Skip to main content
RSC Advances logoLink to RSC Advances
. 2020 Nov 11;10(67):41041–41046. doi: 10.1039/d0ra08441g

The synthesis of N,N′-disulfanediyl-bis(N′-((E)-benzylidene)acetohydrazide) from (E)-N′-benzylideneacetohydrazide and S8

Hong-Yan Liu 1, Yu Chen 2, Li-Qiang Hao 1, Guo-Dong Wang 1, Hong-Shuang Li 1, Cheng-Cai Xia 1,
PMCID: PMC9057724  PMID: 35519175

Abstract

Herein we report an oxidative coupling reaction for N–S/S–S bond formation from (E)-N′-benzylideneacetohydrazide and S8 to furnish substituted N,N′-disulfanediyl-bis(N′-((E)-benzylidene) acetohydrazide). It provides a direct approach for the synthesis of disulfides with good yields.


Herein we report an oxidative coupling reaction for N–S/S–S bond formation substituted N,N′-disulfanediyl bis(N′-((E)-benzylidene)acetohydrazide). It provides a direct approach for the synthesis of disulfides with good yields.graphic file with name d0ra08441g-ga.jpg

Introduction

Disulfide bonds are important structural units which were found prevalently in natural or endogenous peptides.1 They have been applied in digital light processing 3D printing,2 and as bioactive agrochemicals,3 antimicrobials,4 and synthetic intermediates.5 In addition, it is well-established that the disulfide linkage can be cleaved with the tripeptide glutathione (GSH),6 which is over-expressed in cancer cells associated with strong biomedical activities.7 Especially, a number of S,S′-bis(heterosubstituted) disulfides with N–S–S–N units exhibit a wide spectrum of biological activity (Fig. 1).8 Thus, developing an efficient and practical procedure for the synthesis of disulfides is highly desirable. Numerous strategies have been developed for the formation of disulfide bonds.9 Among these pathways, the most common approach involves the substitution of a sulfenyl derivative with a thiol or thiol derivative and these predecessor's work have been summarized by Witt (Scheme 1A).10 In recent decades, oxidative coupling of thiols has developed into an efficient approach for producing disulfides. Many oxidants such as oxygen or air,11,12 hydrogen peroxide,13 halogens,14 high-valent sulfur compounds15 and other agents16 were applied (Scheme 1B). In addition, methyl (E)-2-(2-hydroxybenzylidene)hydrazine-1-carbodithioate17 and N-phenacylbenzothiazolium bromides18 have also been used as starting materials to produce disulfides (Scheme 1C). Different from these C–S–S–C bonds, there are only a few reports in the literatures that describe N–S–S–N bond formation. In these cases, secondary amines reacted with disulfur dichloride to afford S,S′-bis(heterosubstituted) disulfides (Scheme 1D).8,19 As part of our continuing efforts into the development of the C–S bonds formation,20 herein we report an efficient method for generating N,N′-disulfanediyl bis(N′-((E)-benzylidene) acetohydrazide from (E)-N′-benzylideneacetohydrazide and S8. To the best of our knowledge, it is the first example of the formation of N–S–S–N bonds from S8 in moderate yields, and the reaction conditions are simple and mild (Scheme 1E).

Fig. 1. Selected biologically active pharmaceuticals derived from S,S′-bis(heterosubstituted) disulfides.

Fig. 1

Scheme 1. Strategies for the preparation of disulfides.

Scheme 1

Results and discussion

As an initial experiment, we treated the model substrate (E)-N′-benzylideneacetohydrazide 1a and S8 using Ag2CO3 as the oxidant in 1,2-dichloroethane at 80 °C (Table 1). First, the screening of the loading of Ag2CO3 was carried out, and it was found that 2.5 equiv. of Ag2CO3 provided the best result (Table 1, entries 1–5). After this, we only obtained 32% yield when it added 2.5 equiv. of K2S2O8 and reduced the loading of Ag2CO3 to 0.5 equiv. (Table 1, entry 6). Meanwhile, we also evaluated the amount of S8, and the use of 0.3 equiv. of the material gave the highest yield (Table 1, entries 3, 7–9). The temperature also played an important role in the reaction. Various temperatures, such as 60, 90, 100, 110 and 120 °C were also screened, but the yields are poor (Table 1, entries 10–14). Finally, there was no obvious improvement on shortening the reaction time to 2 h or prolonging the reaction time to 4, 6, or 12 h (Table 1, entries 15–18). Impressively, control experiments revealed that the reactions performed under O2 and air atmosphere provided slightly decreased yields (Table 1, entry 19). And it has been shown that K2CO3 replaced Ag2CO3 has no reaction (Table 1, entry 20).

Optimization of reaction conditionsa,b.

graphic file with name d0ra08441g-u1.jpg
Entry Additive (equiv.) S8 (equiv.) Temp (°C) Time (h) Yieldb (%)
1 Ag2CO3 (1.0) S8 (0.3) 80 3 46
2 Ag2CO3 (2.0) S8 (0.3) 80 3 61
3 Ag2CO3 (2.5) S8 (0.3) 80 3 71
4 Ag2CO3 (3.0) S8 (0.3) 80 3 66
5 Ag2CO3 (4.0) S8 (0.3) 80 3 64
6 Ag2CO3 (0.5) S8 (0.3) 80 3 32c
7 Ag2CO3 (2.5) S8 (0.2) 80 3 42
8 Ag2CO3 (2.5) S8 (0.4) 80 3 63
9 Ag2CO3 (2.5) S8 (0.6) 80 3 60
10 Ag2CO3 (2.5) S8 (0.3) 60 3 40
11 Ag2CO3 (2.5) S8 (0.3) 90 3 49
12 Ag2CO3 (2.5) S8 (0.3) 100 3 52
13 Ag2CO3 (2.5) S8 (0.3) 110 3 53
14 Ag2CO3 (2.5) S8 (0.3) 120 3 50
15 Ag2CO3 (2.5) S8 (0.3) 80 2 41
16 Ag2CO3 (2.5) S8 (0.3) 80 4 68
17 Ag2CO3 (2.5) S8 (0.3) 80 6 61
18 Ag2CO3 (2.5) S8 (0.3) 80 12 59
19 Ag2CO3 (2.5) S8 (0.3) 80 3 46d, 48e
20 K2CO3 (2.5) S8 (0.3) 80 3 0
a

Reaction conditions: 1a (0.2 mmol), S8 (0.3 mmol), Ag2CO3 (2.5 equiv.) in CH2ClCH2Cl (2.0 mL) was stirred at sealed tube, N2, 80 °C for 3 h.

b

Isolated yields.

c

Added K2S2O8 (2.5 equiv.).

d

Air.

e

O2.

With the standard reaction conditions in hand (Table 1, entry 3), we subsequently investigated the scope of the benzoquinones (Table 2). Substrates derived from aromatic aldehydes with the para-substituted groups, such as 4-OMe (2b), 4-C(CH3)3 (2c), 4-C2H5 (2d), 4-Br (2e), 4-Cl (2f), afforded the corresponding products in good yields. Unfortunately, the product with an electron-withdrawing group such as 4-NO2 (2g) could not be detected. Gratifyingly, the substrates with meta-substituted groups such as electron-withdrawing 3-Br (2h) and 3-CF3 (2j) and electron-donating 3-OMe (2i) also give good yields. But, the product with a 3-NO2 group (2k) could not be observed. Subsequently, many components with the electron-donating groups such as 2-CH3 (2l) and 2-OC2H5 (2m) at the ortho position on the benzene ring gave good yields. However, the substrates with a halogen group such as 2-Br (2n) and electron-withdrawing groups such as 2-CF3 (2o), 2-NO2 (2p) at the ortho-position did not to provide the corresponding products. To our delight, many disubstituted substrates such as 2q and 2r also gave the related products in 62–65% yields. In addition, the structure of the product (2d) was confirmed by X-ray crystallography. Notably, the gram-scale synthesis was achieved under the standard conditions, giving the product 2a in 46% yield.

Scope of various substituents on the benzene ring of the aromatic aldehyde 1a,b.

graphic file with name d0ra08441g-u2.jpg
a

Reaction conditions: 1a (0.2 mmol), S8 (0.3 mmol), Ag2CO3 (2.5 equiv.) in CH2ClCH2Cl (2.0 mL) was stirred at sealed tube, N2, 80 °C for 3 h.

b

Isolated yields.

Various acyl hydrazides were also examined to explore the limits of the reaction. As shown in Table 3, benzohydrazide (2s), 2-methylbenzohydrazide (2t) all afforded good yields. Furthermore, the alkyl hydrazide such as formyl hydrazide (2u), valeryl hydrazide (2v) also afforded the corresponding products in 49–54% yields. Surprisingly, thiophene-2-carbohydrazide (2w) picolinohydrazide (2x) failed to produce the requisite disulfides.

Scope of various substituents of caprylic hydrazide 1a,b.

graphic file with name d0ra08441g-u3.jpg
a

Reaction conditions: 1a (0.2 mmol), S8 (0.3 mmol), Ag2CO3 (2.5 equiv.) in CH2ClCH2Cl (2.0 mL) was stirred at sealed tube, N2, 80 °C for 3 h.

b

Isolated yields.

To understand the mechanism of the reaction, several control experiments were carried out (Scheme 2). First, product 2a was not obtained without Ag2CO3 (Scheme 2a), which indicated that Ag2CO3 was crucial to facilitate this reaction. Second, we found that the desired product 2a was only slightly decreased when the radical scavenger such as TEMPO was added to the reaction mixture (Scheme 2b). The result indictates that a free radical pathway might be ruled out in this transformation. Third, replacing (E)-N′-benzylideneacetohydrazide with (E)-N′-benzylidenebenzohydrazide produced the desired compound 2s in 65% yield under the standard conditions. Additionally, the product 4 was not observed when (E)-1-benzylidene-2-phenylhydrazine 3 was used as the substrate under the standard reaction conditions (Scheme 2c). Furthermore, when (E)-1-benzylidene-2-methylhydrazine was used in the reaction, the target product 5 was not detected (Scheme 2d). Based on these results, we knew that the acetyl group was essential for the reaction and an oxygen atom of acetyl group was also necessary. Additionally, the reactions carried out under O2 and air atmosphere have slightly decreased the yields of the product and the by-products increased (Table 1, entries 18 and 19).

Scheme 2. Mechanistic studies.

Scheme 2

On basis of these preliminary studies and previous reports,21–28 a plausible pathway for the preparation of 2a from (E)-N′-benzylideneacetohydrazide is proposed in (Scheme 3). Initially, Ag2CO3 react with 1 to produce the intermediate (A). Next, A reacts with S8 to provide the intermediate B. The intermediate C is then produced through an electrophilic attack of elemental sulfur.21,22 Finally, 2a was obtained via facile oxidative coupling of the intermediate C.

Scheme 3. Postulated reaction mechanism.

Scheme 3

Conclusions

In summary, we have developed a silver-mediated oxidative coupling reaction for N–S/S–S bond formation using (E)-N′-benzylideneacetohydrazide and S8 as the starting materials under neutral conditions. In these processes, N,N′-disulfanediyl bis(N′-((E)-benzylidene) acetohydrazides have been successfully synthesized. Moreover, this method provides a direct way to form the disulfides in moderate yields.

Conflicts of interest

There are no conflicts to declare.

Supplementary Material

RA-010-D0RA08441G-s001
RA-010-D0RA08441G-s002

Acknowledgments

We gratefully thank the Shandong Provincial Natural Science Foundation (ZR2017LB006) and Academic promotion program of Shandong First Medical University (no. 2019LJ003) for financial support.

Electronic supplementary information (ESI) available. CCDC 2008330. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d0ra08441g

Notes and references

  1. Taguchi A. Kobayashi K. Cui Y. Takayama K. Taniguchi A. Hayashi Y. Disulfide-driven cyclic peptide synthesis of human endothelin-2 with a solid-supported Npys-Cl. J. Org. Chem. 2020;85:1495. doi: 10.1021/acs.joc.9b02362. [DOI] [PubMed] [Google Scholar]
  2. Li X. P. Yu R. He Y. Y. Zhang Y. Yang X. Zhao X. J. Huang W. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Lett. 2019;8:1511. doi: 10.1021/acsmacrolett.9b00766. [DOI] [PubMed] [Google Scholar]
  3. Mejías F. J. R. Lopez-Haro S. M. Varela R. M. Molinillo J. M. G. Calvino J. J. Macías F. A. In situ eco encapsulation of bioactive agrochemicals within fully organic nanotubes. ACS Appl. Mater. Interfaces. 2019;11:41925. doi: 10.1021/acsami.9b14714. [DOI] [PubMed] [Google Scholar]
  4. Doğan Ş. D. Buran S. Gündüz M. G. Özkul C. Krishna V. S. Sriramd D. Synthesis of disulfide-bridged N-phenyl-N′-(alkyl/aryl/heteroaryl) urea derivatives and evaluation of their antimicrobial activities. Chem. Biodiversity. 2019;16:e190046. doi: 10.1002/cbdv.201900461. [DOI] [PubMed] [Google Scholar]
  5. (a) Zhao J. N. Yang F. Yu Z. Y. Tang X. F. Wu Y. F. Ma C. F. Meng Q. W. Copper(i)-catalyzed sulfenylation of 1,3-dicarbonyl substrates with disulfides under mild conditions. Synlett. 2019;30:2295. doi: 10.1055/s-0039-1691489. [DOI] [Google Scholar]; (b) Zhao J. N. Yang F. Yu Z. Y. Tang X. F. Wu Y. F. Ma C. F. Meng Q. W. Visible light-mediated selective a-functionalization of 1,3-dicarbonyl compounds via disulfide induced aerobic oxidation. Chem. Commun. 2019;55:13008. doi: 10.1039/C9CC06544J. [DOI] [PubMed] [Google Scholar]; (c) Shang Z. H. Chen Q. Y. Xing L. L. Zhang Y. L. Wait L. Du Y. F. In situ formation of RSCl/ArSeCl and their oxidative coupling with enaminone derivatives under transition-metal free conditions. Adv. Synth. Catal. 2019;361:4926. doi: 10.1002/adsc.201900940. [DOI] [Google Scholar]; (d) Mesgar M. Nguyen-Le J. Daugulis O. 1,2-Bis(arylthio)arene synthesis via aryne intermediates. Chem. Commun. 2019;55:9467. doi: 10.1039/C9CC03863A. [DOI] [PMC free article] [PubMed] [Google Scholar]; (e) Xia C. C. Wei Z. J. Yang Y. Yu W. B. Liao H. X. Shen C. Zhang P. F. Palladium-catalyzed thioetherification of quinolone derivatives via decarboxylative C–S cross-couplings. Chem.–Asian J. 2016;11:360. doi: 10.1002/asia.201500808. [DOI] [PubMed] [Google Scholar]
  6. (a) Kumar P. Liu B. Behl G. A. A comprehensive outlook of synthetic strategies and applications of redox-responsive nanogels in drug delivery. Macromol. Biosci. 2019;19:1900071. doi: 10.1002/mabi.201900071. [DOI] [PubMed] [Google Scholar]; (b) Sui B. Cheng C. Xu P. Pyridyl disulfide functionalized polymers as nanotherapeutic platforms. Adv. Ther. 2019;2:1900062. doi: 10.1002/adtp.201900062. [DOI] [Google Scholar]; (c) Quinn J. F. Whittaker M. R. Davis T. P. Glutathione responsive polymers and their application in drug delivery systems. Polym. Chem. 2017;8:97. doi: 10.1039/C6PY01365A. [DOI] [Google Scholar]; (d) Lee M. H. Yang Z. Lim C. W. Lee Y. H. Dongbang S. Kang C. Kim J. S. Disulfide-cleavage-triggered chemosensors and their biological applications. Chem. Rev. 2013;113:5071. doi: 10.1021/cr300358b. [DOI] [PubMed] [Google Scholar]; (e) Oh J. K. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym. Chem. 2019;10:1554. doi: 10.1039/C8PY01808A. [DOI] [Google Scholar]; (f) Mutlu H. Ceper E. B. Li X. Yang J. Dong W. Ozmen M. M. Theato P. Sulfur chemistry in polymer and materials Science. Macromol. Rapid Commun. 2019;40:1800650. doi: 10.1002/marc.201800650. [DOI] [PubMed] [Google Scholar]; (g) Pottanam-Chali S. Ravoo B. J. Polymer Nanocontainers for intracellular delivery. Angew. Chem., Int. Ed. 2020;59:2962. doi: 10.1002/anie.201907484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bej R. Rajdev P. Barmana R. Ghosh S. Hyperbranched polydisulfide. Polym. Chem. 2020;11:990. doi: 10.1039/C9PY01675A. [DOI] [Google Scholar]
  8. (a) Adelowo F. E. Ojo I. A. O. Amuda O. S. Synthesis and fungicidal activity of some sulphide derivatives of O-phenyl-N-substituted phenylcarbamates. Adv. Biol. Chem. 2011;1:122. doi: 10.4236/abc.2011.13015. [DOI] [Google Scholar]; (b) Sun R. F. Zhang Y. L. Chen L. Li Y. Q. Li Q. S. Song H. B. Huang R. Q. Bi F. C. Wang Q. M. Design, synthesis and insecticidal activities of new N-benzoyl-N′-phenyl-N′-sulfenylureas. J. Agric. Food Chem. 2009;57:3661. doi: 10.1021/jf900324a. [DOI] [PubMed] [Google Scholar]; (c) Ramaraju P. Gergeres D. Turos E. Dickey S. Lim D. V. Thomas J. Anderson B. Synthesis and antimicrobial activities of structurally novel S,S′-bis(heterosubstituted) disulfides. Bioorg. Med. Chem. Lett. 2012;22:3623. doi: 10.1016/j.bmcl.2012.04.056. [DOI] [PubMed] [Google Scholar]
  9. (a) Uraev A. I. Nefedov S. E. Lyssenko K. A. Vlasenko V. G. Ikorskii V. N. Garnovskii D. A. Makarova N. I. Levchenkov S. I. Shcherbakov I. N. Milenković M. R. Borodkina G. S. Synthesis, structure, spectroscopic studies and magnetic properties of Cu2N2O4-, Cu2N2O2(S2)-, Cu2N2S4-chromophores based on aminomethylene derivatives of pyrazole-5-one(thione) Polyhedron. 2020;188:114623. doi: 10.1016/j.poly.2020.114623. [DOI] [Google Scholar]; (b) Li L. Chen Q. Xu H. H. Zhang X. H. Zhang X. G. DBU-promoted demethoxylative thioannulation of alkynyl oxime ethers with sulfur for the synthesis of bisisothiazole-4-yl disulfides. J. Org. Chem. 2020;85(15):10083. doi: 10.1021/acs.joc.0c01334. [DOI] [PubMed] [Google Scholar]; (c) Yue H. X. Wang J. H. Xie Z. H. Tian J. Sang D. Y. Liu S. P. 1,3-Diisopropylcarbodiimide-mediated synthesis of disulfides from thiols. ChemistrySelect. 2020;5(14):4273. doi: 10.1002/slct.202000638. [DOI] [Google Scholar]; (d) Parida A. Choudhuri K. Mal P. Unsymmetrical disulfides synthesis via sulfenium ion. Chem.–Asian J. 2019;14(15):2579. doi: 10.1002/asia.201900620. [DOI] [PubMed] [Google Scholar]
  10. Musiejuk M. Doroszuk J. Jędrzejewski B. Nieto G. O. Navarro M. M. Witt D. Diastereoselective synthesis of Z-alkenyl disulfides from thiophosphorylated ketones and thiosulfonates. Adv. Synth. Catal. 2020;362:533. doi: 10.1002/adsc.201901208. [DOI] [Google Scholar]
  11. (a) Chauhan S. M. S. Kumar A. Srinivas K. A. Oxidation of thiols with molecular oxygen catalyzed by cobalt(ii) phthalocyanines in ionic liquid. Chem. Commun. 2003;18:2348. doi: 10.1039/B305888C. [DOI] [PubMed] [Google Scholar]; (b) Fernández-Salas J. A. Manzini S. Nolan S. P. Efficient ruthenium-catalysed S–S, S–Si and S–B bond forming reactions. Chem. Commun. 2013;49:5829. doi: 10.1039/C3CC43145B. [DOI] [PubMed] [Google Scholar]; (c) Li M. Hoover J. M. Aerobic copper-catalyzed decarboxylative thiolation. Chem. Commun. 2016;52:8733. doi: 10.1039/C6CC04486G. [DOI] [PubMed] [Google Scholar]; (d) Dou Y. Huang X. Wang H. Yang L. Li H. Yuan B. Yang G. Reusable cobalt-phthalocyanine in water: efficient catalytic aerobic oxidative coupling of thiols to construct S–N/S–S bonds. Green Chem. 2017;19:2491. doi: 10.1039/C7GC00401J. [DOI] [Google Scholar]; (e) Sohtun W. P. Kannan A. Krishna K. H. Saravanan D. Kumar M. S. Velusamy M. Synthesis, characterization, crystal structure and molecular docking studies of a S-methyldithiocarbazate derivative: bis[2-hydroxy-benzylidenehydrazono) (methylthio) methyl]disulfide. Acta Chim. Slov. 2018;65:621. doi: 10.17344/acsi.2018.4275. [DOI] [PubMed] [Google Scholar]; (f) Zhang Y. H. Yang D. W. Li Y. Zhao X. Y. Wang B. M. Qu J. P. Biomimetic catalytic oxidative coupling of thiols using thiolate-bridged dinuclear metal complexes containing iron in water under mild conditions. Catal. Sci. Technol. 2019;9:6492. doi: 10.1039/C9CY01667H. [DOI] [Google Scholar]
  12. (a) Dhakshinamoorthy A. Alvaro M. Garcia H. Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chem. Commun. 2010;46:6476. doi: 10.1039/C0CC02210A. [DOI] [PubMed] [Google Scholar]; (b) Oba M. Tanaka K. Nishiyama K. Ando W. Aerobic oxidation of thiols to disulfides catalyzed by diaryl tellurides under photosensitized conditions. J. Org. Chem. 2011;76:4173. doi: 10.1021/jo200496r. [DOI] [PubMed] [Google Scholar]; (c) Corma A. Ródenas T. Sabater M. J. Aerobic oxidation of thiols to disulfides by heterogeneous goldcatalysts. Chem. Sci. 2012;3:398. doi: 10.1039/C1SC00466B. [DOI] [Google Scholar]; (d) Das P. Ray S. Bhaumik A. Banerjee B. Mukhopadhyay C. Cubic Ag2O nanoparticle incorporated mesoporous silica with large bottle-neck like mesopores for the aerobic oxidative synthesis of disulfide. RSC Adv. 2015;5:6323. doi: 10.1039/C4RA14802A. [DOI] [Google Scholar]
  13. (a) Hatano A. Makita S. Kirihara M. Synthesis and characterization of a DNA analogue stabilized by mercapto C-nucleoside induced disulfide bonding. Bioorg. Med. Chem. Lett. 2004;14:2459. doi: 10.1016/j.bmcl.2004.03.015. [DOI] [PubMed] [Google Scholar]; (b) Dong R. Pfeffermann M. Skidin D. Wang F. Fu Y. Narita A. Tommasini M. Moresco F. Cuniberti G. Berger R. Müllen K. Feng X. Persulfurated coronene: a new generation of “Sulflower”. J. Am. Chem. Soc. 2017;139:2168. doi: 10.1021/jacs.6b12630. [DOI] [PubMed] [Google Scholar]
  14. (a) Priefer R. Lee Y. J. Barrios F. Wosnick J. H. Lebuis A. M. Farrell P. G. Harpp D. N. Dicubyl Disulfide. J. Am. Chem. Soc. 2002;124:5626. doi: 10.1021/ja025823y. [DOI] [PubMed] [Google Scholar]; (b) Ali M. H. McDermott M. Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support. Tetrahedron Lett. 2002;43:6271. doi: 10.1016/S0040-4039(02)01220-0. [DOI] [Google Scholar]; (c) Bourlès E. Sousa R. A. Galardon E. Selkti M. Tomas A. Artaud I. Synthesis of cyclic mono- and bis-disulfides and their selective conversion to mono- and bis-thiosulfinates. Tetrahedron. 2007;63:2466. doi: 10.1016/j.tet.2007.01.002. [DOI] [Google Scholar]; (d) Izmest'ev Y. S. Pestova S. V. Lezina O. M. Rubtsova S. A. Kutchin A. V. Synthesis of novel chiral 18-sulfanyl and sulfonyl dehydroabietane derivatives. ChemistrySelect. 2019;4:11034. doi: 10.1002/slct.201902600. [DOI] [Google Scholar]
  15. (a) Hajipour A. R. Mallakpour S. E. Adibi H. Selective and efficient oxidation of sulfides and thiols with benzyltriphenylphosphonium peroxymonosulfate in aprotic solvent. J. Org. Chem. 2002;67:8666. doi: 10.1021/jo026106p. [DOI] [PubMed] [Google Scholar]; (b) Leino R. Lönnqvist J. E. A very simple method for the preparation of symmetrical disulfides. Tetrahedron Lett. 2004;45:8489. doi: 10.1016/j.tetlet.2004.09.100. [DOI] [Google Scholar]; (c) Hudwekar A. D. Verma P. K. Kour J. Balgotra S. Sawant S. D. Effect of sodium and fluorine Co-doping on the properties of fluorite-like rare-earth molybdates of Nd5Mo3O16 type. Eur. J. Org. Chem. 2019;6:1242. doi: 10.1002/ejoc.201801610. [DOI] [Google Scholar]
  16. (a) Firouzabadi H. Iranpoor N. Parham H. Sardarian A. Toofan J. Oxidation of thiols to their disulfides with bis trinitratocerium(iv)l chromate [Ce(NO3)3]2CrO4 and pyridinum chlorochromate. Synth. Commun. 1984;14:717. doi: 10.1080/00397918408059586. [DOI] [Google Scholar]; (b) Delaude L. Laszlo P. A novel oxidizing reagent based on potassium ferrate(vi)1. J. Org. Chem. 1996;61:6360. doi: 10.1021/jo960633p. [DOI] [PubMed] [Google Scholar]; (c) Patel S. Mishra B. K. Cetyltrimethylammonium dichromate: a mild oxidant for coupling amines and thiols. Tetrahedron Lett. 2004;45:1371. doi: 10.1016/j.tetlet.2003.12.068. [DOI] [Google Scholar]
  17. Sohtun W. P. Kannan A. Hari Krishna K. Saravanan D. Suresh Kumar M. Velusamy M. Synthesis, characterization, crystal structure and molecular docking studies of a S-methyldithiocarbazate derivative: bis[2-hydroxy-benzylidenehydrazono) (methylthio) methyl] disulfide. Acta Chim. Slov. 2018;65:621. doi: 10.17344/acsi.2018.4275. [DOI] [PubMed] [Google Scholar]
  18. Sahoo S. C. Pan S. C. Synthesis of N-formyl-2-benzoyl benzothiazolines, 2-substituted benzothiazoles, and symmetrical disulfides from N-phenacylbenzothiazolium bromides. Org. Lett. 2019;21:6208. doi: 10.1021/acs.orglett.9b01990. [DOI] [PubMed] [Google Scholar]
  19. (a) Koshy K. T. Burdick M. D. Knuth D. W. Multiphase photodegradation of methyl N-[[[[[(l,l-dimethylethyl)(5,5-dimethyl-2-thioxo-l,3,2-dioxaphosphorinan-2-yl)-am-no]thio]methylamino]carbonyl]oxy]ethanimidothioate. J. Agric. Food Chem. 1983;31:625. doi: 10.1021/jf00117a037. [DOI] [Google Scholar]; (b) Raban D. Noyd D. Bermann L. Mass spectral fragmentation of disulfenamides. Phosphorus Sulfur Relat. Elem. 1976;1:153. doi: 10.1080/03086647608073321. [DOI] [Google Scholar]
  20. (a) Xia C. C. Wei Z. J. Yang Y. Yu W. B. Liao H. X. Shen C. Zhang P. F. Palladium-catalyzed thioetherification of quinolone derivatives via decarboxylative C–S cross-couplings. Chem.–Asian J. 2016;11:360. doi: 10.1002/asia.201500808. [DOI] [PubMed] [Google Scholar]; (b) Xia C. . C. Wei Z. J. Shen C. Xu J. Yang Y. Su W. K. Zhang P. F. Palladium-catalyzed direct ortho-sulfonylation of azobenzenes with arylsulfonyl chlorides via C–H activation. RSC Adv. 2015;5:52588. doi: 10.1039/C5RA06474K. [DOI] [Google Scholar]; (c) Xia C. C. Wang K. Xu J. Wei Z. J. Shen C. Duan G. Y. Zhu Q. Zhang P. F. Copper(ii)-catalyzed remote sulfonylation of aminoquinolines with sodium sulfinates via radical coupling. RSC Adv. 2016;6:37173. doi: 10.1039/C6RA04013F. [DOI] [Google Scholar]; (d) Wang K. Wang G. D. Duan G. Y. Xia C. C. Cobalt(ii)-catalyzed remote C5-selective C–H sulfonylation of quinolines via insertion of sulfur dioxide. RSC Adv. 2017;7:51313. doi: 10.1039/C7RA11363C. [DOI] [Google Scholar]
  21. Liu J. M. Zhang Y. Y. Yue Y. Y. Wang Z. X. Shao H. B. Zhuo K. L. Lv Q. Z. Zhang Z. G. Metal-free dehydrogenative double C–H sulfuration to access thieno [2,3-b] indoles using elemental sulfur. J. Org. Chem. 2019;84:12946. doi: 10.1021/acs.joc.9b01586. [DOI] [PubMed] [Google Scholar]
  22. Chen Z. W. Liang P. Xu F. Qiu R. L. Tan Q. Long L. P. Ye M. Lewis acid-catalyzed intermolecular annulation: three-component reaction toward imidazo [1,2-a] pyridine thiones. J. Org. Chem. 2019;84:9369. doi: 10.1021/acs.joc.9b01188. [DOI] [PubMed] [Google Scholar]
  23. Khakyzadeh V. Rostami A. Veisi H. Shaghasemi B. S. Reimhult E. Luque R. Xia Y. Z. Darvishi S. Direct C–S bond formation via C–O bond activation of phenols in a crossover Pd/Cu dual-metal catalysis system. Org. Biomol. Chem. 2019;17:4491. doi: 10.1039/C9OB00313D. [DOI] [PubMed] [Google Scholar]
  24. Zhou P. Q. Huang Y. B. Wu W. Q. Yu W. T. Li J. X. Zhu Z. Z. Jiang H. F. Direct access to bis-S-heterocycles via copper-catalyzed three component tandem cyclization using S8 as a sulfur source. Org. Biomol. Chem. 2019;17:3424. doi: 10.1039/C9OB00377K. [DOI] [PubMed] [Google Scholar]
  25. Nguyen T. B. Retailleau P. DIPEA-promoted reaction of 2-nitrochalcones with elemental sulfur: an unusual approach to 2-benzoylbenzothiophenes. Org. Lett. 2017;19:4858. doi: 10.1021/acs.orglett.7b02321. [DOI] [PubMed] [Google Scholar]
  26. Nguyen T. B. Elemental sulfur and molecular iodine as efficient tools for carbon–nitrogen bond formation via redox reactions. Asian J. Org. Chem. 2017;6:477. doi: 10.1002/ajoc.201700011. [DOI] [Google Scholar]
  27. Nguyen T. B. Recent Advances in the synthesis of heterocycles via reactions involving elemental sulfur. Adv. Synth. Catal. 2017;359:1106. [Google Scholar]
  28. Nguyen T. B. Recent Advances in the synthesis of heterocycles via reactions involving elemental sulfur. Adv. Synth. Catal. 2020;362(17):3448. doi: 10.1002/adsc.202000535. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

RA-010-D0RA08441G-s001
RA-010-D0RA08441G-s002

Articles from RSC Advances are provided here courtesy of Royal Society of Chemistry

RESOURCES