to thiazolidine-2,4-dione 11.

Scheme 6

The reaction of the 3-(bromoacetyl)coumarin derivatives 1 with substituted arylamine 13 in ethanol in the absence54 or the presence of sodium bicarbonate41,55,56 or under solvent-free condition using K2CO3 (ref. 57) yielded the corresponding 3-(2-(phenylanliino)acetyl)-2H-chromen-2-ones 14 (Scheme 7).

Scheme 7. Transformation of 3-(bromoacetyl)coumarins 1 to chromenones 14.

Scheme 7

Whereas, refluxing of 3-(bromoacetyl)coumarin derivatives 1 with arylamines 13 in a mixture of ethanol and chloroform afforded the corresponding imino derivatives 15a-f (Scheme 8).54

Scheme 8. Synthesis of imino derivatives 15.

Scheme 8

Coupling of 3-(bromoacetyl)coumarin derivatives 1 with amine hydrochlorides 16 such as hydroxylamine hydrochloride, methoxyamine hydrochloride, o-benzylhydroxylamine hydrochloride, and ethoxyamine hydrochloride in methyl alcohol to afford 3-(bromoacetyl) coumarin oximes 17 (Scheme 9).53,58–62

Scheme 9. Synthesis of bromoacetylcoumarin oximes 17.

Scheme 9

5.2. Azidation

Evans and coworkers58 reported the synthesis of coumarin fluorophore bearing an azidoacyl group 19via the treatment of 3-(bromoacetyl)coumarin 1 with sodium azide (NaN3) 18 at tetrahydrofuran (Scheme 10).

Scheme 10. Synthesis of 3-azidoacyl coumarins 19.

Scheme 10

5.3. Thiocyanation reaction

Ramanna et al.63 reported the treatment of 3-(bromoacetyl)coumarin derivatives 1 with potassium thiocyanate (KSCN) 20 in ethanol furnished 3-thiocyanatoacetyl coumarin derivatives 21 in good yields (Scheme 11).

Scheme 11. Treatment of 3-(bromoacetyl)coumarins 1a-f with potassium thiocyanate 20.

Scheme 11

5.4. Sulfonation reaction

Mixing of 3-(bromoacetyl)coumarins 1 with sodium arene sulfinates 22 in solid state in the presence of few drops of DMF furnished 3-(2-(phenylsulfonyl)acetyl)coumarin derivatives 23 (Scheme 12).64,65 Furthermore, the reactions of this type were promoted under solvent-free conditions, as reported in literature.66,67

Scheme 12. Alkylation of 3-(bromoacetyl)coumarin derivatives 1via sulfinates metal salts 22.

Scheme 12

A facile synthesis (E)-styryl sulfones 25a-k was accomplished via the reaction of 3-(bromoacetyl)coumarin derivatives 1 with sodium sulfinates 24 in the presence of polyethylene glycol (PEG-400) for promoting the reaction at ambient temperature (Scheme 13).68

Scheme 13. Synthesis of heteryl (E)-styryl sulfone derivatives 25a-k.

Scheme 13

5.5. Coupling reactions

Coupling buffered solution of 3-(bromoacetyl)coumarin 1 with benzendiazonium chloride 26 yielded the corresponding 3-(2-bromoacetyl)-4-styryl-2H-chromen-2-one 27 (Scheme 14).69 While the reaction of 3-(bromoacetyl)coumarin 1 with benzenediazonium chloride 26 under the influence of sodium acetate afforded N-phenylacetohydrazonoyl bromide bearing coumarin moiety 28 (Scheme 14).70

Scheme 14. Coupling 3-(bromoacetyl)coumarin 1 with benzendiazonium chloride 26.

Scheme 14

5.6. Trifluoromethylation reaction

Novak and co-workers showed that trifluoromethylation of 3-(bromoacetyl)coumarin 1 with CHF329 derived CuCF3 at room temperature to give 2-trifluoromethylcoumarin 30 in yield 57% (Scheme 15).71

Scheme 15. Trifluoromethylation of 3-(bromoacetyl)coumarin 1.

Scheme 15

5.7. Phosphorylation reaction

3-(Bromoacetyl)coumarin 1 was transformed to 2-oxophosphonates 32 in xylene via Arbuzov reaction conditions with triphenyl phosphite 31 (Scheme 16).72–75

Scheme 16. Formation of 2-oxophosphonates 32.

Scheme 16

Wang et al. synthesized triphenylphosphonium 34via the treatment of 3-(bromoacetyl)coumarin 1 with triphenylphosphine 33 in benzene or chloroform (Scheme 17).76

Scheme 17. Treatment of 3-(bromoacetyl)coumarin 1 with triphenylphosphine 33.

Scheme 17

5.8. Cyanation reaction

3-(Cyanoacetyl)coumarin 36 was prepared based on cyanation of 3-(bromoacetyl)coumarin 1 by treatment with potassium cyanide (KCN) 35 under ethanolic condition (Scheme 18).70

Scheme 18. Treatment of 3-(bromoacetyl)coumarin 1 with potassium cyanide 35.

Scheme 18

5.9. Reaction with active methylene compound

2-Hydroxy-1-(2-oxo-2H-chromen-3-yl-ethylidene)malononitrile 39 was obtained through Knoevenagel condensation of 3-(bromoacetyl)coumarin 1 with cyanoacetonitrile, 37 in the presence of ammonium acetate 38 (Scheme 19).70

Scheme 19. Formation of 2-hydroxy((2H-chromen-3-yl)ethylidene)malononitrile 39.

Scheme 19

5.10. Synthetic approach toward heterocyclic hybrids

5.10.1. Synthesis of three-membered rings with one heteroatom

5.10.1.1. Oxirane

Oxirane phosphonates 41 were obtained via Michaelis–Becker reaction of 3-(bromoacetyl)coumarin 1 and dialkyl phosphites 40 using N-benzyl-N,N,N-triethylammonium chloride (BTEAC) as a phase-transfer catalyst (Scheme 20).77

Scheme 20. Synthesis of enol phosphate 41.

Scheme 20

5.10.2. Synthesis of five-membered rings with one heteroatom

5.10.2.1. Pyrroles

An efficient synthesis of poly functionalized coumarin bearing pyrrolo[2,1-a]isoquinoline derivatives 44 was achieved via a multi-reaction of 3-(bromoacetyl)coumarin derivatives 1, isoquinoline 42, and dimethyl acetylenedicarboxylate 43 under the influence of triethylamine as catalyst (Scheme 21).78

Scheme 21. Synthesis of coumarin bearing pyrrolo[2,1-a]isoquinolines 44.

Scheme 21

Pal et al.79 reported an eco-benign methodology for the preparation of coumarin-pyrrol hybrids 46via three-component reactions of 3-(bromoacetyl)coumarin derivatives 1, an alkyl/arylamine 13, and acetylacetone 45 in the presence of optimized molarity of alum catalyst in water–PEG 400 (Scheme 22).

Scheme 22. MCR of coumarins 1, an alkyl/arylamine 13, and acetylacetone 45.

Scheme 22

Pyrrole bis-coumarins 47 as fluorescent probes have been synthesized from the treatment of corresponding 3-(bromoacetyl)coumarin derivatives 1 with aniline 13 under catalytic condition (Zn–I2) (Scheme 23).80

Scheme 23. Reaction of corresponding 3-(bromoacetyl)coumarins 1 with aniline 13.

Scheme 23

5.10.2.2. Dihydrofurans

The synthesis of coumarin substituted dihydrofurans 50a-i in good yields was performed via refluxing 3-(bromoacetyl)coumarins 1, dimedone 48, and aromatic aldehydes 49 in a mixture of acetonitrile and pyridine as a solvent containing a catalytic amount of triethylamine (Scheme 24).81

Scheme 24. Synthesis of coumarin bearing dihydrofurans.

Scheme 24

5.10.2.3. Thiophenes

Triethylamine-catalyzed heterocyclization of the ketene N,S-acetals 51 with 3-(bromoacetyl)coumarin 1 in ethanol has been employed to synthesize the corresponding 4-amino-2-phenylamino thiophenes 52a-c (Scheme 25).82

Scheme 25. Heterocyclization of the ketene N,S-acetals 51.

Scheme 25

Treatment of 3-(bromoacetyl)coumarin 1 with sulfur 53 and either malononitrile 37 or ethyl cyanoacetate 54 in the presence of triethylamine furnished the corresponding 2-amino thiophene derivatives 55a and 55b, respectively (Scheme 26).70

Scheme 26. Formation of thiophene derivatives 55.

Scheme 26

5.10.3. Synthesis of five-membered rings with two heteroatoms

5.10.3.1. Oxazoles

Eco-friendly approach to accesses 3-methyl-1-(2-(4-(2-oxo-2H-chromen-3-yl)oxazol-2-yl)acetyl)-1H-pyrazol-5(4H)-one 57 was carried out without using any catalyst through the reaction of 3-(bromoacetyl)coumarin 1 with 3-oxopropanamide 56 in ethanol under heating (Scheme 27).83

Scheme 27. Synthesis of tetracyclic heterocyclic systems 57.

Scheme 27

5.10.3.2. Imidazole derivatives

A simple one-pot synthesis of novel substituted imidazoles 60 has been accomplished by three-component reaction of 3-(bromoacetyl)coumarin 1, ammonium thiocyanate 58, and phenacyl aniline 59 (Scheme 28).84

Scheme 28. Preparation of substituted imidazole derivatives 60.

Scheme 28

Boda et al. reported the preparation of fused imidazo[1,2-a][1,8]naphthyridines 62a-g through the solvent-free reaction of 3-(bromoacetyl)coumarin 1 and 2-amino-1,8-naphthyridines 61a-g using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalyst (Scheme 29).85

Scheme 29. Cyclocondensation of compound 1 and 2-amino-1,8-naphthyridines 61.

Scheme 29

The coumarin-imidazo[1,2-a]pyrimidine derivatives 64 as pH-sensitive fluorescent compounds were carried out through thermal conventional (CM) or microwave irradiation (MWI) methods. Heating a mixture of 3-(bromoacetyl)coumarin 1 and 2-aminopyrimidine derivatives 63 in the microwave at 200 W at 100 °C afforded corresponding products in yields 5–90% compared by conventional thermal method (5–80%) (Scheme 30).37

Scheme 30. Synthesis of coumarin-imidazo[1,2-a]pyrimidines 64.

Scheme 30

Rao and Reddy have repeated the cyclocondensation of 3-(bromoacetyl)coumarins 1 with 2-aminothiazoles 5 in refluxing ethanol yielded the corresponding imidazo[2,1-b]thiazol-5-2H-chromen-2-ones 65 (Scheme 31).86

Scheme 31. Reaction of bromoacetylcoumarins 1 with thiazole derivatives 5.

Scheme 31

3-(2-Cyclohexylimidazo[2,1-b]-[1,3,4]thiadiazol-6-yl)-2H-chromen-2-ones 66a-f was obtained as hydrobromide salt through the reaction of 3-(bromoacetyl)coumarin 1 with 2-amino-5-cyclohexyl-1,3,4-thiadiazole 5 in refluxing ethanol (Scheme 32).87,88

Scheme 32. Reaction of 3-(bromoacetyl)coumarin 1 and 1,3,4-thiadiazoles 5.

Scheme 32

In refluxing 2-methoxyethanol, the reaction of 6-substituted-3-(bromoacetyl)coumarins 1 with 2-aminobenzo[d]thiazole-6-sulfonamide 5 was achieved, followed by neutralization using ammonia solution afforded corresponding imidazobenzothiazoles 67 (Scheme 33).89

Scheme 33. Formation of imidazobenzothiazoles 67.

Scheme 33

5.10.3.3. Pyrazoles

3,5-Dimethylpyrazole derivatives 69 have been prepared through a one-pot multi-component reaction of 3-(bromoacetyl)coumarin derivatives 1, acetylacetone 45, and hydrazine hydrate 68 in refluxing ethanol (Scheme 34).90

Scheme 34. Multi-component reaction of the synthesis of 3,5-dimethylpyrazoles 69.

Scheme 34

Condensation of 3-(bromoacetyl)coumarin 1 with 3-aminopyrazole 70 within DMF/AcOH yielded the corresponding imidazo[1,2-b]pyrazole 71 (Scheme 35).91

Scheme 35. Annulation of imidazo[1,2-b]pyrazole 71.

Scheme 35

Using grindstone chemistry, the synthesis of 3-(7-methylimidazo[1,2-a]pyridin-2-yl)-2H-chromen-2-one 73 was achieved through the reaction of 3-(bromoacetyl)coumarin 1 with 2-amino-4-methylpyridine 72 under neat condition and catalyst-free (Scheme 36).92

Scheme 36. Synthesis of coumarin bearing imidazo[1,2-a]pyridine 73.

Scheme 36

5.10.3.4. Thiazole derivatives

Gouda disclosed the reaction of 3-(bromoacetyl)coumarin 1 with thioacetamide 74 in methanol under reflux furnished 3-(2-methylthiazol-4-yl)-2H-chromen-2-one 75 (Scheme 37).93

Scheme 37. Formation of 3-(2-methylthiazol-4-yl)-2H-chromen-2-one 75.

Scheme 37

One of the most successful methods for the synthesis of 3-(2-ethoxythiazol-4-yl)-2H-chromen-2-one 76 is the refluxing 3-(bromoacetyl)coumarin 1 with potassium thiocyanate 20 in ethanol (Scheme 38).78

Scheme 38. Synthesis of 3-(2-ethoxythiazol-4-yl)-2H-chromen-2-one 76.

Scheme 38

The Hantzsch thiazole synthesis of numerous 2-amino thiazolylcoumarins 78 was accomplished by cyclocondensation of 3-(bromoacetyl)coumarin derivatives 1 with various N-substituted thiourea 77 under various conditions (Scheme 39).54,94–109

Scheme 39. Hantzsch route for the synthesis of substituted 2-amino thiazolylcoumarins 78.

Scheme 39

Analogously, 4-coumarinylthiazole derivatives 79–85 were efficiently prepared under conventional method or ultrasound irradiation in short reaction and high yields via the condensation of various 3-(bromoacetyl)coumarin derivatives 1 with N-substituted thioamide 74 (e.g. 2,4-thioureido benzenesulfonamide, ethyl thiooxamate, dihydrophthalazine carbothioamide, and pyrazole carbothiamides) in refluxing ethanol or tetrahydrofuran under alkaline condition (sodium acetate and sodium carbonate) (Scheme 40).110–116

Scheme 40. Treatment of various 3-(bromoacetyl)coumarins 1 with N-substituted thioamides 74.

Scheme 40

3-(Bromoacetyl)coumarin 1 was reacted with the appropriate carbothioamides 86 in DMF in the presence of triethylamine to give the corresponding 3,3′-(thiazole-2,4-diyl)bis-chromen-2-ones 87a,b (Scheme 41).117

Scheme 41. Synthesis of 3-(thiazol-2-yl)-2H-chromen-2-ones 87a,b.

Scheme 41

New sets of hydrazinyl thiazolyl coumarin derivatives 89–99 were accomplished in high and efficient yield from the one-pot Hantzsch reaction; the proposed mechanism of the reaction involves the cyclocondensation of the appropriate thiosemicarbazones 88 with 3-(bromoacetyl)coumarin 1 under various conditions (Scheme 42).94,118–127

Scheme 42. Synthesis of series of hydrazinyl thiazolyl coumarin derivatives 89–99.

Scheme 42

Utilizing deep eutectic solvent (DES) and ultrasound for the preparation of 2-oxochroman-3-thiazol-2-hydrazono-indolin-2-one 101via the reaction of 1 with hydrazinecarbothioamide 100 (Scheme 43).94,128

Scheme 43. The synthesis of 2-oxochroman-3-thiazol-2-hydrazono-indolin-2-one 101.

Scheme 43

The bis(thiazole-4,2-diyl)bis(2H-chromen-2-ones) 103 and 104 were obtained via one-pot cyclisation reaction of bis(hydrazinecarbothioamides) 102 with 3-(bromoacetyl)coumarin 1 (Scheme 44).94,129

Scheme 44. Formation of bis(thiazole-4,2-diyl)bis(2H-chromen-2-ones) 103 and 104.

Scheme 44

Cyclization reaction of 3-(bromoacetyl)coumarin 1 with thiosemicarbazides 105 in the presence of a catalytic amount of trimethylamine in ethanol yielded thiazolylcoumarin derivatives 106 (Scheme 45).130

Scheme 45. Synthesis of thiazolylcoumarin derivatives 106.

Scheme 45

Refluxing of 3-(bromoacetyl)coumarin 1 and coumarinothiosemicarbazides 107a-m in methanol containing drops of acetic acid as catalyst gave bis-coumarin–iminothiazole hybrids 108a-m in good yields (Scheme 46).131

Scheme 46. Synthesis of bis-coumarin–iminothiazole hybrids 108a-m.

Scheme 46

The multi-component reaction of 3-(bromoacetyl)coumarin derivatives 1, phenylisothiocyanates 109a-h with cyanamide 110 in freshly prepared sodium methoxide yielded annulated 3-(4-amino-2-(phenylamino)thiazole-5-carbonyl)-2H-chromen-2-one derivatives 111a-h in moderate yields (Scheme 47).132

Scheme 47. The synthesis of (4-aminophenyl-thiazole-5-carbonyl)-2H-chromenones 111.

Scheme 47

Novel series of thiazolylcoumarins 114-117 were prepared via multi-component condensation reaction of 3-(bromoacetyl)coumarin derivatives 1 thiosemicarbazide 112 and aldehydes 113 with different substitution patterns (aryl,133,134 pyrazole,134 imidazo[1,2-a]pyridine,135 indole136) in ethanol with a catalytic amount of acetic acid (Scheme 48).

Scheme 48. Formation of annulated thiazolylcoumarins 114–117.

Scheme 48

New series of coumarin based thiazoles 119a-n were accomplished via mixing of substituted 3-(bromoacetyl)coumarins 1, aldehydes 49, and thiocarbohydrazide 118 in the presence of a catalytic amount of acetic acid in the microwave for 6–8 min (Scheme 49).137

Scheme 49. Synthesis of coumarin based thiazoles 119a-n.

Scheme 49

Three-component condensation of 3-(bromoacetyl)coumarin derivatives 1, thiocarbohydrazide 118 and aldehyde 120 were carried out under refluxing condition in ethanol in the presence of a catalytic amount of acetic acid to afford novel series of substituted 1,2,3-triazole-hydrazinyl-1,3-thiazole scaffolds 121a-h (Scheme 50).138

Scheme 50. Synthetic route for the formation of 1,2,3-triazole-thiazole systems 121a-h.

Scheme 50

A water-mediated MCR protocol has been described for the synthesis of thiazolyl coumarins 123 from a three-component reaction of 3-(bromoacetyl)coumarin 1, aldehydes 113 or ketones 122, and thiosemicarbazide 112 catalyzed by montmorillonite K10 clay at ambient temperature (Scheme 51).139

Scheme 51. Formation of thiazolyl coumarins 123.

Scheme 51

One-pot, synthesis of thiazolylhydrazone derivatives 125a-f through multi-component condensation of 3-(bromoacetyl)coumarin derivatives 1, thiosemicarbazide 112 and 1,3-indandione 124 in refluxing ethanol using a catalytic amount of acetic acid (Scheme 52).140

Scheme 52. Synthesis of novel thiazolylhydrazone derivatives 125.

Scheme 52

Multi-component synthesis of 3-(2-amino-4-thiazolyl)coumarins 127a-h have been obtained in good yields by refluxing of 3-(bromoacetyl)coumarin derivatives 1, trimethylsilyl isothiocyanate 126, and different primary amines 13 in ethanol (Scheme 53).141

Scheme 53. Synthesis of 3-(2-amino-4-thiazolyl)coumarins 127a-h.

Scheme 53

The reaction of 3-(bromoacetyl)coumarins 1 with phenylisothiocyanate 128 and aniline derivatives 13 afforded the thiazole derivatives 129a–d (Scheme 54).70 On the other hand, an efficient three-component synthesis of 2-arylimino-3-thiazolines 131 by the condensation of 3-(bromoacetyl)coumarin derivatives 1, arylisothiocyanates 128, and amine 130 (Scheme 54).142

Scheme 54. Synthesis of 2-arylimino-3-thiazolines 129 and 131.

Scheme 54

A one-pot multi-component approach involving different substituted of 3-(bromoacetyl)coumarin derivatives 1, phenyl isothiocyanates 128, and p-phenylenediamine 132 in refluxing DMF have been carried out for getting the new series of bis (phenylimino dihydro thiazolyl-2H-chromene) 133 (Scheme 55).143

Scheme 55. Preparation of bis (thiazolyl-2H-chromene) systems 133.

Scheme 55

Microwave irradiation was reported as a green chemistry method for the synthesis of coumarin-3-yl-thiazol-3-yl-1,2,4-triazolin-3-ones 135 by Shaikh et al.144via mixing of 3-(bromoacetyl)coumarin derivatives 1, 1,2,4-triazolone, 134 and aryl isothiocyanate 128 in DMF without using a catalyst (Scheme 56).

Scheme 56. Preparation of poly functionalized heterocyclic hybrids 135.

Scheme 56

An efficient synthesis of 3-[2-(arylamino)thiazol-4-yl]coumarins 136a-kvia grinding of 3-(bromoacetyl)coumarin derivatives 1, arylamines, 13 and potassium thiocyanate 20 in the least amount of ethanol as solvent under free catalyst and neat condition (Scheme 57).109

Scheme 57. Synthesis of 3-[2-(arylamino)thiazol-4-yl]coumarins 136a-k.

Scheme 57

l-Proline catalyzed efficient one-pot three-component route for the synthesis of (2-oxo-2H-chromen-3-yl-thiazol-2-yl)-3-arylacrylonitriles 138a-hvia treating 3-(bromoacetyl)coumarin 1 with numerous aryl/heteryl aldehydes 49 and 2-cyanothioacetamide 137 (Scheme 58).145

Scheme 58. Multi-component synthesis of chromen-3-thiazol-2-arylacrylonitriles 138.

Scheme 58

5.10.3.5. Thiazolopyrazolones

A mixture of 3-(bromoacetyl)coumarin derivatives 1, acetophenones 139, and thiosemicarbazide 112 were subjected to a one-pot multi-component Vilsmeier–Haack reaction condition afforded series of substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes bearing coumarin moiety 140 in moderate yields (Scheme 59).146

Scheme 59. Vilsmeier–Haack reaction condition for the synthesis of products 140.

Scheme 59

4,5-Dihydropyrazolyl–thiazole–coumarin systems 142 were obtained via the reaction of 3-(bromoacetyl)coumarin 1 and 3,5-disubstituted phenyl-4,5-dihydropyrazole-1-carbothioamide 141 in ethanol (Scheme 60).147

Scheme 60. Synthesis of 4,5-dihydropyrazolyl–thiazole–coumarin hybrids 142.

Scheme 60

5-Hydroxy-5-trifluoromethyl-4,5-dihydropyrazol-1-4-(coumarin-3-yl)thiazoles 144 were obtained by refluxing of 3-(bromoacetyl)coumarin derivatives 1 with 5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazol-1-thiocarboxamides 143 in ethanol (Scheme 61).148

Scheme 61. Synthesis annulated 4-(coumarin-3-yl)thiazoles 144.

Scheme 61

Synthesis of coumarin-substituted thiazolyl-pyrazolone derivatives 146 was reported by Pavurala et al. via a one-pot reaction of 3-(bromoacetyl)coumarin derivatives 1, thiosemicarbazide 89, aryl aldehyde 49, and ethyl acetoacetate 145 in boiling acetic acid (Scheme 62).149

Scheme 62. Synthesis of coumarin bearing thiazol-pyrazolone moieties 146.

Scheme 62

Series of pyrazoles bearing coumarin moieties 148 were prepared underwent Hantzsch cyclocondensation of 3-(bromoacetyl)coumarin 1, thiosemicarbazide 112 and various 3-(acetoacetyl) coumarins 147 in refluxing ethanol (Scheme 63).150

Scheme 63. Coumarin bearing pyrazole and thiazole hybrids 148.

Scheme 63

One pot, three-component reaction of chalcones 149, thiosemicarbazide 112, and different substituted 3-(bromoacetyl)coumarin derivatives 1 in refluxing ethanol containing catalytic amount of aqueous sodium hydroxide was achieved as an effective route for the synthesis of 4,5-dihydro-3,5-diphenylpyrazol-1-thiazol-4-2H-chromen-2-one derivatives 150a-l in one step (Scheme 64).149

Scheme 64. Synthesis of binary pyrazol-1-thiazol-4-2H-chromen-2-one derivatives 150a-l.

Scheme 64

In the same fashion, Ghodsi et al. have been reported the synthesis of fused substituted thiazolyl-pyrazole-biscoumarin 152 through cyclocondensation of different coumarin chalcones 151, thiosemicarbazide 112, and 3-(bromoacetyl)coumarin derivatives 1 in ethanol in the presence of hydrochloric acid (Scheme 65).151

Scheme 65. Formation of (2H-chromen-5-phenyl-1H-pyrazol-thiazol-4-yl) chromenones 152.

Scheme 65

5.10.3.6. Thiazolotriazoles

On the other hand, the reaction of 3-(bromoacetyl)coumarin 1 with 5-phenyl-4H-1,2,4-triazole-3-thiol 153 gave fused thiazolo[3,2-b][1,2,4]triazol-5-chromenone 154 (Scheme 66).152

Scheme 66. Treatment of 3-(bromoacetyl)coumarin 1 with 5-phenyl-1,2,4-triazole-3-thiol 154.

Scheme 66

5.10.3.7. Thiazolopyrimidines

Novel fused thiazolo[3,2-a]pyrimidines 156a-g have been obtained in good yields by treatment of 3-(bromoacetyl)coumarin 1 with aryl-3,4-dihydropyrimidin-2(1H)-thiones 155a-g under conventional heating in acetic acid as solvent (Scheme 67).153,154

Scheme 67. Synthesis of fused thiazolo[3.2-a]pyrimidine derivatives 156.

Scheme 67

The cyclocondensation reaction of 3-(bromoacetyl)coumarin derivatives 1 with 4-phenyl-2-thioxo-indeno[1,2-d]pyrimidinone 157 in boiling acetic acid furnished phenylindeno[1,2-d]thiazolo[3,2-a]pyrimidin-6(5H)-ones 158 in high yields (Scheme 68).155

Scheme 68. Synthesis of phenylindeno[1,2-d]thiazolo[3,2-a]pyrimidin-6(5H)-ones 158.

Scheme 68

A new version of the Biginelli reaction using new variants was applied for the synthesis of substituted thiazolo[3,2-a]thiochromeno[4,3-d]pyrimidine 160a-d through mixing an equimolar ratio of 3-(bromoacetyl)coumarin 1, thiochromanone 159, substituted benzaldehyde 49a-d and thiourea 77 in one-pot reaction in the presence of [Bmim]HSO4 as a mediated ionic liquid catalyst, leading to the formation of a double electrophilic pyrimidine-2(5H)-thione as an intermediate which cyclized directly to furnish the targeting products 160a-d (Scheme 69).157

Scheme 69. One-pot four-component Biginelli reaction.

Scheme 69

5.10.3.8. Thiazoloquinazolines

Biginelli reaction of 3-(bromoacetyl)coumarin 1, aryl aldehyde 49a-j, thiourea 77 and 6-methoxy-1-tetralone 161 in the presence of in poly(4-vinylpyridinium)hydrogen sulfate [P(4-VPH)HSO4] as Brønsted acid catalyst under neat condition afforded aryl-thiazolo[2,3-b]quinazoline derivatives 162a-j (Scheme 70).156

Scheme 70. Synthesis of fused thiazolo[2,3-b]quinazoline derivatives 162a-j.

Scheme 70

5.10.3.9. Selenazoles

An efficient synthesis of functionalized selenazoles 164 was achieved via ultrasonic irradiation of 3-(bromoacetyl)coumarin 1 with selenourea 163 at ambient temperature an aqueous medium under ultrasonic irradiation (Scheme 71).99

Scheme 71. Formation of 2,4-disubstituted selenazoles 164.

Scheme 71

5.10.4. Synthesis of five-membered rings with three heteroatoms

5.10.4.1. Triazoles

Cu(i)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of 3-(bromoacetyl)coumarin derivatives 1, sodium azide 18, and coumarin propargyl ethers 165 has been employed for the construction of bis-coumarinyl triazoles 166 (Scheme 72).158

Scheme 72. Click cycloaddition reaction of 3-(bromoacetyl)coumarins 1a-c.

Scheme 72

5.10.5. Synthesis of five-membered rings with four heteroatoms

5.10.5.1. Tetrazoles

1,5-Disubstituted tetrazole based chromone derivatives 167a-d were synthesized employing four-component condensation of 3-(bromoacetyl)coumarin 1, aldehyde derivatives 49a-d, sodium azide 18, and hydroxylamine 16 in ethanol containing catalytic drops of trimethylamine, the reaction was supported by nanorods of zinc oxide (NRs) and Ag-doped ZnO nanocomposites (NCs) as photocatalysts (Scheme 73).159

Scheme 73. Preparation of 1,5-disubstituted tetrazole 167.

Scheme 73

5.10.6. Synthesis of six-membered rings with one heteroatom

5.10.6.1. Pyran derivatives

Mohareb and MegallyAbdo70 described the preparation of 2-amino-3-cyano-pyran derivatives 168 using three-component reactions of 3-(bromoacetyl)coumarin 1 with malononitrile 37 and aromatic aldehydes 49 in boiling ethanol containing catalytic drops of trimethylamine (Scheme 74).

Scheme 74. Synthesis of 3-cyano-pyran derivatives 168.

Scheme 74

5.10.6.2. Pyridines

On the other hand, repeating the previous reaction using a catalytic amount of ammonium acetate 38in lieu of triethylamine afforded the pyridine systems 169a-d (Scheme 75).70

Scheme 75. Formation of pyridine derivatives 169a-d.

Scheme 75

Multicomponent condensation of 3-(bromoacetyl)coumarin 1, cyanothioacetamide 137, benzaldehyde derivatives 49 and methyl 4-methyl-3-oxopentanoate 170 led to formation of fused chromeno[3′′,4′′:5′,6′]pyrido[2′,3′:4,5]thieno[3,2-e]pyridine derivatives 171 (Scheme 76).160

Scheme 76. Synthesis of pyridines 171.

Scheme 76

5.10.7. Synthesis of six-membered rings with two heteroatoms

5.10.7.1. Fluoroquinolone derivatives

Nucleophilic substitution reactions of fluoroquinolones 172 (GTFX, CPFX, and 8-OCH3CPFX) with 3-(bromoacetyl)coumarin derivatives 1 in dimethylformamide, in the presence of NaHCO3, provide fluoroquinolone derivatives 173 (Scheme 77).62

Scheme 77. Formation of various fluoroquinolone derivatives 173.

Scheme 77

5.10.7.2. 3-(Quinoxalin-2-yl)-2H-chromen-2-ones

3-(Quinoxalin-2-yl)-2H-chromen-2-ones 175-177 have been synthesized via substituted 3-(bromoacetyl)coumarins 1 and substituted o-phenylenediamines 174 in the presence of a catalyst such as PEG-600 or pyridine or without catalyst through microwave irradiation (Scheme 78).161–163

Scheme 78. Synthesis of 3-(quinoxalin-2-yl)-2H-chromen-2-ones 175–177.

Scheme 78

5.10.8. Synthesis of six-membered rings with three heteroatoms

5.10.8.1. Thiadiazin derivatives

One-pot condensation reaction between 3-(bromoacetyl)coumarin 1 and thiocarbohydrazide 118 as bishydrazide in ethanol and in the presence a catalytic amount of acetic acid afforded 2-hydrazino[1,3,4]thiadiazin-5-chromenone 178 (Scheme 79).164

Scheme 79. Formation of 3-(2-hydrazino-6H-[1,3,4]thiadiazin-5-yl)-chromen-2-one 178.

Scheme 79

5.10.8.2. Pyrazolyl-thiadiazine derivatives

Refluxing of an equimolar mixture of substituted 3-(bromoacetyl)coumarins 1, acetylacetone 45, and thiocarbohydrazide 118 in ethanol furnished pyrazolyl-thiadiazinyl-2H-chromenones 179a–i (Scheme 80).165

Scheme 80. Synthesis of pyrazolyl-thiadiazinyl-2H-chromenone derivatives 179a–i.

Scheme 80

5.10.8.3. Triazolo[3,4-b]thiadiazines

Series of functionalized 4-amino-4H-1,2,4-triazole-3-thiols 180 on reaction with substituted 3-(bromoacetyl)coumarins 1 under simple reaction conditions formed the title products coumarin-substituted [1,2,4]triazolo[3,4-b][1,3,4]thiadiazine hybrids 181–185 in good to excellent yields (Scheme 81).47,166–169

Scheme 81. Synthesis of coumarin[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine hybrids 181–185.

Scheme 81

Triazolo[3,4-b]thiadiazine 187 was produced from the treatment of 3-(bromoacetyl)coumarin 1 with 4-aminotriazole-3-thiol 186 under both conventional and microwave conditions (Scheme 82).170

Scheme 82. Formation of triazolo[3,4-b]thiadiazines 187.

Scheme 82

Bis coumarinyl bis triazolothiadiazinyl ethane derivatives 189 were synthesized through the reaction of ethane-1,2-diyl bis-4-amino-4H-1,2,4-triazole-3-thiols 188 with different substituted 3-(bromoacetyl)coumarin derivatives 1 in the presence of ethanol solvent (Scheme 83).165

Scheme 83. Synthesis of bis coumarinyl bis triazolothiadiazinyl ethane derivatives 189.

Scheme 83

A one-pot, multi-component reaction of 3-(bromoacetyl)coumarins 1, 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol 190 and various ethyl 2-(2-(aryl)hydrazono)-3-oxobutanoate dervatives 191 in acetic acid in the presence of sodium acetate provide a direct route for the synthesis of corresponding triazolothiadiazinyl-pyrazolone 192a-h (Scheme 84).171

Scheme 84. Synthesis of triazolothiadiazinyl-pyrazolone 192a-h.

Scheme 84

Pavurala and Vedula172 disclosed multi-component one-pot synthesis of pyrazolyl triazolo thiadiazinyl chromen-2–ones 193 was achieved via the multi-component reaction of 3-(bromoacetyl)coumarins 1, 4-amino-5-hydrazino-4H-[1,2,4]triazole-3-thiol 190 and acetylacetone 45 in absolute ethanol (Scheme 85).

Scheme 85. One-pot synthesis of series of fused pyrazolyl triazolo thiadiazinyl chromenones 193.

Scheme 85

5.10.8.4. Thiadiazinyl-phthalazine-1,4-diones

Rao Chunduru and Rao173 reported the synthesis of thiadiazinyl-phthalazine-1,4-dione derivatives 195via one-pot condensation reaction of 3-(bromoacetyl)coumarins 1, thiocarbohydrazide 118, and phthalic anhydride 194 in ethanol containing a catalytic amount of acetic acid (Scheme 86).

Scheme 86. Multi-component reaction for the synthesis of thiadiazinyl-phthalazine-1,4-diones 195.

Scheme 86

5.10.8.5. Thiadiazino[2,3-b]quinazolin-6(2H)-ones

An efficient one-pot synthesis of chromenyl[1,3,4]thiadiazino[2,3-b]quinazolin-6(2H)-ones 197 in high yields through cyclocondensation of 3-(bromoacetyl)coumarins 1 with 3-amino-2mercapto-3H-quinazolin-4-one 196 under the conventional and microwave conditions in the presence of potassium carbonate (Scheme 87).174

Scheme 87. Synthesis of chromenothiadiazino[2,3-b]quinazolin-6-ones 197.

Scheme 87

6. Applications

6.1. Biological activities

3-(Bromoacetyl)coumarins are being employed as privileged building blocks for the production of several bioactive heterocyclic compounds with a broad spectrum of medicinal agents including antibacterial, antifungal, antioxidant, anticancer, anti-inflammatory, anti-hepatocarcinoma, and antiproliferative agents (Table 1). Moreover, many approaches have also been explored for the construction and synthesis of a diverse range of inhibitors of metalloproteinase with significant inhibitory effects. These as a versatile scaffold include, for example, alkaline phosphatase,131 aldose reductase,110 alpha-glucosidase,91 and MMP-13 (ref. 40) inhibitors (Fig. 6).

Examples of a vast array of biologically active molecules towards some diseases.

Structures Activities Ref.
graphic file with name d1ra05574g-u1.jpg Antibacterial activity against: (E. coli, S. aureus and P. aeruginosa) 175
Antifungal activity against: (A. flavus, C. keratinophilum, and C. albicans)
Antioxidant activity: (moderate potency in scavenging DPPH radical (approximately 65%)
graphic file with name d1ra05574g-u2.jpg Antibacterial activity (zone of inhibition, ZI) against: S. aureus, ZI = 36.8 ± 0.6 mm 176
S. mutans, ZI = 25.4 ± 0.5 mm
K. pneumoniae, ZI = 27.2 ± 0.5 mm
E. coli, ZI = 26.3 ± 0.5 mm
graphic file with name d1ra05574g-u3.jpg Anti-influenza A virus H1N1: IC50 = 4.84 μg mL−1 in MDCK cells 108
graphic file with name d1ra05574g-u4.jpg Antimicrobial agents: M. tuberculosis (MIC = 15 μM) 177
graphic file with name d1ra05574g-u5.jpg Anti-Alzheimeractivity: anti-cholinesterases (IC50 = 43 nM) 178
graphic file with name d1ra05574g-u6.jpg Anticancer activity against 144
• Breast cancer
• Lung cancer
• Leukemia
• Human cervical cancer
graphic file with name d1ra05574g-u7.jpg Anticancer activity against human gastric cancer NUGC 70
• 168a: Ar = 2-furyl, IC50 = 29 nM (against human gastric cancer NUGC)
• 168b: Ar = 4-Cl-C6H5, IC50 = 89 nM (against MCF)
graphic file with name d1ra05574g-u8.jpg Anticancer activity (against MCF-7, HepG2 and SW480 cells): IC50 = 7.5–16.9 μg mL−1 132
graphic file with name d1ra05574g-u9.jpg Anticancer activity (against Hela cell line) 146
R = 6,8-diCl, R1 = 4-MeC6H4, IC50 = 5.75 μM
R = 6,8-diBr, R1 = 4-MeC6H4, IC50 = 6.25 μM
graphic file with name d1ra05574g-u10.jpg Anticancer activity (against Melanoma tumor cell line): 55.75% GI 99
graphic file with name d1ra05574g-u11.jpg Anti-inflammatory agents: 73–86% of inhibition after 1 h 148
graphic file with name d1ra05574g-u12.jpg Antiproliferative activity: IC50 = 10.364 ± 0.270 μM 170
graphic file with name d1ra05574g-u13.jpg Anti-hepatocarcinoma activity: IC50 = 2.33 ± 0.004 μM 145

Fig. 6. Representative inhibitors of metalloproteinase with significant inhibitory effects.

Fig. 6

6.2. Analytical applications

3-(Bromoacetyl)coumarin and 3-bromoacetyl-7-methoxycoumarin were used for the analysis of an emerging contaminant, perfluorinated substances.179,180 3-(Bromoacetyl)coumarins are versatile scaffolds with pivotal templates which have a vast array of applications in the field of fluorescent chemosensors towards metal cations, anions, and biomolecules181–184 (Fig. 7).

Fig. 7. Fluorescent chemosensors towards metal cations, anions, and biomolecules.

Fig. 7

7. Conclusion

This review has illuminated different aspects of 3-bromoacetylcoumarin 1 and its derivatives chemistry up to the beginning of 2021. It implies many sections on the synthesis of bromoacetylcoumarin derivatives. Besides different chemical reactions of bromoacetylcoumarins with various reagents, their biological evaluations and analytical application have been presented. Eventually, we hope that showcasing information accumulated over the years in developing 3-(bromoacetyl)coumarins core ranging from chemistry to applications will supplement the ongoing and forthcoming efforts towards the advancement of new functional molecular materials in the industry, biochemistry, and the environment.

Conflicts of interest

There are no conflicts to declare.

Supplementary Material

References

  1. Abdou M. M. El-Saeed R. A. Bondock S. Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions. Arabian J. Chem. 2019;12(1):88–121. doi: 10.1016/j.arabjc.2015.06.012. [DOI] [Google Scholar]
  2. Abdou M. M. El-Saeed R. A. Bondock S. Recent advances in 4-hydroxycoumarin chemistry. Part 2: Scaffolds for heterocycle molecular diversity. Arabian J. Chem. 2019;12(7):974–1003. doi: 10.1016/j.arabjc.2015.06.029. [DOI] [Google Scholar]
  3. Abdou M. M. 3-Acetyl-4-hydroxycoumarin: Synthesis, reactions and applications. Arabian J. Chem. 2017;10:S3664–S3675. doi: 10.1016/j.arabjc.2014.04.005. [DOI] [Google Scholar]
  4. Metwally M. A. Bondock S. El-Desouky E. Abdou M. M. Synthesis, structure elucidation and application of some new azo disperse dyes derived from 4-hydroxycoumarin for dyeing polyester fabrics. Am. J. Chem. 2012;2:347–354. doi: 10.5923/j.chemistry.20120206.09. [DOI] [Google Scholar]
  5. Metwally M. A. Bondock S. El-Desouky E. S. I. Abdou M. M. A facile synthesis and tautomeric structure of novel 4-arylhydrazono-3-(2-hydroxyphenyl)-2-pyrazolin-5-ones and their application as disperse dyes. Color. Technol. 2013;129(6):418–424. [Google Scholar]
  6. Abdou M. M. Bondock S. El-Desouky S. Metwally M. Synthesis, spectroscopic studies and technical evaluation of novel disazo disperse dyes derived from 3-(2-hydroxyphenyl)-2-pyrazolin-5-ones for dyeing polyester fabrics. Am. J. Chem. 2013;3:59–67. [Google Scholar]
  7. Metwally M. Bondock S. El-Desouky S. Abdou M. Synthesis, Structure Investigation and Dyeing Assessment of Novel Bisazo Disperse Dyes Derived from 3-(2'-Hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones. J. Korean Chem. Soc. 2012;56(3):348–356. doi: 10.5012/jkcs.2012.56.3.348. [DOI] [Google Scholar]
  8. Metwally M. Bondock S. El-Desouky S. Abdou M. Synthesis, tautomeric structure, dyeing characteristics, and antimicrobial activity of novel 4-(2-arylazophenyl)-3-(2-hydroxyphenyl)-1-phenyl-2-pyrazolin-5-ones. J. Korean Chem. Soc. 2012;56(1):82–91. doi: 10.5012/jkcs.2012.56.1.082. [DOI] [Google Scholar]
  9. Abbas M. A. Eid A. M. Abdou M. M. Elgendy A. El-Saeed R. A. Zaki E. G. Multifunctional Aspects of the Synthesized Pyrazoline Derivatives for AP1 5L X60 Steel Protection Against MIC and Acidization: Electrochemical, In Silico, and SRB Insights. ACS Omega. 2021;6(13):8894–8907. doi: 10.1021/acsomega.0c06050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Razavi S. F. Khoobi M. Nadri H. Sakhteman A. Moradi A. Emami S. Foroumadi A. Shafiee A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem. 2013;64:252–259. doi: 10.1016/j.ejmech.2013.03.021. [DOI] [PubMed] [Google Scholar]
  11. Hu Y. Chen W. Shen Y. Zhu B. Wang G.-X. Synthesis and antiviral activity of coumarin derivatives against infectious hematopoietic necrosis virus. Bioorg. Med. Chem. Lett. 2019;29(14):1749–1755. doi: 10.1016/j.bmcl.2019.05.019. [DOI] [PubMed] [Google Scholar]
  12. Sandhu S. Bansal Y. Silakari O. Bansal G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem. 2014;22(15):3806–3814. doi: 10.1016/j.bmc.2014.05.032. [DOI] [PubMed] [Google Scholar]
  13. Carneiro A. Matos M. J. Uriarte E. Santana L. Trending Topics on Coumarin and Its Derivatives in 2020. Molecules. 2021;26(2):501. doi: 10.3390/molecules26020501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ranjan Sahoo C. Sahoo J. Mahapatra M. Lenka D. Kumar Sahu P. Dehury B. Nath Padhy R. Kumar Paidesetty S. Coumarin derivatives as promising antibacterial agent(s) Arabian J. Chem. 2021;14(2):102922. doi: 10.1016/j.arabjc.2020.102922. [DOI] [Google Scholar]
  15. Salehian F. Nadri H. Jalili-Baleh L. Youseftabar-Miri L. Bukhari S. N. A. Foroumadi A. Küçükkilinç T. T. Sharifzadeh M. Khoobi M. A Review: Biologically active 3, 4-heterocycle-fused coumarins. Eur. J. Med. Chem. 2020:113034. doi: 10.1016/j.ejmech.2020.113034. [DOI] [PubMed] [Google Scholar]
  16. Gonçalves G. A. Spillere A. R. das Neves G. M. Kagami L. P. von Poser G. L. Canto R. F. S. Eifler-Lima V. L. Natural and synthetic coumarins as antileishmanial agents: A review. Eur. J. Med. Chem. 2020:112514. doi: 10.1016/j.ejmech.2020.112514. [DOI] [PubMed] [Google Scholar]
  17. Mamidala S. Vangala V. Peddi S. R. Chedupaka R. Manga V. Vedula R. R. A facile one-pot, three component synthesis of a new series of 1, 3, 4-thiadiazines: Anticancer evaluation and molecular docking studies. J. Mol. Struct. 2021;1233:130111. doi: 10.1016/j.molstruc.2021.130111. [DOI] [Google Scholar]
  18. Alshibl H. M. Al-Abdullah E. S. Alkahtani H. M. Coumarin: a promising scaffold for design and development of bioactive agents. Curr. Bioact. Compd. 2020;16(6):837–852. doi: 10.2174/1573407215666190524101510. [DOI] [Google Scholar]
  19. Qin H.-L. Zhang Z.-W. Ravindar L. Rakesh K. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur. J. Med. Chem. 2020:112832. doi: 10.1016/j.ejmech.2020.112832. [DOI] [PubMed] [Google Scholar]
  20. Elahabaadi E. Salarian A. A. Nassireslami E. Design, Synthesis, and Molecular Docking of Novel Hybrids of Coumarin-Dithiocarbamate Alpha-Glucosidase Inhibitors Targeting Type 2 Diabetes Mellitus. Polycyclic Aromat. Compd. 2021:1–11. [Google Scholar]
  21. Cao D. Liu Z. Verwilst P. Koo S. Jangjili P. Kim J. S. Lin W. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev. 2019;119(18):10403–10519. doi: 10.1021/acs.chemrev.9b00145. [DOI] [PubMed] [Google Scholar]
  22. Srikrishna D. Godugu C. Dubey P. K. A review on pharmacological properties of coumarins. Mini-Rev. Med. Chem. 2018;18(2):113–141. doi: 10.2174/1389557516666160801094919. [DOI] [PubMed] [Google Scholar]
  23. Abdou M. M. El-Saeed R. A. Abozeid M. A. Sadek M. G. Zaki E. Barakat Y. Ibrahim H. Fathy M. Shabana S. Amine M. Advancements in tetronic acid chemistry. Part 1: Synthesis and reactions. Arabian J. Chem. 2019;12(4):464–475. doi: 10.1016/j.arabjc.2015.11.004. [DOI] [Google Scholar]
  24. Abdou M. M. Seferoğlu Z. Fathy M. Akitsu T. Koketsu M. Kellow R. Amigues E. Synthesis and chemical transformations of 3-acetyl-4-hydroxyquinolin-2 (1 H)-one and its N-substituted derivatives: bird's eye view. Res. Chem. Intermed. 2019;45(3):919–934. doi: 10.1007/s11164-018-3652-1. [DOI] [Google Scholar]
  25. Abdou M. M. Chemistry of 4-hydroxy-2 (1H)-quinolone. Part 2. As synthons in heterocyclic synthesis. Arabian J. Chem. 2018;11(7):1061–1071. doi: 10.1016/j.arabjc.2014.11.021. [DOI] [Google Scholar]
  26. Abdou M. M. Chemistry of 4-Hydroxy-2 (1H)-quinolone. Part 1: Synthesis and reactions. Arabian J. Chem. 2017;10:S3324–S3337. doi: 10.1016/j.arabjc.2014.01.012. [DOI] [Google Scholar]
  27. Abdou M. M. Utility of 4-hydroxythiocoumarin in organic synthesis. Arabian J. Chem. 2017;10:S3955–S3961. doi: 10.1016/j.arabjc.2014.06.002. [DOI] [Google Scholar]
  28. Abdou M. M. El-Saeed R. A. Elattar K. M. Seferoğlu Z. Boukouvalas J. Advancements in tetronic acid chemistry. Part 2: use as a simple precursor to privileged heterocyclic motifs. Mol. Diversity. 2016;20(4):989–999. doi: 10.1007/s11030-016-9683-x. [DOI] [PubMed] [Google Scholar]
  29. Sajan D. Erdogdu Y. Reshmy R. Dereli Ö. Thomas K. K. Joe I. H. DFT-based molecular modeling, NBO analysis and vibrational spectroscopic study of 3-(bromoacetyl) coumarin. Spectrochim. Acta, Part A. 2011;82(1):118–125. doi: 10.1016/j.saa.2011.07.013. [DOI] [PubMed] [Google Scholar]
  30. Magwenzi F. N. Khanye S. D. Veale C. G. Unexpected transformations of 3-(bromoacetyl) coumarin provides new evidence for the mechanism of thiol mediated dehalogenation of α-halocarbonyls. Tetrahedron Lett. 2017;58(10):968–972. doi: 10.1016/j.tetlet.2017.01.082. [DOI] [Google Scholar]
  31. El-Shwiniy W. H. Gamil M. A. Sadeek S. A. Zordok W. A. El-farargy A. F. Ligational, DFT modeling and biological properties of some new metal complexes with 3-(bromoacetyl) coumarin and 1, 10-phenanthroline. Appl. Organomet. Chem. 2020;34(8):e5696. doi: 10.1002/aoc.5696. [DOI] [Google Scholar]
  32. Vasudevan K. Kulkarni M. Structure of 3-(bromoacetyl) coumarin. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1991;47(4):775–777. doi: 10.1107/S0108270190007533. [DOI] [Google Scholar]
  33. Sparkes H. A. Howard J. A. 3-(Bromoacetyl) coumarin: a second P21/c modification. Acta Crystallogr., Sect. E: Struct. Rep. Online. 2007;63(9):o3895. doi: 10.1107/S1600536807040846. [DOI] [Google Scholar]
  34. Chennuru R. Maddimsetti B. Gundlapalli S. Babu R. R. C. Mahapatra S. Crystal structure of 3-bromoacetyl-6-chloro-2H-1-benzopyran-2-one. Acta Crystallogr., Sect. E: Crystallogr. Commun. 2015;71(8):o615–o616. doi: 10.1107/S2056989015012955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kavitha K. Srikrishna D. Dubey P. K. Aparna P. An efficient one-pot four-component Gewald reaction: Synthesis of substituted 2-aminothiophenes with coumarin–thiazole scaffolds under environmentally benign conditions. J. Sulfur Chem. 2019;40(2):195–208. doi: 10.1080/17415993.2018.1556275. [DOI] [Google Scholar]
  36. Srikrishna D. Dubey P. K. A facile and expedient microwave-assisted solvent-free method for the synthesis of 2-amino-4-(2-oxo-2 H-chromen-3-yl) nicotinonitriles. J. Iran. Chem. Soc. 2018;15(7):1647–1654. doi: 10.1007/s13738-018-1363-6. [DOI] [Google Scholar]
  37. Rajeswar Rao V. Padmanabha Rao T. Studies of thiazolyl, imidazolyl-2H-1-benzopyran-2-ones. Indian Journal of Chemistry-Section B. 1986;25:413–415. [Google Scholar]
  38. Koelsch C. Bromination of 3-acetocoumarin. J. Am. Chem. Soc. 1950;72(7):2993–2995. doi: 10.1021/ja01163a053. [DOI] [Google Scholar]
  39. Musa T. M. A.-D. Aljibouri M. N. A. Abbas B. F. Hasani N. Synthesis, Spectroscopic and Computational Studies of Some Metals Chelates with Chromene-2-one and Pyrazine-Based Ligands. Indones. J. Chem. 20(1):160–174. doi: 10.22146/ijc.43857. [DOI] [Google Scholar]
  40. Bandyopadhyay C. Sur K. R. Patra R. Banerjee S. One-Pot Synthesis of 2-Alkyl/Arylamino-4-oxo-4 H-1-Benzopyran-3-Carboxaldehyde from 4-oxo-4 H-1-Benzopyran-3-Carboxaldehyde. J. Chem. Res. 2003;2003(8):459–460. doi: 10.3184/030823403103174812. [DOI] [Google Scholar]
  41. Olyaei A. Feizy E. Aghajanzadeh A. One-pot synthesis of novel (E)-3-(3, 8a-dihydro-2 H-oxazolo [3, 2-a] pyridin-2-ylidene) chroman-2-one derivatives. J. Heterocycl. Chem. 2020;58(3):757–765. doi: 10.1002/jhet.4212. [DOI] [Google Scholar]
  42. Bandyopadhyay C. Sur K. R. Patra R. Sen A. Synthesis of Coumarin Derivatives from 4-Oxo-4H-1-benzopyran-3-carboxaldehyde via 3-(Arylaminomethylene) chroman-2, 4-dione. Tetrahedron. 2000;56(22):3583–3587. doi: 10.1016/S0040-4020(00)00269-6. [DOI] [Google Scholar]
  43. Alizadeh A. Ghanbaripour R. An efficient synthesis of pyrrolo [2, 1-a] isoquinoline derivatives containing coumarin skeletons via a one-pot, three-component reaction. Res. Chem. Intermed. 2015;41(11):8785–8796. doi: 10.1007/s11164-015-1928-2. [DOI] [Google Scholar]
  44. Dwivedi S. K. Razi S. S. Misra A. Sensitive colorimetric detection of CN− and AcO− anions in a semi-aqueous environment through a coumarin–naphthalene conjugate azo dye. New J. Chem. 2019;43(13):5126–5132. doi: 10.1039/C9NJ00004F. [DOI] [Google Scholar]
  45. La Pietra V. Marinelli L. Cosconati S. Di Leva F. S. Nuti E. Santamaria S. Pugliesi I. Morelli M. Casalini F. Rossello A. Identification of novel molecular scaffolds for the design of MMP-13 inhibitors: a first round of lead optimization. Eur. J. Med. Chem. 2012;47:143–152. doi: 10.1016/j.ejmech.2011.10.035. [DOI] [PubMed] [Google Scholar]
  46. Siddiqui N. Arshad M. F. Khan S. A. Synthesis of some new coumarin incorporated thiazolyl semicarbazones as anticonvulsants. Acta Pol. Pharm. 2009;66:161–167. [PubMed] [Google Scholar]
  47. Ma W. Chen P. Huo X. Ma Y. Li Y. Diao P. Yang F. Zheng S. Hu M. You W. Development of triazolothiadiazine derivatives as highly potent tubulin polymerization inhibitors: Structure-activity relationship, in vitro and in vivo study. Eur. J. Med. Chem. 2020;208:112847. doi: 10.1016/j.ejmech.2020.112847. [DOI] [PubMed] [Google Scholar]
  48. Sinnur K. Siddappa S. Hiremath S. P. Purohit M. Synthesis of Substituted 2-(2-Oxobenzopyran-3-yl) indoles. ChemInform. 1987;18(12):no. doi: 10.1002/chin.198712206. [DOI] [Google Scholar]
  49. Sahu S. K. Mishra A. Behera R. K. Synthesis of thiazole, benzothiazole, oxadiazole, thiadiazole, triazole and thiazolidinone incorporated coumarins. Indian J. Heterocycl. Chem. 1996:91–94. [Google Scholar]
  50. Khan S. Zafar A. Naseem I. Copper-redox cycling by coumarin-di (2-picolyl) amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: a mechanism for cancer chemoprevention. Chem.-Biol. Interact. 2018;290:64–76. doi: 10.1016/j.cbi.2018.05.010. [DOI] [PubMed] [Google Scholar]
  51. Khan S. Malla A. M. Zafar A. Naseem I. Synthesis of novel coumarin nucleus-based DPA drug-like molecular entity: In vitro DNA/Cu (II) binding, DNA cleavage and pro-oxidant mechanism for anticancer action. PLoS One. 2017;12(8):e0181783. doi: 10.1371/journal.pone.0181783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Singh L. R. Avula S. R. Raj S. Srivastava A. Palnati G. R. Tripathi C. Pasupuleti M. Sashidhara K. V. Coumarin–benzimidazole hybrids as a potent antimicrobial agent: synthesis and biological elevation. J. Antibiot. 2017;70(9):954–961. doi: 10.1038/ja.2017.70. [DOI] [PubMed] [Google Scholar]
  53. Valadbeigi E. Ghodsi S. Synthesis and characterization of some new thiazolidinedione derivatives containing a coumarin moiety for their antibacterial and antifungal activities. Med. Chem. 2017;7:178–185. [PMC free article] [PubMed] [Google Scholar]
  54. Hishmat O. Miky J. Farrag A. Fadl-Allah E. Synthesis of some coumarin derivatives and their antimicrobial activity. Arch. Pharmacal Res. 1989;12(3):181–185. doi: 10.1007/BF02855551. [DOI] [Google Scholar]
  55. Yagodinets P. Skripskaya O. Chernyuk I. Bezverkhnii V. Vlasik L. Sinchenko V. Synthesis and antimicrobial activity of coumarin-containing imidazoles. Pharm. Chem. J. 1996;30(5):335–336. doi: 10.1007/BF02333976. [DOI] [Google Scholar]
  56. Kumar V. R. Rao V. R. Synthesis of 3-(1-aryl-2-mercaptoimidazolyl)-2H-1-benzopyran-2-one derivatives. Indian Journal of Chemistry-Section B. 2002;41:415–418. [Google Scholar]
  57. Guravaiah N. Rao V. R. Efficient, Stereoselective Approach to the Synthesis of 3-(1-Phenyl-2-(Z-styrylsulfonyl)-1 H-imidazol-4-yl)-2 H-chromen-2-ones. Synth. Commun. 2011;41(8):1167–1174. doi: 10.1080/00397911003797874. [DOI] [Google Scholar]
  58. Evans V. Duncanson P. Motevalli M. Watkinson M. An investigation into the synthesis of azido-functionalised coumarins for application in 1, 3-dipolar “click” cycloaddition reactions. Dyes Pigm. 2016;135:36–40. doi: 10.1016/j.dyepig.2016.06.028. [DOI] [Google Scholar]
  59. Valadbeigi E. Ghodsi S. Synthesis and Study of Some New Quinolone Derivatives Containing a 3-acetyl Coumarin for Their Antibacterial and Antifungal Activities. Iran. J. Pharm. Res. 2017;16(2):554. [PMC free article] [PubMed] [Google Scholar]
  60. Kalkhambkar R. Kulkarni G. Shivkumar H. Rao R. N. Synthesis of novel triheterocyclic thiazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem. 2007;42(10):1272–1276. doi: 10.1016/j.ejmech.2007.01.023. [DOI] [PubMed] [Google Scholar]
  61. Foroumadi A. Oboudiat M. Emami S. Karimollah A. Saghaee L. Moshafi M. H. Shafiee A. Synthesis and antibacterial activity of N-[2-[5-(methylthio) thiophen-2-yl]-2-oxoethyl] and N-[2-[5-(methylthio) thiophen-2-yl]-2-(oxyimino) ethyl] piperazinylquinolone derivatives. Bioorg. Med. Chem. 2006;14(10):3421–3427. doi: 10.1016/j.bmc.2005.12.058. [DOI] [PubMed] [Google Scholar]
  62. Feng L.-S. Liu M.-L. Zhang S. Chai Y. Wang B. Zhang Y.-B. Lv K. Guan Y. Guo H.-Y. Xiao C.-L. Synthesis and in vitro antimycobacterial activity of 8-OCH3 ciprofloxacin methylene and ethylene isatin derivatives. Eur. J. Med. Chem. 2011;46(1):341–348. doi: 10.1016/j.ejmech.2010.11.023. [DOI] [PubMed] [Google Scholar]
  63. Ramanna S. Rao V. R. Kumari T. S. Padmanabha Rao T. Synthesis of N-(4-2H-1-benzopyran-2-one-2-thiazolyl) phthalimides. Phosphorus, Sulfur Silicon Relat. Elem. 1995;107(1–4):197–204. doi: 10.1080/10426509508027935. [DOI] [Google Scholar]
  64. Guravaiah N. Rao V. R. Simple strategy for sulfonyl ethynylogs of coumarins. Synth. Commun. 2011;41(18):2693–2700. doi: 10.1080/00397911.2010.515344. [DOI] [Google Scholar]
  65. Abdelrahman M. A. Ibrahim H. S. Nocentini A. Eldehna W. M. Bonardi A. Abdel-Aziz H. A. Gratteri P. Abou-Seri S. M. Supuran C. T. Novel 3-substituted coumarins as selective human carbonic anhydrase IX and XII inhibitors: Synthesis, biological and molecular dynamics analysis. Eur. J. Med. Chem. 2021;209:112897. doi: 10.1016/j.ejmech.2020.112897. [DOI] [PubMed] [Google Scholar]
  66. Guravaiah N. Rao V. R. Solvent-free synthesis of new heteryl β-ketosulfones. J. Chem. Res. 2009;2009(2):87–89. doi: 10.3184/030823409X401745. [DOI] [Google Scholar]
  67. Lamani R. S. Shetty N. S. Kamble R. R. Khazi I. A. M. Synthesis and antimicrobial studies of novel methylene bridged benzisoxazolyl imidazo [2, 1-b][1, 3, 4] thiadiazole derivatives. Eur. J. Med. Chem. 2009;44(7):2828–2833. doi: 10.1016/j.ejmech.2008.12.019. [DOI] [PubMed] [Google Scholar]
  68. Guravaiah N. Rao V. R. Facile polyethylene glycol (PEG-400) promoted synthesis of some new heteryl (E)-styryl sulfones. J. Chem. Res. 2009;2009(4):237–239. doi: 10.3184/030823409X430176. [DOI] [Google Scholar]
  69. Khalil M. A. Sayed S. M. Raslan M. A. Synthesis of New Pyrazolo [5, 1-c] triazine, Triazolo [5, 1-c] triazine, Triazino [4, 3-b] indazole and Benzimidazo [2, 1-c] triazine Derivatives Incorporating Chromen-2-one Moiety. J. Korean Chem. Soc. 2013;57(5):612–617. doi: 10.5012/jkcs.2013.57.5.612. [DOI] [Google Scholar]
  70. Mohareb R. M. MegallyAbdo N. Y. Uses of 3-(2-bromoacetyl)-2H-chromen-2-one in the synthesis of heterocyclic compounds incorporating coumarin: synthesis, characterization and cytotoxicity. Molecules. 2015;20(6):11535–11553. doi: 10.3390/molecules200611535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Novak P. Lishchynskyi A. Grushin V. V. Trifluoromethylation of α-Haloketones. J. Am. Chem. Soc. 2012;134(39):16167–16170. doi: 10.1021/ja307783w. [DOI] [PubMed] [Google Scholar]
  72. Arbuzov B. Michaelis-Arbusow-und perkow-reaktionen. Pure Appl. Chem. 1964;9(2):307–336. [Google Scholar]
  73. Marquarding D. Ramirez F. Ugi I. Gillespie P. Austausch-Reaktionen von Phosphor (v)-Verbindungen und ihre pentakoordinierten Zwischenstufen. Angew. Chem. 1973;85(3):99–127. doi: 10.1002/ange.19730850302. [DOI] [Google Scholar]
  74. Arbuzov B. A. Über die “nichtklassische” Arbuzov-Umlagerung. Zeitschrift für Chemie. 1974;14(2):41–49. doi: 10.1002/zfch.19740140202. [DOI] [Google Scholar]
  75. Pardin C. Pelletier J. N. Lubell W. D. Keillor J. W. Cinnamoyl inhibitors of tissue transglutaminase. J. Org. Chem. 2008;73(15):5766–5775. doi: 10.1021/jo8004843. [DOI] [PubMed] [Google Scholar]
  76. Wang Q.-M. Jin L. Shen Z.-Y. Xu J.-H. Sheng L.-Q. Bai H. Mitochondria-targeting turn-on fluorescent probe for HClO detection and imaging in living cells. Spectrochim. Acta, Part A. 2020;228:117825. doi: 10.1016/j.saa.2019.117825. [DOI] [PubMed] [Google Scholar]
  77. Nikolova R. Bojilova A. Rodios N. A. Reaction of 3-bromobenzyl and 3-bromoacetyl coumarin with phosphites. Synthesis of some new phosphonates and phosphates in the coumarin series. Tetrahedron. 1998;54(47):14407–14420. doi: 10.1016/S0040-4020(98)00892-8. [DOI] [Google Scholar]
  78. Alizadeh A. Ghanbaripour R. An efficient synthesis of pyrrolo[2,1-a]isoquinoline derivatives containing coumarin skeletons via a one-pot, three-component reaction. Res. Chem. Intermed. 2015;41(11):8785–8796. doi: 10.1007/s11164-015-1928-2. [DOI] [Google Scholar]
  79. Pal G. Paul S. Das A. R. Alum-Catalyzed Synthesis of 3-(1H-Pyrrol-2-yl)-2H-chromen-2-ones: A Water–PEG 400 Binary Solvent Mediated, One-Pot, Three-Component Protocol. Synthesis. 2013;45(09):1191–1200. doi: 10.1055/s-0032-1318494. [DOI] [Google Scholar]
  80. Shastri L. Kalegowda S. Kulkarni M. The synthesis of pyrrole bis-coumarins, new structures for fluorescent probes. Tetrahedron Lett. 2007;48(40):7215–7217. doi: 10.1016/j.tetlet.2007.07.189. [DOI] [Google Scholar]
  81. Chunduru V. S. R. Vedula R. R. One-pot synthesis of coumarin substituted dihydrofurans. Indian Journal of Chemistry-Section B. 2012;51:1417–1420. [Google Scholar]
  82. Khidre R. E. Radini I. A. M. Ibrahim D. A. Design and synthesis of some new thiophene and 1, 3, 4-thiadiazole based heterocycles. Phosphorus, Sulfur Silicon Relat. Elem. 2019;194(11):1040–1047. doi: 10.1080/10426507.2019.1598408. [DOI] [Google Scholar]
  83. Toche R. B. Patil V. M. Chaudhari S. A. Chavan S. M. Sabnis R. W. Green Synthesis of Pyrazole and Oxazole Derivatives. J. Heterocycl. Chem. 2019;56(1):38–43. doi: 10.1002/jhet.3360. [DOI] [Google Scholar]
  84. Ramagiri R. K. Thupurani M. K. Vedula R. R. Synthesis, characterization, and antibacterial activity of some novel substituted imidazole derivatives via one-pot three-component. J. Heterocycl. Chem. 2015;52(6):1713–1717. doi: 10.1002/jhet.2261. [DOI] [Google Scholar]
  85. Banoth S. Perugu S. Boda S. Green Synthesis of Fused Imidazo [1, 2-a][1, 8] naphthyridine Derivatives Catalyzed by DABCO under Solvent-Free Solid-State Conditions and Their Biological Evaluation. J. Heterocycl. Chem. 2018;55(3):709–715. doi: 10.1002/jhet.3092. [DOI] [Google Scholar]
  86. Rao V. R. Reddy V. R. Synthesis of some new types of 3-coumarinyl-substituted pyrazolopyrimidines and imidazothiazoles. Chem. Heterocycl. Compd. 2008;44(3):360. doi: 10.1007/s10593-008-0053-1. [DOI] [Google Scholar]
  87. Begum N. S. Vasundhara D. Girija C. Kolavi G. Hegde V. Khazi I. Synthesis, spectroscopic and crystal structure analysis of a compound with pharmocophoric substituent: 2-cyclohexyl-6-(2-oxo-2H-chromen-3-yl)-imidazo [2, 1-b][1, 3, 4] thiadiazole-5-carbaldehyde. J. Chem. Crystallogr. 2007;37(3):193–198. doi: 10.1007/s10870-006-9159-4. [DOI] [Google Scholar]
  88. Kolavi G. Hegde V. Khazi I. A. Intramolecular amidation: Synthesis of novel imidazo [2, 1-b][1, 3, 4] thiadiazole and imidazo [2, 1-b][1, 3] thiazole fused diazepinones. Tetrahedron Lett. 2006;47(16):2811–2814. doi: 10.1016/j.tetlet.2006.02.090. [DOI] [Google Scholar]
  89. Chandak N. Bhardwaj J. K. Sharma R. K. Sharma P. K. Inhibitors of apoptosis in testicular germ cells: synthesis and biological evaluation of some novel IBTs bearing sulfonamide moiety. Eur. J. Med. Chem. 2013;59:203–208. doi: 10.1016/j.ejmech.2012.11.015. [DOI] [PubMed] [Google Scholar]
  90. Santhosh P. Chunduru V. R. Rao V. R. One-pot synthesis of trisubstituted pyrazoles via multicomponent approach. Chem. Heterocycl. Compd. 2011;47(4):448–451. doi: 10.1007/s10593-011-0779-z. [DOI] [Google Scholar]
  91. Gouda M. A. Synthesis and antioxidant evaluation of some new pyrazolopyridine derivatives. Arch. Pharm. 2012;345(2):155–162. doi: 10.1002/ardp.201100171. [DOI] [PubMed] [Google Scholar]
  92. Godugu K. Nallagondu C. G. R. Solvent and catalyst-free synthesis of imidazo [1, 2-a] pyridines by grindstone chemistry. J. Heterocycl. Chem. 2021;58(1):250–259. doi: 10.1002/jhet.4164. [DOI] [Google Scholar]
  93. Saeed A. Arif M. Erben M. F. Flörke U. Simpson J. One-pot synthesis, quantum chemical calculations and X-ray diffraction studies of thiazolyl-coumarin hybrid compounds. Spectrochim. Acta, Part A. 2018;198:290–296. doi: 10.1016/j.saa.2018.03.036. [DOI] [PubMed] [Google Scholar]
  94. Razi S. S. Srivastava P. Ali R. Gupta R. C. Dwivedi S. K. Misra A. A coumarin-derived useful scaffold exhibiting Cu2+ induced fluorescence quenching and fluoride sensing (On–Off–On) via copper displacement approach. Sens. Actuators, B. 2015;209:162–171. doi: 10.1016/j.snb.2014.11.082. [DOI] [Google Scholar]
  95. Koti R. S. Kolavi G. D. Hegde V. S. Khazi I. Intramolecular Amidation: Synthesis of Novel Thiazole-Fused Diazepinones. Synth. Commun. 2007;37(1):99–105. doi: 10.1080/00397910600978481. [DOI] [Google Scholar]
  96. Helal A. Rashid M. H. O. Choi C.-H. Kim H.-S. Chromogenic and fluorogenic sensing of Cu2+ based on coumarin. Tetrahedron. 2011;67(15):2794–2802. doi: 10.1016/j.tet.2011.01.093. [DOI] [Google Scholar]
  97. Bondock S. Naser T. Ammar Y. A. Synthesis of some new 2-(3-pyridyl)-4, 5-disubstituted thiazoles as potent antimicrobial agents. Eur. J. Med. Chem. 2013;62:270–279. doi: 10.1016/j.ejmech.2012.12.050. [DOI] [PubMed] [Google Scholar]
  98. Aydıner B. Şahin Ö. Çakmaz D. Kaplan G. Kaya K. Özdemir Ü. Ö. Seferoğlu N. Seferoğlu Z. A highly sensitive and selective fluorescent turn-on chemosensor bearing a 7-diethylaminocoumarin moiety for the detection of cyanide in organic and aqueous solutions. New J. Chem. 2020;44(44):19155–19165. doi: 10.1039/D0NJ03003A. [DOI] [Google Scholar]
  99. Ramesh G. Janardhan B. Rajitha B. Green approach: an efficient synthesis of 2, 4-disubstituted-1, 3-thiazoles and selenazoles in aqueous medium under ultrasonic irradiation. Res. Chem. Intermed. 2015;41(11):8099–8109. doi: 10.1007/s11164-014-1879-z. [DOI] [Google Scholar]
  100. Hamama W. S. Berghot M. A. Baz E. A. Gouda M. A. Synthesis and Antioxidant Evaluation of Some New 3-Substituted Coumarins. Arch. Pharm. 2011;344(11):710–718. doi: 10.1002/ardp.201000263. [DOI] [PubMed] [Google Scholar]
  101. Kurt B. Z. Gazioglu I. Sonmez F. Kucukislamoglu M. Synthesis, antioxidant and anticholinesterase activities of novel coumarylthiazole derivatives. Bioorg. Chem. 2015;59:80–90. doi: 10.1016/j.bioorg.2015.02.002. [DOI] [PubMed] [Google Scholar]
  102. Şahin Ö. Özdemir Ü. Ö. Seferoğlu N. Genc Z. K. Kaya K. Aydıner B. Tekin S. Seferoğlu Z. New platinum (II) and palladium (II) complexes of coumarin-thiazole Schiff base with a fluorescent chemosensor properties: Synthesis, spectroscopic characterization, X-ray structure determination, in vitro anticancer activity on various human carcinoma cell lines and computational studies. J. Photochem. Photobiol., B. 2018;178:428–439. doi: 10.1016/j.jphotobiol.2017.11.030. [DOI] [PubMed] [Google Scholar]
  103. Saeed A. Ejaz S. A. Shehzad M. Hassan S. al-Rashida M. Lecka J. Sévigny J. Iqbal J. 3-(5-(Benzylideneamino) thiazol-3-yl)-2 H-chromen-2-ones: a new class of alkaline phosphatase and ecto-5′-nucleotidase inhibitors. RSC Adv. 2016;6(25):21026–21036. doi: 10.1039/C5RA24684A. [DOI] [Google Scholar]
  104. Gouda M. A. Berghot M. A. Baz E. A. Hamama W. S. Synthesis, antitumor and antioxidant evaluation of some new thiazole and thiophene derivatives incorporated coumarin moiety. Med. Chem. Res. 2012;21(7):1062–1070. doi: 10.1007/s00044-011-9610-8. [DOI] [Google Scholar]
  105. Helal A. Rashid M. H. O. Choi C.-H. Kim H.-S. New regioisomeric naphthol-substituted thiazole based ratiometric fluorescence sensor for Zn2+ with a remarkable red shift in emission spectra. Tetrahedron. 2012;68(2):647–653. doi: 10.1016/j.tet.2011.10.106. [DOI] [Google Scholar]
  106. Zhuravel I. Kovalenko S. Vlasov S. Chernykh V. Solution-phase Synthesis of a Combinatorial Library of 3-[4-(Coumarin-3-yl)-1, 3-thiazol-2-ylcarbamoyl] propanoic acid Amides. Molecules. 2005;10(2):444–456. doi: 10.3390/10020444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Abdel-Aziem A. Baaiu B. S. Elbazzar A. W. Elabbar F. A facile synthesis of some novel thiazoles, arylazothiazoles, and pyrazole linked to thiazolyl coumarin as antibacterial agents. Synth. Commun. 2020;50(16):2522–2530. doi: 10.1080/00397911.2020.1782431. [DOI] [Google Scholar]
  108. Osman H. Yusufzai S. K. Khan M. S. Abd Razik B. M. Sulaiman O. Mohamad S. Gansau J. A. Ezzat M. O. Parumasivam T. Hassan M. Z. New thiazolyl-coumarin hybrids: Design, synthesis, characterization, X-ray crystal structure, antibacterial and antiviral evaluation. J. Mol. Struct. 2018;1166:147–154. doi: 10.1016/j.molstruc.2018.04.031. [DOI] [Google Scholar]
  109. Chunduru V. S. R. Rao R. V. One pot synthesis of 3-[2-(arylamino) thiazol-4-yl] coumarins in a three-component synthesis and a catalyst and solvent-free synthesis on grinding. J. Chem. Res. 2010;34(1):50–53. doi: 10.3184/030823410X12627991159610. [DOI] [Google Scholar]
  110. Ibrar A. Tehseen Y. Khan I. Hameed A. Saeed A. Furtmann N. Bajorath J. Iqbal J. Coumarin-thiazole and-oxadiazole derivatives: synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors. Bioorg. Chem. 2016;68:177–186. doi: 10.1016/j.bioorg.2016.08.005. [DOI] [PubMed] [Google Scholar]
  111. Kumar S. Aggarwal R. Sharma C. Synthesis of Some 2-(3-Alkyl/aryl-5-trifluoromethylpyrazol-1-yl)-4-(coumarin-3-yl) thiazoles as Novel Antibacterial Agents. Synth. Commun. 2015;45(17):2022–2029. doi: 10.1080/00397911.2015.1062986. [DOI] [Google Scholar]
  112. Ansari M. I. Khan S. A. Synthesis and antimicrobial activity of some novel quinoline-pyrazoline-based coumarinyl thiazole derivatives. Med. Chem. Res. 2017;26(7):1481–1496. doi: 10.1007/s00044-017-1855-4. [DOI] [Google Scholar]
  113. Madni M. Ahmed M. N. Hameed S. Shah S. W. A. Rashid U. Ayub K. Tahir M. N. Mahmood T. Synthesis, quantum chemical, in vitro acetyl cholinesterase inhibition and molecular docking studies of four new coumarin based pyrazolylthiazole nuclei. J. Mol. Struct. 2018;1168:175–186. doi: 10.1016/j.molstruc.2018.05.017. [DOI] [Google Scholar]
  114. Chandak N. Kumar P. Kaushik P. Varshney P. Sharma C. Kaushik D. Jain S. Aneja K. R. Sharma P. K. Dual evaluation of some novel 2-amino-substituted coumarinylthiazoles as anti-inflammatory–antimicrobial agents and their docking studies with COX-1/COX-2 active sites. J. Enzyme Inhib. Med. Chem. 2014;29(4):476–484. doi: 10.3109/14756366.2013.805755. [DOI] [PubMed] [Google Scholar]
  115. Elsharabasy F. S. Gomha S. M. Farghaly T. A. Elzahabi H. S. An Efficient Synthesis of Novel Bioactive Thiazolyl-Phthalazinediones under Ultrasound Irradiation. Molecules. 2017;22(2):319. doi: 10.3390/molecules22020319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Wang G. He D. Li X. Li J. Peng Z. Design, synthesis and biological evaluation of novel coumarin thiazole derivatives as α-glucosidase inhibitors. Bioorg. Chem. 2016;65:167–174. doi: 10.1016/j.bioorg.2016.03.001. [DOI] [PubMed] [Google Scholar]
  117. Sanad S. M. Mekky A. E. Efficient synthesis and characterization of novel bis (chromenes) and bis (benzo [f] chromenes) linked to thiazole units. Synth. Commun. 2021;51(4):611–624. doi: 10.1080/00397911.2020.1846748. [DOI] [Google Scholar]
  118. Kini D. Ghate M. Synthesis and Oral Hypoglycemic Activity of 3-[5'-Methyl-2'-aryl-3'-(thiazol-2′′-yl amino) thiazolidin-4'-one] coumarin Derivatives. Eur. J. Chem. 2011;8(1):386–390. [Google Scholar]
  119. Łączkowski K. Z. Jachowicz K. Misiura K. Biernasiuk A. Malm A. Synthesis and biological evaluation of novel 2-(1H-imidazol-2-ylmethylidene) hydrazinyl-1, 3-thiazoles as potential antimicrobial agents. Heterocycl. Commun. 2015;21(2):109–114. [Google Scholar]
  120. Chimenti F. Carradori S. Secci D. Bolasco A. Chimenti P. Granese A. Bizzarri B. Synthesis and biological evaluation of novel conjugated coumarin-thiazole systems. J. Heterocycl. Chem. 2009;46(3):575–578. doi: 10.1002/jhet.110. [DOI] [Google Scholar]
  121. Harikrishna N. Isloor A. M. Ananda K. Obaid A. Fun H.-K. 1, 3, 4-Trisubstituted pyrazole bearing a 4-(chromen-2-one) thiazole: Synthesis, characterization and its biological studies. RSC Adv. 2015;5(54):43648–43659. doi: 10.1039/C5RA04995D. [DOI] [Google Scholar]
  122. Chimenti F. Bizzarri B. Bolasco A. Secci D. Chimenti P. Granese A. Carradori S. D’Ascenzio M. Scaltrito M. M. Sisto F. Synthesis and anti-Helicobacter pylori Activity of 4-(Coumarin-3-yl) thiazol-2-ylhydrazone Derivatives. ChemInform. 2011;42(13):1269–1274. doi: 10.1002/chin.201113132. [DOI] [Google Scholar]
  123. KhanYusufzai S. Osman H. Khan M. S. Mohamad S. Sulaiman O. Parumasivam T. Gansau J. A. Johansah N. Design, characterization, in vitro antibacterial, antitubercular evaluation and structure–activity relationships of new hydrazinyl thiazolyl coumarin derivatives. Med. Chem. Res. 2017;26(6):1139–1148. doi: 10.1007/s00044-017-1820-2. [DOI] [Google Scholar]
  124. Gabr M. T. El-Gohary N. S. El-Bendary E. R. El-Kerdawy M. M. Ni N. Microwave-assisted synthesis and antitumor evaluation of a new series of thiazolylcoumarin derivatives. EXCLI Journal. 2017;16:1114. doi: 10.17179/excli2017-208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Łączkowski K. Misiura K. Biernasiuk A. Malm A. Paneth A. Plech T. Synthesis, Antimicrobial Activity and Molecular Docking Studies of 1, 3-Thiazole Derivatives Incorporating Adamantanyl Moiety. J. Heterocycl. Chem. 2016;53(2):441–448. doi: 10.1002/jhet.2364. [DOI] [Google Scholar]
  126. Łączkowski K. Z. Landowska K. Biernasiuk A. Sałat K. Furgała A. Plech T. Malm A. Synthesis, biological evaluation and molecular docking studies of novel quinuclidinone derivatives as potential antimicrobial and anticonvulsant agents. Med. Chem. Res. 2017;26(9):2088–2104. doi: 10.1007/s00044-017-1904-z. [DOI] [Google Scholar]
  127. Raza R. Saeed A. Arif M. Mahmood S. Muddassar M. Raza A. Iqbal J. Synthesis and biological evaluation of 3-thiazolocoumarinyl schiff-base derivatives as cholinesterase inhibitors. Chem. Biol. Drug Des. 2012;80(4):605–615. doi: 10.1111/j.1747-0285.2012.01435.x. [DOI] [PubMed] [Google Scholar]
  128. Imran M. Bakht M. Khan A. Alam M. Anouar E. H. Alshammari M. B. Ajmal N. Vimal A. Kumar A. Riadi Y. An Improved Synthesis of Key Intermediate to the Formation of Selected Indolin-2-Ones Derivatives Incorporating Ultrasound and Deep Eutectic Solvent (DES) Blend of Techniques, for Some Biological Activities and Molecular Docking Studies. Molecules. 2020;25(5):1118. doi: 10.3390/molecules25051118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Hosny M. Salem M. E. Darweesh A. F. Elwahy A. H. Synthesis of Novel Bis (thiazolylchromen-2-one) Derivatives Linked to Alkyl Spacer via Phenoxy Group. J. Heterocycl. Chem. 2018;55(10):2342–2348. doi: 10.1002/jhet.3296. [DOI] [Google Scholar]
  130. Salar U. Taha M. Khan K. M. Ismail N. H. Imran S. Perveen S. Gul S. Wadood A. Syntheses of new 3-thiazolyl coumarin derivatives, in vitro α-glucosidase inhibitory activity, and molecular modeling studies. Eur. J. Med. Chem. 2016;122:196–204. doi: 10.1016/j.ejmech.2016.06.037. [DOI] [PubMed] [Google Scholar]
  131. Ibrar A. Zaib S. Khan I. Jabeen F. Iqbal J. Saeed A. Facile and expedient access to bis-coumarin–iminothiazole hybrids by molecular hybridization approach: synthesis, molecular modelling and assessment of alkaline phosphatase inhibition, anticancer and antileishmanial potential. RSC Adv. 2015;5(109):89919–89931. doi: 10.1039/C5RA14900B. [DOI] [Google Scholar]
  132. Ayati A. Bakhshaiesh T. O. Moghimi S. Esmaeili R. Majidzadeh-A K. Safavi M. Firoozpour L. Emami S. Foroumadi A. Synthesis and biological evaluation of new coumarins bearing 2, 4-diaminothiazole-5-carbonyl moiety. Eur. J. Med. Chem. 2018;155:483–491. doi: 10.1016/j.ejmech.2018.06.015. [DOI] [PubMed] [Google Scholar]
  133. Deshineni R. Velpula R. Koppu S. Pilli J. Chellamella G. One-pot multi-component synthesis of novel ethyl-2-(3-((2-(4-(4-aryl) thiazol-2-yl) hydrazono) methyl)-4-hydroxy/isobutoxyphenyl)-4-methylthiazole-5-carboxylate derivatives and evaluation of their in vitro antimicrobial activity. J. Heterocycl. Chem. 2020;57(3):1361–1367. doi: 10.1002/jhet.3872. [DOI] [Google Scholar]
  134. Gondru R. Banothu J. Thatipamula R. K. Bavantula R. 3-(1-Phenyl-4-((2-(4-arylthiazol-2-yl) hydrazono) methyl)-1 H-pyrazol-3-yl)-2 H-chromen-2-ones: one-pot three component condensation, in vitro antimicrobial, antioxidant and molecular docking studies. RSC Adv. 2015;5(42):33562–33569. doi: 10.1039/C5RA04196A. [DOI] [Google Scholar]
  135. Gali R. Banothu J. Bavantula R. One-Pot Multicomponent Synthesis of Novel Substituted Imidazo [1, 2-a] Pyridine Incorporated Thiazolyl Coumarins and their Antimicrobial Activity. J. Heterocycl. Chem. 2015;52(3):641–646. doi: 10.1002/jhet.2116. [DOI] [Google Scholar]
  136. Gali R. Banothu J. Gondru R. Bavantula R. Velivela Y. Crooks P. A. One-pot multicomponent synthesis of indole incorporated thiazolylcoumarins and their antibacterial, anticancer and DNA cleavage studies. Bioorg. Med. Chem. Lett. 2015;25(1):106–112. doi: 10.1016/j.bmcl.2014.10.100. [DOI] [PubMed] [Google Scholar]
  137. Mamidala S. Peddi S. R. Aravilli R. K. Jilloju P. C. Manga V. Vedula R. R. Microwave irradiated one pot, three component synthesis of a new series of hybrid coumarin based thiazoles: Antibacterial evaluation and molecular docking studies. J. Mol. Struct. 2021;1225:129114. doi: 10.1016/j.molstruc.2020.129114. [DOI] [Google Scholar]
  138. Gondru R. Kanugala S. Raj S. Kumar C. G. Pasupuleti M. Banothu J. Bavantula R. 1, 2, 3-triazole-thiazole hybrids: Synthesis, in vitro antimicrobial activity and antibiofilm studies. Bioorg. Med. Chem. Lett. 2021;33:127746. doi: 10.1016/j.bmcl.2020.127746. [DOI] [PubMed] [Google Scholar]
  139. Godugu K. Gundala T. R. Bodapati R. Yadala V. D. S. Loka S. S. Nallagondu C. G. R. Synthesis, photophysical and electrochemical properties of donor–acceptor type hydrazinyl thiazolyl coumarins. New J. Chem. 2020;44(17):7007–7016. doi: 10.1039/D0NJ00082E. [DOI] [Google Scholar]
  140. Rajitha G. Ravibabu V. Ramesh G. Rajitha B. Jobina R. Siddhardha B. Laxmi S. V. One-pot multicomponent synthesis of novel thiazolylhydrazone derivatives and their antimicrobial activity. Res. Chem. Intermed. 2015;41(12):9703–9713. doi: 10.1007/s11164-015-1959-8. [DOI] [Google Scholar]
  141. Ramagiri R. K. Vedula R. R. Thupurani M. K. A facile one-step multi-component approach toward the synthesis of 3-(2-amino-4-thiazolyl) coumarins by using trimethylsilyl isothiocyanate and their antioxidant and anti-inflammatory activity. Phosphorus, Sulfur Silicon Relat. Elem. 2015;190(9):1393–1397. doi: 10.1080/10426507.2014.990016. [DOI] [Google Scholar]
  142. Aychiluhim T. B. Rao V. R. Multi-component Synthesis of 3-{3-[2-(1 H-Indol-3-yl) ethyl]}-2, 3-dihydro-2-(aryliminothiazol-4-yl)-2 H-chromen-2-ones. Org. Prep. Proced. Int. 2014;46(1):66–75. doi: 10.1080/00304948.2014.866469. [DOI] [Google Scholar]
  143. Pavurala S. Vaarla K. Vedula R. R. One-pot synthesis of bis (phenylimino dihydro thiazolyl-2 H-chromene) derivatives. Synth. Commun. 2017;47(4):330–334. doi: 10.1080/00397911.2016.1263891. [DOI] [Google Scholar]
  144. Shaikh S. K. J. Sannaikar M. S. Kumbar M. N. Bayannavar P. K. Kamble R. R. Inamdar S. R. Joshi S. D. Microwave-Expedited Green Synthesis, Photophysical, Computational Studies of Coumarin-3-yl-thiazol-3-yl-1, 2, 4-triazolin-3-ones and Their Anticancer Activity. ChemistrySelect. 2018;3(16):4448–4462. doi: 10.1002/slct.201702596. [DOI] [Google Scholar]
  145. Kavitha K. Srikrishna D. Aparna P. An efficient one-pot three-component synthesis of 2-(4-(2-oxo-2H-chromen-3-yl) thiazol-2-yl)-3-arylacrylonitriles and their cytotoxic activity evaluation with molecular docking. J. Saudi Chem. Soc. 2019;23(3):325–337. doi: 10.1016/j.jscs.2018.08.007. [DOI] [Google Scholar]
  146. Vaarla K. Kesharwani R. K. Santosh K. Vedula R. R. Kotamraju S. Toopurani M. K. Synthesis, biological activity evaluation and molecular docking studies of novel coumarin substituted thiazolyl-3-aryl-pyrazole-4-carbaldehydes. Bioorg. Med. Chem. Lett. 2015;25(24):5797–5803. doi: 10.1016/j.bmcl.2015.10.042. [DOI] [PubMed] [Google Scholar]
  147. Madni M. Ahmed M. N. Hafeez M. Ashfaq M. Tahir M. N. Gil D. M. Galmés B. Hameed S. Frontera A. Recurrent π–π stacking motifs in three new 4, 5-dihydropyrazolyl–thiazole–coumarin hybrids: X-ray characterization, Hirshfeld surface analysis and DFT calculations. New J. Chem. 2020;44(34):14592–14603. doi: 10.1039/D0NJ02931A. [DOI] [Google Scholar]
  148. Aggarwal R. Kumar S. Kaushik P. Kaushik D. Gupta G. K. Synthesis and pharmacological evaluation of some novel 2-(5-hydroxy-5-trifluoromethyl-4, 5-dihydropyrazol-1-yl)-4-(coumarin-3-yl) thiazoles. Eur. J. Med. Chem. 2013;62:508–514. doi: 10.1016/j.ejmech.2012.11.046. [DOI] [PubMed] [Google Scholar]
  149. Pavurala S. Vedula R. R. Synthesis of 3-(2-(4, 5-Dihydro-3, 5-diphenylpyrazol-1-yl) thiazol-4-yl)-2 H-chromen-2-one Derivatives via Multicomponent Approach. Synth. Commun. 2014;44(5):583–588. doi: 10.1080/00397911.2013.796522. [DOI] [Google Scholar]
  150. Ben Mohamed S. Rachedi Y. Hamdi M. Le Bideau F. Dejean C. Dumas F. An Efficient Synthetic Access to Substituted Thiazolyl-pyrazolyl-chromene-2-ones from Dehydroacetic Acid and Coumarin Derivatives by a Multicomponent Approach. Eur. J. Org. Chem. 2016;2016(15):2628–2636. doi: 10.1002/ejoc.201600173. [DOI] [Google Scholar]
  151. Mahmoodi N. O. Ghodsi S. Thiazolyl-pyrazole-biscoumarin synthesis and evaluation of their antibacterial and antioxidant activities. Res. Chem. Intermed. 2017;43(2):661–678. doi: 10.1007/s11164-016-2644-2. [DOI] [Google Scholar]
  152. Vardhan V. A. Kumar V. R. Rao V. R. Condensation of 3-methyl/ethyl-5-mercapto-s-triazole with 3-acetylcoumarin and its derivatives. Indian Journal of Chemistry-Section B. 1999;38:18–23. [Google Scholar]
  153. Banothu J. Khanapur M. Basavoju S. Bavantula R. Narra M. Abbagani S. Synthesis, characterization and biological evaluation of fused thiazolo [3, 2-a] pyrimidine derivatives. RSC Adv. 2014;4(44):22866–22874. doi: 10.1039/C4RA02514H. [DOI] [Google Scholar]
  154. Sakram B. Sonyanaik B. Ashok K. Rambabu S. Johnmiya S. Benzo [h] thiazolo [2, 3-b] quinazolines by an efficient p-toluenesulfonic acid-catalyzed one-pot two-step tandem reaction. Res. Chem. Intermed. 2016;42(3):1699–1705. doi: 10.1007/s11164-015-2112-4. [DOI] [Google Scholar]
  155. Rajitha G. Arya C. Janardhan B. Laxmi S. Ramesh G. Kumari U. S. 3-Aryl/Heteryl-5-Phenylindeno [1, 2-d] thiazolo [3, 2-a] pyrimidin-6 (5 H)-ones: Synthesis, Characterization, and Antimicrobial Investigation. Russ. J. Bioorg. Chem. 2020;46(4):612–619. doi: 10.1134/S106816202004007X. [DOI] [Google Scholar]
  156. Velpula R. Banothu J. Gali R. Sargam Y. Bavantula R. One-pot and solvent-free synthesis of 3-(9-hydroxy-3-methoxy-7-aryl-6, 7, 9, 10-tetrahydro-5$ H $-benzo [$ h $] thiazolo [2, 3-$ b $] quinazolin-9-yl)-2$ H $-chromen-2-ones and their antibacterial evaluation. Turk. J. Chem. 2015;39(3):620–629. doi: 10.3906/kim-1410-64. [DOI] [Google Scholar]
  157. Suresh L. Kumar P. S. V. Poornachandra Y. Kumar C. G. Babu N. J. Chandramouli G. An expeditious four-component domino protocol for the synthesis of novel thiazolo [3, 2-a] thiochromeno [4, 3-d] pyrimidine derivatives as antibacterial and antibiofilm agents. Bioorg. Med. Chem. 2016;24(16):3808–3817. doi: 10.1016/j.bmc.2016.06.025. [DOI] [PubMed] [Google Scholar]
  158. Anand A. Naik R. J. Revankar H. M. Kulkarni M. V. Dixit S. R. Joshi S. D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem. 2015;105:194–207. doi: 10.1016/j.ejmech.2015.10.019. [DOI] [PubMed] [Google Scholar]
  159. Attia Y. A. Mohamed Y. M. Awad M. M. Alexeree S. Ag doped ZnO nanorods catalyzed photo-triggered synthesis of some novel (1H-tetrazol-5-yl)-coumarin hybrids. J. Organomet. Chem. 2020;919:121320. doi: 10.1016/j.jorganchem.2020.121320. [DOI] [Google Scholar]
  160. Dyachenko I. Dyachenko V. Yakushev I. Khrustalev V. Nenaidenko V. Chromeno [3 ′′, 4 ′′: 5′, 6′] pyrido [2′, 3′: 4, 5] thieno [3, 2-e] pyridine—A New Heterocyclic System. Synthesis and Molecular and Crystal Structures. Russ. J. Org. Chem. 2020;56(9):1669–1672. doi: 10.1134/S1070428020090262. [DOI] [Google Scholar]
  161. Kavitha K. Srikrishna D. Dubey P. K. Aparna P. Tetrabutylammonium tribromide: an effective green reagent for the one-pot reaction of 3-acetyl-2H-chromen-2-ones withoff-phenylenediamines. Org. Chem. 2018:172–185. [Google Scholar]
  162. Kamble A. A. Kamble R. R. Kumbar M. N. Tegginamath G. Pyridine-catalyzed synthesis of quinoxalines as anticancer and anti-tubercular agents. Med. Chem. Res. 2016;25(6):1163–1174. doi: 10.1007/s00044-016-1558-2. [DOI] [Google Scholar]
  163. Zhou J.-F. Gong G.-X. Shi K.-B. Zhu Y.-L. Synthesis of 3-(quinoxalin-2-yl)-2 H-chromen-2-ones under microwave irradiation. Monatsh. Chem. 2009;140(6):651–654. doi: 10.1007/s00706-009-0115-9. [DOI] [Google Scholar]
  164. Chunduru V. S. R. Vedula R. R. One-Pot Synthesis of 1, 3, 4-Thiadiazin-5-yl-chromen-2-one Derivatives via Three-Component Reaction. Synth. Commun. 2012;42(10):1454–1460. doi: 10.1080/00397911.2010.540697. [DOI] [Google Scholar]
  165. Pavurala S. Vaarla K. Kesharwani R. Naesens L. Liekens S. Vedula R. R. Bis coumarinyl bis triazolothiadiazinyl ethane derivatives: Synthesis, antiviral activity evaluation, and molecular docking studies. Synth. Commun. 2018;48(12):1494–1503. doi: 10.1080/00397911.2018.1455871. [DOI] [Google Scholar]
  166. Lechani N. Hamdi M. Kheddis-Boutemeur B. Talhi O. Laichi Y. Bachari K. Silva A. M. Synthetic Approach Toward Heterocyclic Hybrids of [1, 2, 4] Triazolo [3, 4-b][1, 3, 4] thiadiazines. Synlett. 2018;29(11):1502–1504. doi: 10.1055/s-0036-1591991. [DOI] [Google Scholar]
  167. Khidre R. E. Radini I. A. M. Abdel-Wahab B. F. Synthesis of New Heterocycles Incorporating 3-(N-phthalimidomethyl)-1, 2, 4-triazole as Antimicrobial Agents. Egypt. J. Chem. 2016;59(5):731–744. doi: 10.21608/ejchem.2016.1447. [DOI] [Google Scholar]
  168. Kumar P. V. Rao V. R. Synthesis and antitubercular, antiviral and anticancer activity of 3-(3-mercaptoalkyl-7H-[1, 2, 4] triazolo [3, 4-b][1, 3, 4]-thiadiazin-6-yl) chromen-2-one and its derivatives. Indian Journal of Chemistry-Section B. 2008;47:106–111. [Google Scholar]
  169. Vaarla K. Vedula R. R. Synthesis of Novel 3-(3-(5-Methylisoxazol-3-yl)-7H-[1,2,4]Triazolo [3,4-b][1,3,4]Thiadiazin-6-yl)-2H-Chromen-2-Ones. J. Heterocycl. Chem. 2016;53(1):69–73. doi: 10.1002/jhet.2301. [DOI] [Google Scholar]
  170. El-Sayed H. A. Assy M. G. Mohamed A. An efficient synthesis and antimicrobial activity of N-bridged triazolo [3, 4-b] thiadiazine and triazolo [3, 4-b] thiadiazole derivatives under microwave irradiation. Synth. Commun. 2020;50(7):997–1007. doi: 10.1080/00397911.2020.1726397. [DOI] [Google Scholar]
  171. Aychiluhim T. B. Rao V. R. Efficient, One-Pot Synthesis of Triazolothiadiazinyl-pyrazolone and Pyrazolyl-triazolothiadiazine Derivatives via Multicomponent Reaction. Synth. Commun. 2014;44(10):1422–1429. doi: 10.1080/00397911.2012.721917. [DOI] [Google Scholar]
  172. Pavurala S. Vedula R. R. An Efficient, Multicomponent Synthesis of Pyrazolyl Triazolo Thiadiazinyl Chromen - 2 - Ones. J. Heterocycl. Chem. 2015;52(1):306–309. doi: 10.1002/jhet.2027. [DOI] [Google Scholar]
  173. Rao Chunduru V. S. Rao V. R. Synthesis of Aryl and Heteryl 1,3,4-Thiadiazinyl-phthalazine-1,4-dione Derivatives via a Multicomponent Approach. Synth. Commun. 2013;43(7):923–929. doi: 10.1080/00397911.2011.604147. [DOI] [Google Scholar]
  174. Kumar V. N. De Clercq E. Rajitha B. One-Pot Synthesis of Novel 3-(2-Oxo-2H-chromen-3-yl)-[1,3,4] Thiadiazino [2,3-b] Quinazolin-6 (2H)-ones Under Microwave Irradiation. Phosphorus, Sulfur Silicon Relat. Elem. 2007;182(2):273–279. doi: 10.1080/10426500600917094. [DOI] [Google Scholar]
  175. Kenchappa R. Bodke Y. D. Peethambar S. K. Telkar S. Bhovi V. K. Synthesis of β-amino carbonyl derivatives of coumarin and benzofuran and evaluation of their biological activity. Med. Chem. Res. 2013;22(10):4787–4797. doi: 10.1007/s00044-013-0494-7. [DOI] [Google Scholar]
  176. Sanad S. M. H. Ahmed A. A. M. Mekky A. E. M. Synthesis, in vitro and in-silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors. Arch. Pharm. 2020;353(4):1900309. doi: 10.1002/ardp.201900309. [DOI] [PubMed] [Google Scholar]
  177. Arshad A. Osman H. Bagley M. C. Lam C. K. Mohamad S. Zahariluddin A. S. M. Synthesis and antimicrobial properties of some new thiazolyl coumarin derivatives. Eur. J. Med. Chem. 2011;46(9):3788–3794. doi: 10.1016/j.ejmech.2011.05.044. [DOI] [PubMed] [Google Scholar]
  178. Sonmez F. Zengin Kurt B. Gazioglu I. Basile L. Dag A. Cappello V. Ginex T. Kucukislamoglu M. Guccione S. Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem. 2017;32(1):285–297. doi: 10.1080/14756366.2016.1250753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Ohya T. Kudo N. Suzuki E. Kawashima Y. Determination of perfluorinated carboxylic acids in biological samples by high-performance liquid chromatography. J. Chromatogr. B: Biomed. Sci. Appl. 1998;720(1):1–7. doi: 10.1016/S0378-4347(98)00448-4. [DOI] [PubMed] [Google Scholar]
  180. Poboży E. Król E. Wójcik L. Wachowicz M. Trojanowicz M. HPLC determination of perfluorinated carboxylic acids with fluorescence detection. Mikrochim. Acta. 2011;172(3–4):409–417. doi: 10.1007/s00604-010-0513-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Padhan S. K. Podh M. B. Sahu P. K. Sahu S. N. Optical discrimination of fluoride and cyanide ions by coumarin-salicylidene based chromofluorescent probes in organic and aqueous medium. Sens. Actuators, B. 2018;255:1376–1390. doi: 10.1016/j.snb.2017.08.133. [DOI] [Google Scholar]
  182. Yan F. Sun X. Jiang Y. Wang R. Zhang Y. Cui Y. Dual-function fluorescent probe with red emission for sensing viscosity and OCl− and its applications in bioimaging. Dyes Pigm. 2020;182:108531. doi: 10.1016/j.dyepig.2020.108531. [DOI] [Google Scholar]
  183. Hande P. E. Samui A. B. Kulkarni P. S. Selective nanomolar detection of mercury using coumarin based fluorescent Hg (II)—Ion imprinted polymer. Sens. Actuators, B. 2017;246:597–605. doi: 10.1016/j.snb.2017.02.125. [DOI] [Google Scholar]
  184. Kumar N. Hori Y. Nishiura M. Kikuchi K. Rapid no-wash labeling of PYP-tag proteins with reactive fluorogenic ligands affords stable fluorescent protein conjugates for long-term cell imaging studies. Chem. Sci. 2020;11(14):3694–3701. doi: 10.1039/D0SC00499E. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RSC Advances are provided here courtesy of Royal Society of Chemistry

RESOURCES