Abstract
This short review reflects on a personal selection of three abstracts on colorectal cancer (CRC) presented at the 2021 ESMO Congress: (1) KRASG12C as a new therapeutic target in metastatic CRC, supported by data from the KRYSTAL‑1 and CodeBreaK101 trials, (2) positive phase 3 data on the possible role of selective internal radiotherapy (SIRT) in the second-line treatment of liver-limited metastatic CRC, and (3) the impact of the coronavirus disease 2019 (COVID-19) pandemic on CRC screening, management and mortality, now and in the upcoming years.
Keywords: Treatment, Update, KRASG12C, SIRT, COVID-19
Targeted therapy in KRAS G12C-mutated metastatic CRC
Although KRAS is one of the most frequently mutated genes in colorectal cancer (CRC), only 3–4% of all patients with metastatic CRC exhibit a KRAS G12C mutation [1]. KRAS G12C is a point mutation in the KRAS gene resulting in a glycine-to-cysteine amino acid substitution at codon 12, thereby, leading to constitutive activation and oncogenesis. These patients show a worse prognosis when compared to patients with non-KRAS G12C mutated disease.
Adagrasib is a covalent inhibitor of KRAS G12C which irreversibly and selectively binds to KRAS G12C [2]. In the KRYSTAL‑1 phase 1/2 trial, adagrasib was investigated as monotherapy (n = 46) or in combination with the anti-EGFR antibody cetuximab (n = 32) in heavily pretreated KRAS G12C-mutated metastatic CRC [3]. This combination is based on the rationale that EGFR signaling has been identified as the dominant mechanism of CRC resistance to KRAS G12C inhibitors [4].
Adagrasib alone resulted in an overall response rate (ORR) of 22% and disease control rate (DCR) of 87% among 45 evaluable patients. Median progression-free survival (PFS) for monotherapy was 5.6 months (95% confidence interval [CI] 4.1–8.3). The addition of cetuximab could increase clinical efficacy to an ORR of 43% and DCR of 100% among 28 evaluable patients. Here, median time to response was 1.3 months and 71% of patients remained on treatment at the time of analysis. Grade 3/4 adverse events for combination therapy could be observed in 16% of patients, with diarrhea, acneiform rash, stomatitis and QTc prolongation being the most frequent (each 3%).
Based on these results, adagrasib and cetuximab is compared to standard chemotherapy plus/minus antiangiogenic agent in the KRYSTAL-10 trial, a phase 3 randomized trial in patients with KRAS G12C mutated metastatic CRC who have progressed after first-line treatment (NCT04793958).
These data are supported by another trial: in the phase Ib CodeBreaK101 trial, sotorasib, another KRAS G12C inhibitor, was investigated in combination with the anti-EGFR antibody panitumumab in 31 chemorefractory patients [5]. The investigators reported a confirmed plus unconfirmed ORR of 27% and a DCR of 81%.
Sotorasib is already approved by the European Medicines Agency for the treatment of patients with advanced non-small cell lung cancer whose tumors harbor a KRAS G12C mutation and who have progressed after at least one prior line of systemic therapy [6].
The combination of sotorasib and panitumumab will be investigated in the CodeBreak300 trial, a phase 3 randomized trial in patients with KRAS G12C mutated metastatic CRC in the third-line setting (NCT04793958).
First positive phase 3 trial for selective internal radiotherapy in CRC
Selective internal radiotherapy (SIRT) or radioembolization describes the transarterial delivery of microscopic glass beads containing radioactive yttrium (Y-90) to liver metastases through hepatic tumor-feeding arteries.
The EPOCH trial investigated the role of SIRT when added to standard second-line chemotherapy in patients with metastatic CRC limited to the liver [7].
In this phase 3 study, 428 patients were randomized to either chemotherapy alone or the combination with SIRT applied in a single setting, before or after the first cycle of chemotherapy. Both primary endpoints were met, with a slight increase in median PFS (8.0 vs 7.2 months, hazard ratio [HR] 0.69; 95% CI, 0.54–0.88; p = 0.0013) as well as in median hepatic PFS (9.1 vs 7.2 months, HR 0.59, p = 0.0019) when adding SIRT. Moreover, ORR was also higher in the combination arm with 34.0% compared to 21.1% with chemotherapy alone. However, this did not translate into an increased median overall survival (14.0 vs 14.4 months, HR 1.07, p = 0.7229).
Grade 3 adverse events—especially neutropenia—were reported more frequently with SIRT (68.4% vs 49.3%) but not leading to dose reductions in chemotherapy.
So after failing to show an improvement in PFS or OS in the first-line setting [8], adding SIRT to standard chemotherapy to liver-limited metastatic CRC may be beneficial in the second-line setting.
Impact of the COVID-19 pandemic on CRC screening and diagnosis
Due to the immense challenges posed by the coronavirus disease 2019 (COVID-19) pandemic to health care systems worldwide, cancer screening programs had to be scaled back or were not sought by patients out of fear of COVID-19 infection.
At ESMO 2021, Tehfe M et al. presented their analysis of data of the Canadian province of Quebec regarding fecal occult blood test and colonoscopy for CRC screening, as well as CRC surgery [9]. When comparing the 4‑month period during the first wave of the pandemic (April–July 2020) to the same time period in the preceding year (April–July 2019), the researchers could observe a dramatic drop in CRC screening but also CRC surgeries (Table 1).
Table 1.
Intervention | Frequency (2020 vs. 2019) [%] |
---|---|
Fecal occult blood test | −67.26 |
Colonoscopy | −57.8 |
Surgery | −29.5 |
Although prior to the second wave (August–October 2020) many health care services could be resumed, CRC screening was still less than in the previous year (fecal occult blood test: −5%, colonoscopy: −11.4%) as were CRC surgeries (−28%).
These data are in line with other reports [10] and exemplify how the COVID-19 pandemic is impacting CRC management. Since CRC survival is closely linked to stage of disease [11], the delays in diagnosis of CRC are expected to lead to a stage-shift at first diagnosis as well as in an increase in emergency admissions, both known to negatively affect prognosis in CRC [12].
Funding
Open access funding provided by Paracelsus Medical University.
Conflict of interest
L. Weiss: Honoraria: Amgen, Bayer, BMS, Lilly, Merck, MSD, Nordic Pharma, Roche, Sanofi; Consulting: Lilly, Merck; Research Funding: Roche, Novocure.
Footnotes
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Henry J, Coker O, Chowdhury S, et al. Comprehensive clinical and molecular characterization of KRASG12C-mutant colorectal cancer. JCO Precis Oncol. 2021;5:613–621. doi: 10.1200/PO.20.00256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Hallin J, Engstrom LD, Hargi L, Calinisan A, Aranda R, Briere DM, et al. The KRAS G12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discov. 2020;10(1):54–71. doi: 10.1158/2159-8290.CD-19-1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Weiss J, Yaeger R, Johnson M, et al. KRYSTAL-1: adagrasib (MRTX849) as monotherapy or combined with cetuximab (Cetux) in patients (Pts) with colorectal cancer (CRC) harboring a KRASG12C mutation. Ann Oncol. 2021;32:S1283–S1296. [Google Scholar]
- 4.Amodio V, Yaeger R, Arcella P, et al. EGFR blockade reverts resistance to KRAS G12C inhibition in colorectal cancer. Cancer Discov. 2020;10:1129–1139. doi: 10.1158/2159-8290.CD-20-0187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Fakih M, Falchook G, Hong D, et al. CodeBreaK 101 subprotocol H: phase Ib study evaluating combination of sotorasib (Soto), a KRASG12C inhibitor, and panitumumab (PMab), an EGFR inhibitor, in advanced KRAS p.G12C-mutated colorectal cancer (CRC) Ann Oncol. 2021;32:S530–S582. doi: 10.1016/j.annonc.2021.08.955. [DOI] [Google Scholar]
- 6.Skoulidis F, Li B, Dy G, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med. 2021;384:2371–2381. doi: 10.1056/NEJMoa2103695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Radioembolization with chemotherapy for colorectal liver metastases: A randomized, open-label, international, multicenter, phase III trial (EPOCH s…) | OncologyPRO. https://oncologypro.esmo.org/meeting-resources/esmo-congress/radioembolization-with-chemotherapy-for-colorectal-liver-metastases-a-randomized-open-label-international-multicenter-phase-iii-trial-epoch-s. Accessed 15 Feb 2022. [DOI] [PMC free article] [PubMed]
- 8.Wasan HS, Gibbs P, Sharma N, Taieb J, Heinemann V, Ricke J, et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol. 2017;18(9):1159–1171. doi: 10.1016/S1470-2045(17)30457-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Colorectal (CRC) cancer screening and diagnosis during the COVID-19 pandemic in Quebec, Canada | OncologyPRO. https://oncologypro.esmo.org/meeting-resources/esmo-congress/colorectal-crc-cancer-screening-and-diagnosis-during-the-covid-19-pandemic-in-quebec-canada. Accessed 20 Feb 2022.
- 10.Morris EJA, Goldacre R, Spata E, Mafham M, Finan PJ, Shelton J, et al. Impact of the COVID-19 pandemic on the detection and management of colorectal cancer in England: a population-based study. Lancet Gastroenterol Hepatol. 2021;6(3):199–208. doi: 10.1016/S2468-1253(21)00005-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Bowel cancer survival statistics | Cancer Research UK. https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer/survival. Accessed 20 Feb 2022.
- 12.Mcphail S, Elliss-Brookes L, Shelton J, Ives A, Greenslade M, Vernon S, et al. Emergency presentation of cancer and short-term mortality. Br J Cancer. 2013;109(8):2027–2034. doi: 10.1038/bjc.2013.569. [DOI] [PMC free article] [PubMed] [Google Scholar]