Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2022 May 5;2:83–90. doi: 10.1016/j.clicom.2022.05.001

C1 esterase inhibitor-mediated immunosuppression in COVID-19: Friend or foe?

Melissa A Hausburg a,b,c, Jason S Williams a,b,c, Kaysie L Banton a, Charles W Mains d, Michael Roshon d,e, David Bar-Or a,b,c,f,
PMCID: PMC9068237  PMID: 38013973

Abstract

From asymptomatic to severe, SARS-CoV-2, causative agent of COVID-19, elicits varying disease severities. Moreover, understanding innate and adaptive immune responses to SARS-CoV-2 is imperative since variants such as Omicron negatively impact adaptive antibody neutralization. Severe COVID-19 is, in part, associated with aberrant activation of complement and Factor XII (FXIIa), initiator of contact system activation. Paradoxically, a protein that inhibits the three known pathways of complement activation and FXIIa, C1 esterase inhibitor (C1-INH), is increased in COVID-19 patient plasma and is associated with disease severity. Here we review the role of C1-INH in the regulation of innate and adaptive immune responses. Additionally, we contextualize regulation of C1-INH and SERPING1, the gene encoding C1-INH, by other pathogens and SARS viruses and propose that viral proteins bind to C1-INH to inhibit its function in severe COVID-19. Finally, we review the current clinical trials and published results of exogenous C1-INH treatment in COVID-19 patients.

Keywords: COVID-19, C1-INH, C1 esterase inhibitor, Complement, Inflammation, FXII

1. Introduction

Late in 2019, unexplained pneumonia deaths in Wuhan, China were the first cases in what quickly evolved into a global pandemic of the novel coronavirus, SARS-CoV-2 infections and deaths [1]. The broad-scoping signs and symptoms of infection with SARS-CoV-2 have been termed coronavirus disease 2019 (COVID-19) [2].

The worldwide scientific community has united in its research efforts to understand SARS-CoV-2 and COVID-19. Clinical manifestations of COVID-19 vary, as some patients are asymptomatic, whereas others endure more serious manifestations such as cough, dyspnea, respiratory failure, and stroke [2]. Leveraging bioinformatic methods that use RNA and DNA sequencing, metabolomic and proteomic characterization by mass spectrometry has allowed scientists to gain insight into the pathophysiologic mechanisms of SARS-CoV-2 infection [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Because of the rapid pace of new bioinformatics-based COVID-19 studies, it is difficult to maintain integration of all publicly available data, and some bioinformatic studies have lacked statistical analysis [7].

Our goal is to summarize the current findings pertaining to a powerful immunosuppressant protein increased by the innate immune response, C1 esterase inhibitor (C1-INH) that has been shown to be regulated in COVID-19 patients. We review the immunological function of C1-INH, its regulation by pathogens and SARS-CoV-2, and clinical trial results of exogenous C1-INH treatment. As new SARS-CoV-2 variants arise that may not be as effectively neutralized by adaptive antibody immunity, our understanding of the innate immune response to SARS-CoV-2 is crucial.

2. Immunological function of C1-INH

C1-INH, a serine protease inhibitor (serpin), is critical for inhibition of the innate immune responses, complement activation and the contact system (CS) (Fig. 1 ) [16]. C1-INH is encoded by the SERPING1 gene, extensively glycosylated, and induced by interferon (IFN) [17], [18], [19], [20], [21], [22], [23], [24]. Powerful innate immune responses such as activation of complement and the CS would be harmful if left unchecked; thus, similar to many biological responses, IFN-mediated upregulation of C1-INH acts as negative feedback to regulate these processes [25].

Fig. 1.

Fig 1

C1-INH suppresses the contact system (CS) and complement activation. Activation of the CS drives bradykinin inflammation, coagulation, and fibrinolysis. C1-INH is the major plasma inhibitor of activated Factor XII and plasma kallikrein, proteins that initiate the CS and bradykinin inflammation, respectively. Similarly, C1-INH suppresses complement activation that drives host antiviral defenses by inhibiting proteins that initiate the proteolytic cascades of the classical and lectin pathways. Further, C1-INH inhibits the alternate pathway by binding C3b. Crosstalk between complement and the CS is mediated through thrombin-mediated complement activation of C3 and C5.

C1-INH directly inhibits complement, a proteolytic cascade involved in linking innate and adaptive immune responses (Figs. 1 and 2 ). Activation of complement protects the host through several mechanisms, including direct virolysis and lysis of infected host cells, inducing an antiviral state in the host cells, as well as through the adaptive immune response [26]. Activated complement proteins bind viral antigen and interact with B cells and CD4+ and CD8+ T cells to promote the formation of viral-specific antibodies and T cell responses [27].

Fig. 2.

Fig 2

Overview of endogenous immunosuppression and clinical uses of exogenous C1-INH. Physiological C1-INH inhibits CS and complement pathways, and these activities have been leveraged for clinical benefit through utilization of exogenous C1-INH (exC1-INH). Deficient C1-INH activity results in angioedema, and in patients with hereditary angioedema (HAE), this effect is largely attributed to unregulated bradykinin signaling, and treatment with exC1-INH is often used to manage disease-associated attacks. Animal models of ischemia/reperfusion injury (IRI) have shown that exC1-INH protects from inflammation and decreases immune cell recruitment. Clinical trial results from exC1-INH treatment in human solid organ transplant studies suggests that exC1-INH may decrease IRI and antibody-mediated rejection (AMR) in transplant recipients. Clinical use of recombinant C1-INH (rhC1-INH) is currently in development to treat or prevent bradykinin and cytokine storms in COVID-19 patients. Lines with arrows indicate activation, and lines with a perpendicular line indicate inhibition.

C1-INH inhibits the three modes of complement activation: the classical, lectin, and alternative pathways (Fig. 1) [28], [29], [30]. Classical complement activation is mediated by the C1 complex, of which C1r and C1s are protein components. C1-INH forms covalent bonds with C1r and C1s, effectively neutralizing them and blocking further classical complement activation [30]. C1-INH also binds and inhibits mannose-binding lectin (MBL)-associated serine protease (MASP)-1 and -2 and C3b, which are high-level activators of the lectin and alternative pathways of complement activation, respectively [28,29,31,32] .

C1-INH concomitantly inhibits complement and the CS (Figs. 1 and 2). Crosstalk between activation of complement and the CS is intermediated by Factor XII (FXII), historically known as Hageman factor [33]. Contact with artificial surfaces, cell-free RNA/DNA, pathogens, including viruses, and other anionic surfaces induces a conformational change in the zymogen FXII to form activated FXIIa [16]. Further, in the plasma kallikrein-kinin system, FXIIa activates plasma prekallikrein (PK) into activated plasma kallikrein (PKa), which is in turn able to perpetuate FXIIa activation, and proteolytically cleave high-molecular-weight kininogen (HK), releasing bradykinin (BK) [34,35]. A major role of the kallikrein-kinin system-mediated release of bradykinin is to induce vascular permeability (Fig. 1) [35]. Patients with either hereditary or acquired loss of C1-INH activity experience episodes of angioedema, largely attributed to unregulated bradykinin signaling (Figs. 1 and 2) [36,37].

FXIIa activates classical complement as effectively as aggregated IgG in vitro [33], and FXIIa activation of intrinsic coagulation results in thrombin-mediated complement activation through activation of C3 and C5 (Fig. 1) [38]. As opposed to alpha-2-macroglobulin, C1-INH is the major plasma inhibitor of activated FXII and PKa [25]. Both complement and the CS have been implicated in the pathophysiology of COVID-19 [6,[39], [40], [41], [42], [43]].

3. Regulation of SERPING1/C1-INH by pathogens

Out of over 22,000 possible genes in a human respiratory virus challenge study, SERPING1 was found to be a member of a 30-gene transcriptional signature that was commonly induced and accurately diagnosed viral infection prior to symptom onset [44]. In an impressive 5-year prospective follow-up study, nine different naturally contracted respiratory viral infections were detected, including coronavirus [45]. The previously characterized 30-gene signature, which included SERPING1, accurately predicted viral infection up to three days prior to viral shedding and symptom onset [45].

Additional studies have identified SERPING1 as a genetic marker of viral infection. Herberg et al. characterized a 38-gene signature out of 8,565 differentially expressed genes to distinguish bacterial from viral infection in febrile children [46]. In this study, SERPING1 significantly distinguished patients with a viral versus bacterial infection and those with a viral infection versus healthy controls [46]. These studies imply that SERPING1 maybe a specific biomarker of viral infections; however, Mycobacterium tuberculosis (Mtb) induces host interferon-mediated responses in a manner similar to a viral infection [47], and when compared to latent tuberculosis (TB), increased SERPING1 transcript levels correlated with subclinical and active TB in 15 of 16 independent studies [48,49].

Gordon et al. reported significant overlap in the interactomes of human protein–pathogen protein interactions between SARS-CoV-2, Mtb, and human immunodeficiency virus (HIV), among others [10]. Interestingly, in dually infected HIV+ Mtb patients, SERPING1 was significantly increased in the blood cells of HIV+ subclinical TB patients that progressed to active TB compared to those patients whose TB did not progress [48]. C1-INH protein levels do not consistently correlate with SERPING1 transcript levels in active TB patients [48,49]; however, C1-INH complexed with serine protease targets are rapidly cleared from circulation, which may be one possible explanation for this discrepancy [50].

HIV infection of cultured immature dendritic cells resulted in increased SERPING1 levels post-infection [51]. Likewise, monocytes from HIV+ patients showed significantly higher expression of SERPING1, and transcript abundance positively correlated with viral load and was significantly increased in patients with high compared to low viral load [52]. HIV-1 viral protein components upregulate C1-INH [51] and cleave the highly glycosylated N-terminus of C1-INH [53].

The consensus among these studies is that increased levels of SERPING1 correlate with viral infection, is associated with active disease, and can be directly regulated by viruses. Further, viral proteins interact and regulate C1-INH. It is likely context dependent whether increased SERPING1 translates to increased C1-INH activity.

4. SARS and SERPING1/C1-INH expression and regulation

Prior to the COVID-19 pandemic, SERPING1 expression had been characterized in SARS-CoV-1 patients and found to be increased in whole blood RNA when compared to healthy controls [54]. And again, when compared to healthy controls SARS-CoV-2 infection was associated with increased SERPING1 transcript in whole blood RNA [9,54,55]. However, SERPING1 was found to be decreased in mRNA purified from bronchoalveolar lavage fluid from COVID patients when compared to a mixed cohort of subjects and controls from a previous study of obesity and asthmatic disease severity [56].

Proteomics of COVID patient sera have afforded valuable insight into C1-INH levels in circulation. Increased C1-INH levels in COVID-19 patients have been described in several studies. Interrogation of the online resource, covid-omics.app developed by Overmyer et al., showed that there was a significant association between increased leukocyte SERPING1 and plasma C1-INH in COVID-19 hospitalized patients versus non-COVID-19 hospitalized patients [15]. In a study that correlated protein abundance in sera versus IL-6 levels, C1-INH levels were found more abundant than controls in patients with low, mid, and high IL-6 levels [11].

COVID proteomics has played an important role in machine learning model development to predict outcomes. Suvarna et al. engaged deep proteomics of COVID-19 patient sera to develop a machine learning model that used 20 proteins including increased C1-INH to classify severe from non-severe COVID [14]. By performing proteomics and metabolomics on COVID patient sera, Shen et al. developed a random forest machine learning model based on the prioritization of 29 molecules (22 proteins and 7 metabolites) to identify non-severe from severe COVID-19, and upregulated C1-INH was one of the top 10 proteins with the highest importance to the accuracy of the model [6]. Further, C1-INH was in the top 25 of 57 proteins in COVID plasma with the highest relevance in a machine learning model used to predict survival of severely ill COVID patients [57]. Despite the inclusion of C1-INH in other machine learning models, in an ultra-high-throughput proteomics analysis of COVID patient sera and plasma, C1-INH was not one of the 27 proteins determined to be biomarkers that correlated with COVID severity [13].

In contrast to plasma and sera, C1-INH was found to be less abundant in urine from mild, severe, and COVID-recovered patients compared with healthy controls [12].

5. SERPING1 gene regulation in the context of SARS infection

The SERPING1 gene is induced by IFN signaling [17], [18], [19], [20], [21], [22], [23], [24] and dysregulation of SERPING1 may be due to altered IFN signaling. As afore mentioned, SERPING1 increases in SARS-CoV-2 patients and is associated with disease severity; however, paradoxically, there is evidence that SARS-CoV-2-associated impaired interferon responses correlate with COVID-19 severity [9,58,59]. Suppression of IFN production has been shown by the nucleocapsid proteins of both Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV-1 [60]. However, the debate of whether SARS-CoV2-mediated IFN signaling is delayed/disrupted or robust has been the focus of numerous COVID-19 studies [3,8,9,59,[61], [62], [63], [64], [65], [66], [67]].

Hadjadj et al. reported that when compared to patients with mild/moderate or severe symptoms, type I IFN signaling was impaired in critical COVID-19 patients, despite significantly increased plasma SARS-CoV-2 viral load [9]. SERPING1 levels were increased in all three of the COVID-19 severity groups described in Hadjadj et al. when compared to healthy control subjects.

SARS-CoV-2 may not elicit strong type I IFN responses; however, the initial type I response seems to be critical for curbing life-threatening COVID-19 symptoms [58,59]. Recently published studies have shown that loss-of-function mutations in proteins critical to type I IFN responses and auto-antibodies against type I IFNs are associated with COVID-19 biomarkers and disease severity [58,59,64,65,67]. Moreover, pre-existing antibodies against cytokines and IFNs may predispose autoimmune disease patients to severe COVID-19 pneumonia [66] Thorne et al. determined that type I IFN induction and sensitivity to IFN mediated inhibition were decreased with the SARS-CoV-2 Alpha variant. Whether caused by auto-antibodies, genetic defects, SARS-CoV-2 variants, or a heretofore-unknown mechanism, lack of sufficient type I IFN signaling does not seem to negatively influence SERPING1/C1-INH induction and correlates with severity. One possible explanation is that SERPING1 is most potently induced by IFN-γ, a type II IFN, and to a lesser extent by type I IFNs [21,24]; thus, increased SERPING1 may occur as a result of natural killer cells secreting IFN-γ in response to IL-1β and IL-18 release from SARS-CoV-2 infected cells during cytokine/bradykinin hyperinflammation (Fig. 3 )[68].

Fig. 3.

Fig 3

Proposed C1-INH signaling in severe and mild COVID-19 patients. A. In mild COVID-19 patients studies suggest that IFN responses are intact and innate immune responses are sufficient to suppress SARS-CoV-2 infection. C1-INH levels increase in mild COVID-19 patients and may be responsible for the attenuation of hyperinflammatory activation. B. Studies suggest that insufficient Type I IFN signaling and high SARS-CoV-2 viral titer are associated with early phases of severe COVID-19. Paradoxically, increased immunosuppressant C1-INH levels correlate with COVID-19 severity. Severe COVID-19 patients suffer from cytokine and bradykinin storms, and the associated IFNγ release may potently induce SERPING1-encoded C1-INH. We speculate that SARS-CoV-2 expresses viral proteins that may bind C1-INH impairing its function and clearance from circulation. Non-functional C1-INH is unable to inhibit hyperinflammation, hypercoagulability, and aberrant complement activation contributing to severe COVID-19.

Women show stronger type I IFN responses, while men are more susceptible to COVID-19, and interestingly, SERPING1 was identified as a gene with potential gender susceptibility of infection and severity in men [69].

Many studies also described an increase in SERPING1-encoded C1-INH, thus there seems to be a disconnect between the current tenets of hypercoagulability and over-activation of complement in COVID-19 patients and C1-INH activity. Intriguingly, patients suffering from hereditary angioedema with a loss of expression or function of C1-INH show augmented coagulation and fibrinolysis during angioedema attacks, similar to COVID-19 patients [43].

C1-INH function may be inhibited by binding of virally expressed proteins as seven of SARS-CoV viral proteins bind C1-INH [70] and by sequence similarity these proteins are predicted to bind to C1-INH during SARS-CoV-2 infection [71]. This supports the idea that while C1-INH appears to be increased in COVID-19 patients, it's function may be compromised (Fig. 3). In support, C1-INH-serpin protease complexes are rapidly cleared from circulation [50] implying that the observed increase in C1-INH concurrent with high complement activation and hypercoaguability may be due to the inability of C1-INH-viral protein aggregates to be cleared from circulation (Fig. 3).

6. Clinical use of C1-INH treatment

Although seemingly self-evident based on function and current clinical use, exogenous C1-INH-facilitated immunosuppression has been shown in many studies (Fig. 2). In animal models of ischemia/reperfusion injury (IRI) in brain, heart, and muscle, C1-INH treatment decreases tissue injury, presumably because of lower levels of reactive oxygen species and inflammation and a decrease in immune cell recruitment [25,[72], [73], [74]]. C1-INH-mediated protection may have originated from its protease inhibitor activity, as well as anti-inflammatory properties independent of its role in complement and CS, by disrupting leukocyte/endothelial adhesion and decreasing neutrophil infiltration [72,75,76]. C1-INH treatment improved solid organ transplant outcomes by decreasing IRI and ameliorating antibody-mediated rejection in the recipient [77], which showed that C1-INH treatment acts as an immunosuppressant.

Cancer cell survival often depends on immunosuppressive mechanisms, and with the exclusion of lymphoproliferative cancers, C1-INH levels have been shown to be increased in many diverse cancer types, including squamous cell lung carcinoma, glioblastoma, and pancreatic cancer [78], [79], [80], [81], [82], [83]. Increased C1-INH levels were characterized as an independent prognosticator for gastric cancer and were found to be associated with decreased survival in colorectal cancer patients [81,82].

7. Clinical use of C1-INH in COVID-19 patients

In an uncontrolled trial with five patients treated with the FDA-approved, recombinant C1-INH (rhC1-INH) concentrate Conestat alfa (Ruconest, Pharming Group/Salix Pharmaceuticals) showed very promising results in severe COVID-19 patients (Fig. 2) [84]. A larger interventional clinical trial, where Conestat alfa was administered upon hospital admission to COVID-19 patients with respiratory involvement, at least one risk factor for progression to mechanical ventilation, and symptom onset within the last 10 days, was terminated due to enrollment and changes to the standard of care [85,86]. Another clinical trial with a similar protocol and from the same sponsor based in the United States is on-going and currently recruiting patients [87]. An additional trial of Conestat alfa is aimed at improving neurological symptoms associated with post-acute COVID-19 syndrome [88]. Long-term consequences observed in survivors of SARS-CoV-1 and MERS and now COVID-19 patients are varied and may negatively affect pulmonary, hematologic, cardiovascular, neuropsychiatric, and other body systems [89].

A clinical trial aimed at targeting pulmonary sequelae due to overactive bradykinin in COVID-19 infections tested C1-inhibitor administered either alone or concurrently with Icatibant, a specific bradykinin B2 receptor antagonist, against the placebo control arm [90]. This trial was completed with a total of 44 participants, but results have yet to be published. A recently published Brazilian clinical trial compared standard of care with patients treated with Icatibant or a human plasma-derived C1 esterase/kallikrein inhibitor (Berinert®, CSL Behring LLC.) [91,92]. Neither treatment group showed decreases in the time to clinical improvement when compared to standard of care; however, both drugs were safe and improved lung CT scores [92]. It will be interesting to see if C1-INH administered concurrently with Icatibant produced more positive results. Further, the timing of C1-INH administration in the course of COVID-19 may be critical to its therapeutic success.

8. Concluding statements

We review evidence that when compared to healthy controls, SARS-CoV-2 infection results in an increase in SERPING1 transcript and C1-INH levels in plasma/sera, including mild cases of COVID-19 (Fig. 3). We speculate that because of sufficient type I IFN signaling, SARS-CoV-2 virus is neutralized by innate immune responses, and the early induction of C1-INH functionally inhibits hyperinflammation, hypercoagulability, and aberrant complement activation, resulting in mild COVID-19.

Studies have shown that increasing levels of C1-INH correlate with COVID-19 severity, and this presents an apparent disconnect between C1-INH function in the face of overactivated complement and hypercoagulation that is observed in severe COVID-19 patients. SARS-CoV-2 viral proteins may bind to C1-INH inhibiting its function and clearance from circulation that results in detection of increased C1-INH, albeit non-functional.

C1-INH is an immunosuppressant protein that inhibits pathways in innate and adaptive immunology. If asymptomatic SARS-CoV-2 infected persons also have increased circulating functional C1-INH levels compared to healthy controls, we speculate that this may be a contributing factor to the lower abundance of antibodies to SAR-CoV-2 and the extended viral shedding observed in the asymptomatic patient population [93,94]. Further, increased functional C1-INH may contribute to reinfection risk, as has been observed [5,95,96] or reduced durability of SARS-CoV-2 vaccine-derived immunity[97].

As more bioinformatic datasets are published, we may find more novel connections and findings, such as the observation of increased C1-INH levels in COVID-19 patients, and this may contribute to our understanding of COVID-19 and its detrimental effects.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data Sharing

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

CRediT authorship contribution statement

Melissa A. Hausburg: Conceptualization, Methodology, Investigation, Visualization, Writing – original draft, Writing – review & editing, Project administration. Jason S. Williams: Methodology, Investigation, Writing – review & editing. Kaysie L. Banton: Resources, Writing – review & editing, Supervision. Charles W. Mains: Resources, Writing – review & editing, Supervision. Michael Roshon: Resources, Writing – review & editing, Supervision. David Bar-Or: Conceptualization, Methodology, Resources, Writing – review & editing, Supervision, Project administration.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Erica Sercy for proofing and editing the manuscript.

References

  • 1.2020. WHO Coronavirus Disease (COVID-19) Dashboard.https://covid19.who.int Accessed January 4, 2021. [Google Scholar]
  • 2.2020. Coronavirus disease 2019 (COVID-19): Clinical features.https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-clinical-features?search=covid%2019&source=search_result&selectedTitle=1∼150&usage_type=default&display_rank=1#H1616328133 Accessed September 14, 2020. [Google Scholar]
  • 3.Zhou Z., Ren L., Zhang L., Zhong J., Xiao Y., Jia Z., Guo L., Yang J., Wang C., Jiang S., Yang D., Zhang G., Li H., Chen F., Xu Y., Chen M., Gao Z., Yang J., Dong J., Liu B., Zhang X., Wang W., He K., Jin Q., Li M., Wang J. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe. 2020;27(6):883-890 e2. doi: 10.1016/j.chom.2020.04.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Wen W., Su W., Tang H., Le W., Zhang X., Zheng Y., Liu X., Xie L., Li J., Ye J., Dong L., Cui X., Miao Y., Wang D., Dong J., Xiao C., Chen W., Wang H. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020;6:31. doi: 10.1038/s41421-020-0168-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.To K.K., Hung I.F., Ip J.D., Chu A.W., Chan W.M., Tam A.R., Fong C.H., Yuan S., Tsoi H.W., Ng A.C., Lee L.L., Wan P., Tso E., To W.K., Tsang D., Chan K.H., Huang J.D., Kok K.H., Cheng V.C., Yuen K.Y. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Shen B., Yi X., Sun Y., Bi X., Du J., Zhang C., Quan S., Zhang F., Sun R., Qian L., Ge W., Liu W., Liang S., Chen H., Zhang Y., Li J., Xu J., He Z., Chen B., Wang J., Yan H., Zheng Y., Wang D., Zhu J., Kong Z., Kang Z., Liang X., Ding X., Ruan G., Xiang N., Cai X., Gao H., Li L., Li S., Xiao Q., Lu T., Zhu Y., Liu H., Chen H., Guo T. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell. 2020;182(1):59-72 e15. doi: 10.1016/j.cell.2020.05.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Ong E.Z., Chan Y.F.Z., Leong W.Y., Lee N.M.Y., Kalimuddin S., Haja Mohideen S.M., Chan K.S., Tan A.T., Bertoletti A., Ooi E.E., Low J.G.H. A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host Microbe. 2020;27(6):879-882 e2. doi: 10.1016/j.chom.2020.03.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Lucas C., Wong P., Klein J., Castro T.B.R., Silva J., Sundaram M., Ellingson M.K., Mao T., Oh J.E., Israelow B., Takahashi T., Tokuyama M., Lu P., Venkataraman A., Park A., Mohanty S., Wang H., Wyllie A.L., Vogels C.B.F., Earnest R., Lapidus S., Ott I.M., Moore A.J., Muenker M.C., Fournier J.B., Campbell M., Odio C.D., Casanovas-Massana A., Yale I.T., Herbst R., Shaw A.C., Medzhitov R., Schulz W.L., Grubaugh N.D., Dela Cruz C., Farhadian S., Ko A.I., Omer S.B., Iwasaki A. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584(7821):463–469. doi: 10.1038/s41586-020-2588-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N., Pere H., Charbit B., Bondet V., Chenevier-Gobeaux C., Breillat P., Carlier N., Gauzit R., Morbieu C., Pene F., Marin N., Roche N., Szwebel T.A., Merkling S.H., Treluyer J.M., Veyer D., Mouthon L., Blanc C., Tharaux P.L., Rozenberg F., Fischer A., Duffy D., Rieux-Laucat F., Kerneis S., Terrier B. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724. doi: 10.1126/science.abc6027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O'Meara M.J., Rezelj V.V., Guo J.Z., Swaney D.L., Tummino T.A., Huttenhain R., Kaake R.M., Richards A.L., Tutuncuoglu B., Foussard H., Batra J., Haas K., Modak M., Kim M., Haas P., Polacco B.J., Braberg H., Fabius J.M., Eckhardt M., Soucheray M., Bennett M.J., Cakir M., McGregor M.J., Li Q., Meyer B., Roesch F., Vallet T., Kain A.Mac, Miorin L., Moreno E., Naing Z.Z.C., Zhou Y., Peng S., Shi Y., Zhang Z., Shen W., Kirby I.T., Melnyk J.E., Chorba J.S., Lou K., Dai S.A., Barrio-Hernandez I., Memon D., Hernandez-Armenta C., Lyu J., Mathy C.J.P., Perica T., Pilla K.B., Ganesan S.J., Saltzberg D.J., Rakesh R., Liu X., Rosenthal S.B., Calviello L., Venkataramanan S., Liboy-Lugo J., Lin Y., Huang X.P., Liu Y., Wankowicz S.A., Bohn M., Safari M., Ugur F.S., Koh C., Savar N.S., Tran Q.D., Shengjuler D., Fletcher S.J., O'Neal M.C., Cai Y., Chang J.C.J., Broadhurst D.J., Klippsten S., Sharp P.P., Wenzell N.A., Kuzuoglu-Ozturk D., Wang H.Y., Trenker R., Young J.M., Cavero D.A., Hiatt J., Roth T.L., Rathore U., Subramanian A., Noack J., Hubert M., Stroud R.M., Frankel A.D., Rosenberg O.S., Verba K.A., Agard D.A., Ott M., Emerman M., Jura N., von Zastrow M., Verdin E., Ashworth A., Schwartz O., d'Enfert C., Mukherjee S., Jacobson M., Malik H.S., Fujimori D.G., Ideker T., Craik C.S., Floor S.N., Fraser J.S., Gross J.D., Sali A., Roth B.L., Ruggero D., Taunton J., Kortemme T., Beltrao P., Vignuzzi M., Garcia-Sastre A., Shokat K.M., Shoichet B.K., Krogan N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–468. doi: 10.1038/s41586-020-2286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.D'Alessandro A., Thomas T., Dzieciatkowska M., Hill R.C., Francis R.O., Hudson K.E., Zimring J.C., Hod E.A., Spitalnik S.L., Hansen K.C. Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level. J. Proteome Res. 2020 doi: 10.1021/acs.jproteome.0c00365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Li Y., Wang Y., Liu H., Sun W., Ding B., Zhao Y., Chen P., Zhu L., Li Z., Li N., Chang L., Wang H., Bai C., Xu P. Urine proteome of COVID-19 patients. Urine (Amst) 2020;2:1–8. doi: 10.1016/j.urine.2021.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Messner C.B., Demichev V., Wendisch D., Michalick L., White M., Freiwald A., Textoris-Taube K., Vernardis S.I., Egger A.S., Kreidl M., Ludwig D., Kilian C., Agostini F., Zelezniak A., Thibeault C., Pfeiffer M., Hippenstiel S., Hocke A., von Kalle C., Campbell A., Hayward C., Porteous D.J., Marioni R.E., Langenberg C., Lilley K.S., Kuebler W.M., Mulleder M., Drosten C., Suttorp N., Witzenrath M., Kurth F., Sander L.E., Ralser M. Ultra-High-Throughput Clinical Proteomics Reveals Classifiers of COVID-19 Infection. Cell Syst. 2020;11(1):11-24 e4. doi: 10.1016/j.cels.2020.05.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Suvarna K., Biswas D., Pai M.G.J., Acharjee A., Bankar R., Palanivel V., Salkar A., Verma A., Mukherjee A., Choudhury M., Ghantasala S., Ghosh S., Singh A., Banerjee A., Badaya A., Bihani S., Loya G., Mantri K., Burli A., Roy J., Srivastava A., Agrawal S., Shrivastav O., Shastri J., Srivastava S. Proteomics and machine learning approaches reveal a set of prognostic markers for COVID-19 severity with drug repurposing potential. Front. Physiol. 2021;12 doi: 10.3389/fphys.2021.652799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Overmyer K.A., Shishkova E., Miller I.J., Balnis J., Bernstein M.N., Peters-Clarke T.M., Meyer J.G., Quan Q., Muehlbauer L.K., Trujillo E.A., He Y., Chopra A., Chieng H.C., Tiwari A., Judson M.A., Paulson B., Brademan D.R., Zhu Y., Serrano L.R., Linke V., Drake L.A., Adam A.P., Schwartz B.S., Singer H.A., Swanson S., Mosher D.F., Stewart R., Coon J.J., Jaitovich A. Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst. 2020 doi: 10.1016/j.cels.2020.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Long A.T., Kenne E., Jung R., Fuchs T.A., Renne T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J. Thromb. Haemost. 2016;14(3):427–437. doi: 10.1111/jth.13235. [DOI] [PubMed] [Google Scholar]
  • 17.Zahedi K., Prada A.E., Prada J.A., Davis A.E., 3rd Characterization of the IFN-gamma-responsive element in the 5′ flanking region of the C1 inhibitor gene. J. Immunol. 1997;159(12):6091–6096. [PubMed] [Google Scholar]
  • 18.Que B.G., Petra P.H. Isolation and analysis of a cDNA coding for human C1 inhibitor. Biochem. Biophys. Res. Commun. 1986;137(2):620–625. doi: 10.1016/0006-291x(86)91123-x. [DOI] [PubMed] [Google Scholar]
  • 19.Bock S.C., Skriver K., Nielsen E., Thogersen H.C., Wiman B., Donaldson V.H., Eddy R.L., Marrinan J., Radziejewska E., Huber R., et al. Human C1 inhibitor: primary structure, cDNA cloning, and chromosomal localization. Biochemistry. 1986;25(15):4292–4301. doi: 10.1021/bi00363a018. [DOI] [PubMed] [Google Scholar]
  • 20.Davis A.E., 3rd C1 inhibitor and hereditary angioneurotic edema. Annu. Rev. Immunol. 1988;6:595–628. doi: 10.1146/annurev.iy.06.040188.003115. [DOI] [PubMed] [Google Scholar]
  • 21.Lappin D., Whaley K. Regulation of C1-inhibitor synthesis by interferons and other agents. Behring Inst. Mitt. 1989;(84):180–192. [PubMed] [Google Scholar]
  • 22.Cai S., Davis A.E., 3rd Complement regulatory protein C1 inhibitor binds to selectins and interferes with endothelial-leukocyte adhesion. J. Immunol. 2003;171(9):4786–4791. doi: 10.4049/jimmunol.171.9.4786. [DOI] [PubMed] [Google Scholar]
  • 23.Stavenhagen K., Kayili H.M., Holst S., Koeleman C.A.M., Engel R., Wouters D., Zeerleder S., Salih B., Wuhrer M. N- and O-glycosylation analysis of human C1-inhibitor reveals extensive mucin-type O-glycosylation. Mol. Cell. Proteomics. 2018;17(6):1225–1238. doi: 10.1074/mcp.RA117.000240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Lotz M., Zuraw B.L. Interferon-gamma is a major regulator of C1-inhibitor synthesis by human blood monocytes. J. Immunol. 1987;139(10):3382–3387. [PubMed] [Google Scholar]
  • 25.Davis A.E., 3rd, Mejia P., Lu F. Biological activities of C1 inhibitor. Mol. Immunol. 2008;45(16):4057–4063. doi: 10.1016/j.molimm.2008.06.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Agrawal P., Nawadkar R., Ojha H., Kumar J., Sahu A. Complement evasion strategies of viruses: an overview. Front. Microbiol. 2017;8:1117. doi: 10.3389/fmicb.2017.01117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Dunkelberger J.R., Song W.C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. doi: 10.1038/cr.2009.139. [DOI] [PubMed] [Google Scholar]
  • 28.Jiang H., Wagner E., Zhang H., Frank M.M. Complement 1 inhibitor is a regulator of the alternative complement pathway. J. Exp. Med. 2001;194(11):1609–1616. doi: 10.1084/jem.194.11.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Parej K., Dobo J., Zavodszky P., Gal P. The control of the complement lectin pathway activation revisited: both C1-inhibitor and antithrombin are likely physiological inhibitors, while alpha2-macroglobulin is not. Mol. Immunol. 2013;54(3-4):415–422. doi: 10.1016/j.molimm.2013.01.009. [DOI] [PubMed] [Google Scholar]
  • 30.Davis A.E. Structure and function of C1 inhibitor. Behring Inst. Mitt. 1989;(84):142–150. [PubMed] [Google Scholar]
  • 31.Wong N.K., Kojima M., Dobo J., Ambrus G., Sim R.B. Activities of the MBL-associated serine proteases (MASPs) and their regulation by natural inhibitors. Mol. Immunol. 1999;36(13-14):853–861. doi: 10.1016/s0161-5890(99)00106-6. [DOI] [PubMed] [Google Scholar]
  • 32.Matsushita M., Thiel S., Jensenius J.C., Terai I., Fujita T. Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J. Immunol. 2000;165(5):2637–2642. doi: 10.4049/jimmunol.165.5.2637. [DOI] [PubMed] [Google Scholar]
  • 33.Ghebrehiwet B., Silverberg M., Kaplan A.P. Activation of the classical pathway of complement by Hageman factor fragment. J. Exp. Med. 1981;153(3):665–676. doi: 10.1084/jem.153.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Renne T., Stavrou E.X. Roles of Factor XII in Innate Immunity. Front. Immunol. 2019;10:2011. doi: 10.3389/fimmu.2019.02011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Hofman Z., de Maat S., Hack C.E., Maas C. Bradykinin: inflammatory product of the coagulation system. Clin. Rev. Allergy Immunol. 2016;51(2):152–161. doi: 10.1007/s12016-016-8540-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Cicardi M., Zanichelli A. Acquired angioedema. Allergy Asthma Clin Immunol. 2010;6(1):14. doi: 10.1186/1710-1492-6-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Zuraw B.L. The pathophysiology of hereditary angioedema. World Allergy Organ J. 2010;3(9):S25–S28. doi: 10.1097/1939-4551-3-S3-S25. Suppl. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Markiewski M.M., Nilsson B., Ekdahl K.N., Mollnes T.E., Lambris J.D. Complement and coagulation: strangers or partners in crime? Trends Immunol. 2007;28(4):184–192. doi: 10.1016/j.it.2007.02.006. [DOI] [PubMed] [Google Scholar]
  • 39.Polycarpou A., Howard M., Farrar C.A., Greenlaw R., Fanelli G., Wallis R., Klavinskis L.S., Sacks S. Rationale for targeting complement in COVID-19. EMBO Mol. Med. 2020;12(8):e12642. doi: 10.15252/emmm.202012642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., Levantovsky R., Malle L., Moreira A., Park M.D., Pia L., Risson E., Saffern M., Salome B., Esai Selvan M., Spindler M.P., Tan J., van der Heide V., Gregory J.K., Alexandropoulos K., Bhardwaj N., Brown B.D., Greenbaum B., Gumus Z.H., Homann D., Horowitz A., Kamphorst A.O., Curotto de Lafaille M.A., Mehandru S., Merad M., Samstein R.M., P. Sinai Immunology Review Immunology of COVID-19: Current State of the Science. Immunity. 2020;52(6):910–941. doi: 10.1016/j.immuni.2020.05.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18(4):844–847. doi: 10.1111/jth.14768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Garvin M.R., Alvarez C., Miller J.I., Prates E.T., Walker A.M., Amos B.K., Mast A.E., Justice A., Aronow B., Jacobson D. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020;9 doi: 10.7554/eLife.59177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Thomson T.M., Toscano-Guerra E., Casis E., Paciucci R. C1 esterase inhibitor and the contact system in COVID-19. Br. J. Haematol. 2020;190(4):520–524. doi: 10.1111/bjh.16938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Zaas A.K., Chen M., Varkey J., Veldman T., Hero A.O., 3rd, Lucas J., Huang Y., Turner R., Gilbert A., Lambkin-Williams R., Oien N.C., Nicholson B., Kingsmore S., Carin L., Woods C.W., Ginsburg G.S. Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. Cell Host Microbe. 2009;6(3):207–217. doi: 10.1016/j.chom.2009.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.McClain M.T., Constantine F.J., Nicholson B.P., Nichols M., Burke T.W., Henao R., Jones D.C., Hudson L.L., Jaggers L.B., Veldman T., Mazur A., Park L.P., Suchindran S., Tsalik E.L., Ginsburg G.S., Woods C.W. A blood-based host gene expression assay for early detection of respiratory viral infection: an index-cluster prospective cohort study. Lancet Infect. Dis. 2020 doi: 10.1016/S1473-3099(20)30486-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Herberg J.A., Kaforou M., Wright V.J., Shailes H., Eleftherohorinou H., Hoggart C.J., Cebey-Lopez M., Carter M.J., Janes V.A., Gormley S., Shimizu C., Tremoulet A.H., Barendregt A.M., Salas A., Kanegaye J., Pollard A.J., Faust S.N., Patel S., Kuijpers T., Martinon-Torres F., Burns J.C., Coin L.J., Levin M., Consortium I. Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children. JAMA. 2016;316(8):835–845. doi: 10.1001/jama.2016.11236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Schluger N.W. Recent advances in our understanding of human host responses to tuberculosis. Respir. Res. 2001;2(3):157–163. doi: 10.1186/rr53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Esmail H., Lai R.P., Lesosky M., Wilkinson K.A., Graham C.M., Horswell S., Coussens A.K., Barry C.E., 3rd, O'Garra A, Wilkinson R.J. Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis. Proc. Natl. Acad. Sci. U. S. A. 2018;115(5):E964–E973. doi: 10.1073/pnas.1711853115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Lubbers R., Sutherland J.S., Goletti D., de Paus R.A., Dijkstra D.J., van Moorsel C.H.M., Veltkamp M., Vestjens S.M.T., Bos W.J.W., Petrone L., Malherbe S.T., Walzl G., Gelderman K.A., Groeneveld G.H., Geluk A., Ottenhoff T.H.M., Joosten S.A., Trouw L.A. Expression and production of the SERPING1-encoded endogenous complement regulator C1-inhibitor in multiple cohorts of tuberculosis patients. Mol. Immunol. 2020;120:187–195. doi: 10.1016/j.molimm.2020.02.006. [DOI] [PubMed] [Google Scholar]
  • 50.de Smet B.J., de Boer J.P., Agterberg J., Rigter G., Bleeker W.K., Hack C.E. Clearance of human native, proteinase-complexed, and proteolytically inactivated C1-inhibitor in rats. Blood. 1993;81(1):56–61. [PubMed] [Google Scholar]
  • 51.Izmailova E., Bertley F.M., Huang Q., Makori N., Miller C.J., Young R.A., Aldovini A. HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat. Med. 2003;9(2):191–197. doi: 10.1038/nm822. [DOI] [PubMed] [Google Scholar]
  • 52.Sanfilippo C., Cambria D., Longo A., Palumbo M., Avola R., Pinzone M., Nunnari G., Condorelli F., Musumeci G., Imbesi R., Castogiovanni P., Malaguarnera L., Di Rosa M. SERPING1 mRNA overexpression in monocytes from HIV+ patients. Inflamm. Res. 2017;66(12):1107–1116. doi: 10.1007/s00011-017-1091-x. [DOI] [PubMed] [Google Scholar]
  • 53.Gerencer M., Burek V. Identification of HIV-1 protease cleavage site in human C1-inhibitor. Virus Res. 2004;105(1):97–100. doi: 10.1016/j.virusres.2004.04.010. [DOI] [PubMed] [Google Scholar]
  • 54.Cameron M.J., Ran L., Xu L., Danesh A., Bermejo-Martin J.F., Cameron C.M., Muller M.P., Gold W.L., Richardson S.E., Poutanen S.M., Willey B.M., DeVries M.E., Fang Y., Seneviratne C., Bosinger S.E., Persad D., Wilkinson P., Greller L.D., Somogyi R., Humar A., Keshavjee S., Louie M., Loeb M.B., Brunton J., McGeer A.J., Canadian S.R.N., Kelvin D.J. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. J. Virol. 2007;81(16):8692–8706. doi: 10.1128/JVI.00527-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Hausburg M.A., Banton K.L., Roshon M., Bar-Or D. Clinically distinct COVID-19 cases share notably similar immune response progression: A follow-up analysis. Heliyon. 2021;7(1):e05877. doi: 10.1016/j.heliyon.2020.e05877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Mast A.E., Wolberg A.S., Gailani D., Garvin M.R., Alvarez C., Miller J.I., Aronow B., Jacobson D. SARS-CoV-2 suppresses anticoagulant and fibrinolytic gene expression in the lung. Elife. 2021;10 doi: 10.7554/eLife.64330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Bauer R., Demichev V., Tober-Lau P., Nazarenko T., Lemke O., Aulakh S.Kaur, Whitwell H.J., Röhl A., Freiwald A., Mittermaier M., Szyrwiel L., Ludwig D., Correia-Melo C., Lippert L.J., Helbig E.T., Stubbemann P., Olk N., Thibeault C., Grüning N.-M., Blyuss O., Vernardis S., White M., Messner C.B., Joannidis M., Sonnweber T., Klein S.J., Pizzini A., Wohlfarter Y., Sahanic S., Hilbe R., Schaefer B., Wagner S., Machleidt F., Garcia C., Ruwwe-Glösenkamp C., Lingscheid T., de Jarcy L.Bosquillon, Stegemann M.S., Pfeiffer M., Jürgens L., Denker S., Zickler D., Spies C., Edel A., Müller N.B., Enghard P., Zelezniak A., Bellmann-Weiler R., Weiss G., Campbell A., Hayward C., Porteous D.J., Marioni R.E., Uhrig A., Zoller H., Löffler-Ragg J., Keller M.A., Tancevski I., Timms J.F., Zaikin A., Hippenstiel S., Ramharter M., Müller-Redetzky H., Witzenrath M., Suttorp N., Lilley K., Mülleder M., Sander L.E., Kurth F., Ralser M. A proteomic survival predictor for COVID-19 patients in intensive care. PLOS Digital Health. 2022;1(1) doi: 10.1371/journal.pdig.0000007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Beziat V., Manry J., Shaw E., Haljasmagi L., Peterson P., Lorenzo L., Bizien L., Trouillet-Assant S., Dobbs K., de Jesus A.A., Belot A., Kallaste A., Catherinot E., Tandjaoui-Lambiotte Y., Pen J.Le, Kerner G., Bigio B., Seeleuthner Y., Yang R., Bolze A., Spaan A.N., Delmonte O.M., Abers M.S., Aiuti A., Casari G., Lampasona V., Piemonti L., Ciceri F., Bilguvar K., Lifton R.P., Vasse M., Smadja D.M., Migaud M., Hadjadj J., Terrier B., Duffy D., Quintana-Murci L., van de Beek D., Roussel L., Vinh D.C., Tangye S.G., Haerynck F., Dalmau D., Martinez-Picado J., Brodin P., Nussenzweig M.C., Boisson-Dupuis S., Rodriguez-Gallego C., Vogt G., Mogensen T.H., Oler A.J., Gu J., Burbelo P.D., Cohen J., Biondi A., Bettini L.R., D'Angio M., Bonfanti P., Rossignol P., Mayaux J., Rieux-Laucat F., Husebye E.S., Fusco F., Ursini M.V., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Castagnoli R., Montagna D., Licari A., Marseglia G.L., Duval X., Ghosn J., Lab H., N.-U.I.R.t.C. Group. Clinicians C., Clinicians C.-S., Imagine C.G., French C.C.S.G., Interieur C.Milieu, Co V.C.C., Amsterdam U.M.C.C.-B., Effort C.H.G., Tsang J.S., Goldbach-Mansky R., Kisand K., Lionakis M.S., Puel A., Zhang S.Y., Holland S.M., Gorochov G., Jouanguy E., Rice C.M., Cobat A., Notarangelo L.D., Abel L., Su H.C., Casanova J.L. Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020 doi: 10.1126/science.abd4585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Zhang Q., Bastard P., Liu Z., Pen J.Le, Moncada-Velez M., Chen J., Ogishi M., Sabli I.K.D., Hodeib S., Korol C., Rosain J., Bilguvar K., Ye J., Bolze A., Bigio B., Yang R., Arias A.A., Zhou Q., Zhang Y., Onodi F., Korniotis S., Karpf L., Philippot Q., Chbihi M., Bonnet-Madin L., Dorgham K., Smith N., Schneider W.M., Razooky B.S., Hoffmann H.H., Michailidis E., Moens L., Han J.E., Lorenzo L., Bizien L., Meade P., Neehus A.L., Ugurbil A.C., Corneau A., Kerner G., Zhang P., Rapaport F., Seeleuthner Y., Manry J., Masson C., Schmitt Y., Schluter A., Voyer T.Le, Khan T., Li J., Fellay J., Roussel L., Shahrooei M., Alosaimi M.F., Mansouri D., Al-Saud H., Al-Mulla F., Almourfi F., Al-Muhsen S.Z., Alsohime F., Turki S.Al, Hasanato R., van de Beek D., Biondi A., Bettini L.R., D'Angio M., Bonfanti P., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Oler A.J., Tompkins M.F., Alba C., Vandernoot I., Goffard J.C., Smits G., Migeotte I., Haerynck F., Soler-Palacin P., Martin-Nalda A., Colobran R., Morange P.E., Keles S., Colkesen F., Ozcelik T., Yasar K.K., Senoglu S., Karabela S.N., Gallego C.R., Novelli G., Hraiech S., Tandjaoui-Lambiotte Y., Duval X., Laouenan C., Clinicians C.-S., Clinicians C., Imagine C.G., French C.C.S.G., Co V.C.C., Amsterdam U.M.C.C., Biobank. Effort C.H.G., Niaid U., Group T.C.I., Snow A.L., Dalgard C.L., Milner J., Vinh D.C., Mogensen T.H., Marr N., Spaan A.N., Boisson B., Boisson-Dupuis S., Bustamante J., Puel A., Ciancanelli M., Meyts I., Maniatis T., Soumelis V., Amara A., Nussenzweig M., Garcia-Sastre A., Krammer F., Pujol A., Duffy D., Lifton R., Zhang S.Y., Gorochov G., Beziat V., Jouanguy E., Sancho-Shimizu V., Rice C.M., Abel L., Notarangelo L.D., Cobat A., Su H.C., Casanova J.L. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020 doi: 10.1126/science.abd4570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Hu Y., Li W., Gao T., Cui Y., Jin Y., Li P., Ma Q., Liu X., Cao C. The Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Inhibits Type I Interferon Production by Interfering with TRIM25-Mediated RIG-I Ubiquitination. J. Virol. 2017;91(8) doi: 10.1128/JVI.02143-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Lei X., Dong X., Ma R., Wang W., Xiao X., Tian Z., Wang C., Wang Y., Li L., Ren L., Guo F., Zhao Z., Zhou Z., Xiang Z., Wang J. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun. 2020;11(1):3810. doi: 10.1038/s41467-020-17665-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Hausburg M.A., Banton K.L., Roshon M., Bar-Or D. Clinically distinct COVID-19 cases share notably similar immune response progression: A follow-up analysis. Heliyon. 2021;7(1) doi: 10.1016/j.heliyon.2020.e05877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Thorne L.G., Bouhaddou M., Reuschl A.K., Zuliani-Alvarez L., Polacco B., Pelin A., Batra J., Whelan M.V.X., Hosmillo M., Fossati A., Ragazzini R., Jungreis I., Ummadi M., Rojc A., Turner J., Bischof M.L., Obernier K., Braberg H., Soucheray M., Richards A., Chen K.H., Harjai B., Memon D., Hiatt J., Rosales R., McGovern B.L., Jahun A., Fabius J.M., White K., Goodfellow I.G., Takeuchi Y., Bonfanti P., Shokat K., Jura N., Verba K., Noursadeghi M., Beltrao P., Kellis M., Swaney D.L., Garcia-Sastre A., Jolly C., Towers G.J., Krogan N.J. Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature. 2021 doi: 10.1038/s41586-021-04352-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Steels S., Van Elslande J., Leuven C.-S.G., De Munter P., Bossuyt X. Transient Increase of Pre-existing Anti-IFN-alpha2 Antibodies Induced by SARS-CoV-2 Infection. J. Clin. Immunol. 2022 doi: 10.1007/s10875-022-01235-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Goncalves D., Mezidi M., Bastard P., Perret M., Saker K., Fabien N., Pescarmona R., Lombard C., Walzer T., Casanova J.L., Belot A., Richard J.C., Trouillet-Assant S. Antibodies against type I interferon: detection and association with severe clinical outcome in COVID-19 patients. Clin. Transl. Immunol. 2021;10(8):e1327. doi: 10.1002/cti2.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Bastard P., Orlova E., Sozaeva L., Levy R., James A., Schmitt M.M., Ochoa S., Kareva M., Rodina Y., Gervais A., Voyer T.Le, Rosain J., Philippot Q., Neehus A.L., Shaw E., Migaud M., Bizien L., Ekwall O., Berg S., Beccuti G., Ghizzoni L., Thiriez G., Pavot A., Goujard C., Fremond M.L., Carter E., Rothenbuhler A., Linglart A., Mignot B., Comte A., Cheikh N., Hermine O., Breivik L., Husebye E.S., Humbert S., Rohrlich P., Coaquette A., Vuoto F., Faure K., Mahlaoui N., Kotnik P., Battelino T., Podkrajsek K.Trebusak, Kisand K., Ferre E.M.N., DiMaggio T., Rosen L.B., Burbelo P.D., McIntyre M., Kann N.Y., Shcherbina A., Pavlova M., Kolodkina A., Holland S.M., Zhang S.Y., Crow Y.J., Notarangelo L.D., Su H.C., Abel L., Anderson M.S., Jouanguy E., Neven B., Puel A., Casanova J.L., Lionakis M.S. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 2021;218(7) doi: 10.1084/jem.20210554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Frasca F., Scordio M., Santinelli L., Gabriele L., Gandini O., Criniti A., Pierangeli A., Angeloni A., Mastroianni C.M., d'Ettorre G., Viscidi R.P., Antonelli G., Scagnolari C. Anti-IFN-alpha/-omega neutralizing antibodies from COVID-19 patients correlate with downregulation of IFN response and laboratory biomarkers of disease severity. Eur. J. Immunol. 2022 doi: 10.1002/eji.202249824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat. Med. 2021;27(1):28–33. doi: 10.1038/s41591-020-01202-8. [DOI] [PubMed] [Google Scholar]
  • 69.Russo C., Morello G., Malaguarnera R., Piro S., Furno D.L., Malaguarnera L. Candidate genes of SARS-CoV-2 gender susceptibility. Sci. Rep. 2021;11(1):21968. doi: 10.1038/s41598-021-01131-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Pfefferle S., Schopf J., Kogl M., Friedel C.C., Muller M.A., Carbajo-Lozoya J., Stellberger T., von Dall'Armi E., Herzog P., Kallies S., Niemeyer D., Ditt V., Kuri T., Zust R., Pumpor K., Hilgenfeld R., Schwarz F., Zimmer R., Steffen I., Weber F., Thiel V., Herrler G., Thiel H.J., Schwegmann-Wessels C., Pohlmann S., Haas J., Drosten C., von Brunn A. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog. 2011;7(10) doi: 10.1371/journal.ppat.1002331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Holcomb D., Alexaki A., Hernandez N., Hunt R., Laurie K., Kames J., Hamasaki-Katagiri N., Komar A.A., DiCuccio M., Kimchi-Sarfaty C. Gene variants of coagulation related proteins that interact with SARS-CoV-2. PLoS Comput. Biol. 2021;17(3) doi: 10.1371/journal.pcbi.1008805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Heydenreich N., Nolte M.W., Gob E., Langhauser F., Hofmeister M., Kraft P., Albert-Weissenberger C., Brede M., Varallyay C., Gobel K., Meuth S.G., Nieswandt B., Dickneite G., Stoll G., Kleinschnitz C. C1-inhibitor protects from brain ischemia-reperfusion injury by combined antiinflammatory and antithrombotic mechanisms. Stroke. 2012;43(9):2457–2467. doi: 10.1161/STROKEAHA.112.660340. [DOI] [PubMed] [Google Scholar]
  • 73.Storini C., Rossi E., Marrella V., Distaso M., Veerhuis R., Vergani C., Bergamaschini L., De Simoni M.G. C1-inhibitor protects against brain ischemia-reperfusion injury via inhibition of cell recruitment and inflammation. Neurobiol. Dis. 2005;19(1-2):10–17. doi: 10.1016/j.nbd.2004.11.001. [DOI] [PubMed] [Google Scholar]
  • 74.Sanrattana W., Maas C., de Maat S. SERPINs-from trap to treatment. Front. Med. (Lausanne) 2019;6:25. doi: 10.3389/fmed.2019.00025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Lu F., Chauhan A.K., Fernandes S.M., Walsh M.T., Wagner D.D., Davis A.E., 3rd The effect of C1 inhibitor on intestinal ischemia and reperfusion injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;295(5):G1042–G1049. doi: 10.1152/ajpgi.90460.2008. [DOI] [PubMed] [Google Scholar]
  • 76.Gesuete R., Storini C., Fantin A., Stravalaci M., Zanier E.R., Orsini F., Vietsch H., Mannesse M.L., Ziere B., Gobbi M., De Simoni M.G. Recombinant C1 inhibitor in brain ischemic injury. Ann. Neurol. 2009;66(3):332–342. doi: 10.1002/ana.21740. [DOI] [PubMed] [Google Scholar]
  • 77.Berger M., Lefaucheur C., Jordan S.C. Update on C1 esterase inhibitor in human solid organ transplantation. Transplantation. 2019;103(9):1763–1775. doi: 10.1097/TP.0000000000002717. [DOI] [PubMed] [Google Scholar]
  • 78.O.c P, Rusch V., Talbot S.G., Sarkaria I., Viale A., Socci N., Ngai I., Rao P., Singh B. Casein kinase II alpha subunit and C1-inhibitor are independent predictors of outcome in patients with squamous cell carcinoma of the lung. Clin. Cancer Res. 2004;10(17):5792–5803. doi: 10.1158/1078-0432.CCR-03-0317. [DOI] [PubMed] [Google Scholar]
  • 79.Osther K., Fornvik K., Liljedahl E., Salford L.G., Redebrandt H.N. Upregulation of C1-inhibitor in pancreatic cancer. Oncotarget. 2019;10(55):5703–5712. doi: 10.18632/oncotarget.27191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Odening K.E., Li W., Rutz R., Laufs S., Fruehauf S., Fishelson Z., Kirschfink M. Enhanced complement resistance in drug-selected P-glycoprotein expressing multi-drug-resistant ovarian carcinoma cells. Clin. Exp. Immunol. 2009;155(2):239–248. doi: 10.1111/j.1365-2249.2008.03817.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Kocsis J., Meszaros T., Madaras B., Toth E.K., Kamondi S., Gal P., Varga L., Prohaszka Z., Fust G. High levels of acute phase proteins and soluble 70 kDa heat shock proteins are independent and additive risk factors for mortality in colorectal cancer. Cell Stress Chaperones. 2011;16(1):49–55. doi: 10.1007/s12192-010-0220-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Janssen C.W., Jr, Lie R.T., Maartmann-Moe H., Matre R. Serum C1-esterase inhibitor, an essential and independent prognosticator of gastric carcinoma. Br. J. Cancer. 1989;60(4):589–591. doi: 10.1038/bjc.1989.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Fornvik K., Maddahi A., Persson O., Osther K., Salford L.G., Redebrandt H.Nittby. C1-inactivator is upregulated in glioblastoma. PLoS One. 2017;12(9) doi: 10.1371/journal.pone.0183086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Urwyler P., Moser S., Charitos P., Heijnen I., Rudin M., Sommer G., Giannetti B.M., Bassetti S., Sendi P., Trendelenburg M., Osthoff M. Treatment of COVID-19 with conestat alfa, a regulator of the complement, contact activation and Kallikrein-Kinin System. Front. Immunol. 2020;11:2072. doi: 10.3389/fimmu.2020.02072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.2020. Conestat Alfa in the Prevention of Severe SARS-CoV-2 Infection in Hospitalized Patients With COVID-19.https://clinicaltrials.gov/ct2/show/NCT04414631 [Google Scholar]
  • 86.Urwyler P., Charitos P., Moser S., Heijnen I., Trendelenburg M., Thoma R., Sumer J., Camacho-Ortiz A., Bacci M.R., Huber L.C., Stussi-Helbling M., Albrich W.C., Sendi P., Osthoff M. Recombinant human C1 esterase inhibitor (conestat alfa) in the prevention of severe SARS-CoV-2 infection in hospitalized patients with COVID-19: a structured summary of a study protocol for a randomized, parallel-group, open-label, multi-center pilot trial (PROTECT-COVID-19) Trials. 2021;22(1):1. doi: 10.1186/s13063-020-04976-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.2020. Prevention of Severe SARS-CoV-2 Infection in Hospitalized Patients With COVID-19.https://clinicaltrials.gov/ct2/show/NCT04530136 [Google Scholar]
  • 88.2021. A Randomized, Double Blind, Placebo Controlled, Cross-Over, Proof-of-Concept Study to Evaluate the Benefit of RUCONEST (C1 Esterase Inhibitor [Recombinant]) in Improving Neurological Symptoms in Post-SARS-CoV-2 Infection.https://clinicaltrials.gov/ct2/show/NCT04705831https://clinicaltrials.gov/ct2/show/NCT04705831 [Google Scholar]
  • 89.Nalbandian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S., Cook J.R., Nordvig A.S., Shalev D., Sehrawat T.S., Ahluwalia N., Bikdeli B., Dietz D., Der-Nigoghossian C., Liyanage-Don N., Rosner G.F., Bernstein E.J., Mohan S., Beckley A.A., Seres D.S., Choueiri T.K., Uriel N., Ausiello J.C., Accili D., Freedberg D.E., Baldwin M., Schwartz A., Brodie D., Garcia C.K., Elkind M.S.V., Connors J.M., Bilezikian J.P., Landry D.W., Wan E.Y. Post-acute COVID-19 syndrome. Nat. Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.2021. Evaluation of the Effects of Bradykinin Antagonists on Pulmonary Manifestations of COVID-19 Infections (AntagoBrad-Cov Study)https://clinicaltrials.gov/ct2/show/NCT05010876 [Google Scholar]
  • 91.Mansour E., Bueno F.F., de Lima-Junior J.C., Palma A., Monfort-Pires M., Bombassaro B., Araujo E.P., Bernardes A.F., Ulaf R.G., Nunes T.A., Ribeiro L.C., Falcao A.L.E., Santos T.M., Trabasso P., Dertkigil R.P., Dertkigil S.S., Maia R.P., Benaglia T., Moretti M.L., Velloso L.A. Evaluation of the efficacy and safety of icatibant and C1 esterase/kallikrein inhibitor in severe COVID-19: study protocol for a three-armed randomized controlled trial. Trials. 2021;22(1):71. doi: 10.1186/s13063-021-05027-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Mansour E., Palma A.C., Ulaf R.G., Ribeiro L.C., Bernardes A.F., Nunes T.A., Agrela M.V., Bombassaro B., Monfort-Pires M., Camargo R.L., Araujo E.P., Brunetti N.S., Farias A.S., Falcao A.L.E., Santos T.M., Trabasso P., Dertkigil R.P., Dertkigil S.S., Moretti M.L., Velloso L.A. Safety and Outcomes Associated with the Pharmacological Inhibition of the Kinin-Kallikrein System in Severe COVID-19. Viruses. 2021;13(2) doi: 10.3390/v13020309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Long Q.X., Tang X.J., Shi Q.L., Li Q., Deng H.J., Yuan J., Hu J.L., Xu W., Zhang Y., Lv F.J., Su K., Zhang F., Gong J., Wu B., Liu X.M., Li J.J., Qiu J.F., Chen J., Huang A.L. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020;26(8):1200–1204. doi: 10.1038/s41591-020-0965-6. [DOI] [PubMed] [Google Scholar]
  • 94.Chen X., Pan Z., Yue S., Yu F., Zhang J., Yang Y., Li R., Liu B., Yang X., Gao L., Li Z., Lin Y., Huang Q., Xu L., Tang J., Hu L., Zhao J., Liu P., Zhang G., Chen Y., Deng K., Ye L. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduct. Target Ther. 2020;5(1):180. doi: 10.1038/s41392-020-00301-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Nachmias V., Fusman R., Mann S., Koren G. The first case of documented Covid-19 reinfection in Israel. IDCases. 2020;22:e00970. doi: 10.1016/j.idcr.2020.e00970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Tillett R.L., Sevinsky J.R., Hartley P.D., Kerwin H., Crawford N., Gorzalski A., Laverdure C., Verma S.C., Rossetto C.C., Jackson D., Farrell M.J., Van Hooser S., Pandori M. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect. Dis. 2020 doi: 10.1016/S1473-3099(20)30764-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.McDade T.W., Demonbreun A.R., Sancilio A., Mustanski B., D'Aquila R.T., McNally E.M. Durability of antibody response to vaccination and surrogate neutralization of emerging variants based on SARS-CoV-2 exposure history. Sci. Rep. 2021;11(1):17325. doi: 10.1038/s41598-021-96879-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Clinical Immunology Communications are provided here courtesy of Elsevier

RESOURCES