Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2022 Mar 29;54(2):340–345. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2022.02.023

上磨牙颊侧微种植体支抗在安氏Ⅱ类正畸减数拔牙患者垂直向控制中的作用

Efficacy of vertical control by using mini-implant anchorage in maxillary posterior buccal area for Angle class Ⅱ extraction patients

Wei LIANG 1, Yao TANG 1, Wen-bin HUANG 1, Bing HAN 1,*, Jiu-xiang LIN 1
PMCID: PMC9069030  PMID: 35435202

Abstract

目的

探讨常规上磨牙颊侧微种植体支抗技术对安氏Ⅱ类拔牙矫治病例垂直向控制中的作用。

方法

对常规使用两颗上磨牙颊侧微种植体支抗的28例安氏Ⅱ类正畸减数拔牙患者进行治疗前后头颅侧位X线片的头影测量分析比较。

结果

头影测量发现垂直向指标中, 下颌平面角SN-MP平均减小1.40°±1.45°, FMA平均减小1.58°±1.32°; 后前面高比(S-Go/N-Me)平均减小1.42%±1.43%;Y轴角平均减小1.03°±0.99°, 面角平均增大1.37° ±1.05°, 差异均有统计学意义(P<0.001);上颌磨牙平均压低(0.68±1.40) mm, 上前牙平均压低(1.07±1.55) mm, 差异均有统计学意义(P<0.05), 提示治疗后有一定的上磨牙压低, 产生了一定的下颌平面逆时针前旋, 对侧貌改善产生了积极影响。

结论

常规上磨牙颊侧微种植体支抗有一定的垂直向控制能力, 可以产生一定的下颌逆时针旋转, 可更好地改善安氏Ⅱ类患者的侧貌。

Keywords: 垂直向控制, 微种植体支抗, 头影测量


在正畸治疗中,安氏Ⅱ类患者的矫正效果不仅取决于矢状向上前牙内收程度,更需要关注垂直向上的控制[1-2]。如果失去垂直向的控制,将由于下颌的后下旋转产生不利的影响,即使再多的内收前牙,患者侧貌也难以改善。越来越多的临床研究发现,有效的垂直向控制是安氏Ⅱ类患者正畸矫治取得满意效果的关键因素,为了保持或改善安氏Ⅱ类患者正畸治疗后的面部平衡,就必须保证后牙足够的垂直向控制,避免上下颌后牙的伸长。如果治疗后能更进一步产生下颌的逆时针旋转,即使是少量的旋转,也会对患者的侧貌产生较好的改善[3-4]。近年来,微种植体支抗在正畸治疗的支抗控制中得到了广泛的应用[5-6]。常规的微种植体支抗技术是在左右侧第一磨牙的近中(或远中)各植入1颗支抗钉,以控制矢状向的磨牙支抗。一些临床研究中,在安氏Ⅱ类患者的前牙区与后牙区唇侧和腭侧,上颌及下颌同时应用6~8颗微种植体支抗,在垂直向上得到了很好的控制,达到了满意的矫正效果[7]。那么,对于安氏Ⅱ类患者,如果只用常规两颗上磨牙颊侧区的微种植体支抗,在进行水平向控制的同时,是否也可以获得较好的垂直向控制?本研究通过回顾病例,对常规使用两颗上磨牙颊侧微种植体支抗的28例安氏Ⅱ类正畸减数拔牙患者,进行治疗前后头颅侧位X线片的头影测量和分析比较,探讨常规两颗上磨牙微种植体支抗技术对安氏Ⅱ类拔牙矫治病例垂直向的控制作用,为矫正安氏Ⅱ类患者的微种植体支抗技术的选择提供参考。

1. 资料与方法

1.1. 病例选择

选择北京大学口腔医院正畸科同一位医生2018年1月—2020年1月已经完成矫治的安氏Ⅱ类正畸减数拔牙患者的病例资料进行回顾性分析。病例纳入标准:(1)矫治过程中使用了两颗支抗钉,支抗钉位于左右上颌第一磨牙颊侧近中或远中(种植钉和牵引钩为常规放置:支抗钉高度为膜龈联合处,一般在Inline graphic平面上方15 mm左右;牵引钩为临床常用牵引钩,长3 mm左右);(2)安氏Ⅱ类患者(磨牙远中关系,ANB角>5°),下颌平面角为均角或高角(FMA角>22°),正畸减数拔除4个双尖牙矫正;(3)治疗各阶段资料齐全。病例排除标准:(1)使用了口外弓、横腭杆、Nance弓等支抗装置者;(2)正颌手术者。

按上述标准,本研究最终共纳入患者28例,其中男9例,女19例,就诊年龄16~35岁,平均(22.6±2.8)岁。本研究开始前已经北京大学口腔医院伦理委员会审查批准(PKUSSIRB-201626016)。

1.2. 正畸治疗过程特点

所有患者均为更换至0.019 in×0.025 in(1 in=2.54 cm)不锈钢方丝后,在左右侧上颌第一磨牙近中(或远中)各植入1颗微种植体支抗(慈北公司生产,规格1.6 mm×11 mm),并在尖牙近中放置牵引钩,以滑动法关闭所有拔牙间隙(图 1)。

图 1.

微种植体支抗位置及力学效应

Position and mechanical effect of mini-implant

F0, traction force; F1, vertical force component; F2, horizontal force component.

图 1

1.3. 研究方法

本研究采用自身对照方法,测量分析每个病例在正畸治疗前后拍摄的头颅侧位片。将数字化头颅侧位X线片导入Dolphin头影测量软件中,进行标记点描记,每个标记点由两位正畸医师共同确认。由同一位正畸医师在一段时间内对侧位片进行描记定点测量,所有测量项目均要求测量3次,取其平均值作为最后测量结果。对于这3次测量值的误差,有关角度的测量项目要求误差小于0.5°,有关距离的测量项目要求误差小于0.5 mm,不符合要求者重新确认定点并测量。主要头影测量项目为有关垂直向变化的指标,包括: (1)ANB角:鼻根点至上齿槽座点连线与鼻根点至下齿槽座点连线所构成的角;(2)SN-MP:下颌平面与前颅底平面交角;(3)FMA:下颌平面与眼耳平面交角;(4)S-Go/N-Me:后面高与前面高的比值;(5)U6-PP:上第一磨牙近中颊尖至腭平面距离;(6)U1-PP:上中切牙切缘至腭平面距离;(7)Y轴角:蝶鞍中心点与颏顶点连线和眶耳平面之前下交角;(8)SN-NPog:前颅底平面与面平面交角。

1.4. 统计学分析

采用SPSS22.6统计软件, 计量资料以均数±标准差表示,采用配对t检验分析治疗前后的测量指标变化情况, P<0.05认为差异具有统计学意义。

2. 结果

2.1. 颌面骨骼的变化(表 1)

表 1.

治疗前后X线头影测量相关结果分析(x±s)

X-ray cephalometric analysis results before and after treatment (x±s)

Items Before treatment After treatment Difference t P
ANB, angle of subspinale-nasion-supramental; MP-SN, angle between mandibular plane and SN plane; FMA(MP-FH), angle between Frankfort and mandibular plane; S-Go, distance from sella point to gonion point; N-Me, distance from nasion point to menton point; P-A face height (S-Go/N-Me), proportion of S-Go to N-Me; U6-PP (UPDH), perpendicular distance from maxillary first molars to palatal plane; U1-PP(UADH), perpendicular distance from maxillary incisors to palatal plane; Y-axis (SGn-SN), lower and front angle between Y axis and SN plane; Facial plane to SN (SN-NPog), angle between facial plane and SN plane.
ANB/(°) 5.54±1.73 4.09±1.65 -1.45±1.21 -6.319 <0.001
MP-SN/(°) 36.81±7.05 35.41±6.87 -1.40±1.45 -5.082 <0.001
FMA (MP-FH)/(°) 28.13±6.40 26.54±6.18 -1.58±1.32 -6.324 <0.001
P-A face height (S-Go/N-Me)/% 65.11±5.63 66.53±5.21 1.42±1.43 5.252 <0.001
U6-PP (UPDH)/mm 23.25±1.53 22.57±1.71 -0.68±1.40 -2.556 0.017
U1-PP (UADH)/mm 29.66±2.10 28.59±2.37 -1.07±1.55 -3.363 <0.001
Y-axis (SGn-SN)/(°) 73.66±3.18 72.63±3.29 -1.03±0.99 -5.523 <0.001
Facial plane to SN (SN-NPog)/(°) 76.49±2.71 77.86±2.71 1.37±1.05 6.892 <0.001

下颌平面角SN-MP在治疗后比治疗前平均减小1.40°±1.45°,FMA平均减小1.58°±1.32°;后前面高比(S-Go/N-Me)平均增加1.42%±1.43%;Y轴角平均减小1.03°±0.99°,面角平均增大1.37°±1.05°,差异均具有统计学意义(P<0.001)。

2.2. 上颌牙及牙槽骨的垂直向改变

U6-PP距离在治疗后比治疗前平均减少(0.68±1.40)mm, U1-PP距离平均减少(1.07±1.55) mm,差异均具有统计学意义(P<0.05)。

2.3. 典型病例

患者女性,16岁,主诉嘴突,牙齿不齐,要求改变侧貌。

2.3.1. 矫治前

凸面型,上颌前突,下颌后缩,面下1/3偏高;前牙覆Inline graphic覆盖正常,上下牙列轻度拥挤;一侧磨牙远中关系。诊断为牙性安氏Ⅱ类1分类亚类,骨性Ⅱ类高角(图 2)。

图 2.

患者矫治前的资料

Patient's profile before treatment

A, frontal image; B, lateral image; C, lateral cephalometric radiograph; D, panoramic radiograph; E, right occlusion image; F, frontal occlusion image; G, left occlusion image; H, maxillary occlusion image; I, mandibular occlusion image.

图 2

2.3.2. 矫治设计

(1)减数4个第一双尖牙;(2)使用直丝弓矫治技术;(3)上磨牙颊侧微种植体支抗。

2.3.3. 矫治过程

总疗程32个月。治疗后患者牙列整齐,咬合关系良好,侧貌明显改善(图 3),使用Vivera压膜保持器保持,患者对矫治效果满意。患者治疗前后头影测量分析结果见表 2,治疗前后头影测量重叠见图 4

图 3.

患者矫治后的资料

Patient's profile after treatment

A, frontal image; B, lateral image; C, lateral cephalometric radiograph; D, panoramic radiograph; E, right occlusion image; F, frontal occlusion image; G, left occlusion image; H, maxillary occlusion image; I, mandibular occlusion image.

图 3

表 2.

患者治疗前后X线头影测量各项指标的变化

Changes of various items of the patient's X-ray cephalometric analysis before and after treatment

Items Before treatment After treatment Difference Normal
SNA, angle of sella-nasion-subspinale; SNB, angle of sella-nasion-supramental; ANB, angle of subspinale-nasion-supramental; Facial angle (FH-NPo), lower and back angle between Frankfort plane and facial plane; Convexity (NA-APo), angle of the extension line from nasion to subspinale and the line from pogonion to subspinale; U1-NA, perpendicular distance from the upper incisors to NA plane; U1-NA, angle between the upper incisors axis and NA plane; L1-NB, perpendicular distance from the upper incisor to NB plane; L1-NB, angle between the lower incisors axis and NB plane; Interincisal angle (U1-L1), angle between the upper incisors axis and the lower incisors axis; U1-SN, lower and back angle between the upper incisors axis and SN plane; MP-SN, angle between mandibular plane and SN plane; FMA, angle between Frankfort and mandibular plane; IMPA (L1-MP), angle between lower incisors axis and mandibular plane (tangent line to submandibular border); PFH/AFH, proportion of posterior facial height (PFH) to anterior facial height (AFH); S-Go, distance from sella point to gonion point; ANS-Me, distance from ANS point to Menton point; N-Me, distance from nasion point to menton point; P-A face height (S-Go/N-Me), proportion of S-Go to N-Me; ANS-Me/Na-Me, proportion of ANS-Me to N-Me; U6-PP (UPDH), perpendicular distance from maxillary first molars to palatal plane; U1-PP (UADH), perpendicular distance from maxillary incisors to palatal plane; L6-MP (LPDH), perpendicular distance from mandibular first molars to mandibular plane; L1-MP (LADH), perpendicular distance from mandibular incisors to mandibular plane; Y-axis (SGn-SN), lower and front angle between Y axis and SN plane; Y-axis-downs (SGn-FH), lower and front angle between Y axis and Frankfort plane; Pog-NB, perpendicular distance from pogonion to NB plane; Facial plane to SN (SN-NPog), angle between facial plane and SN plane; Occ plane to FH, angle between occlusal plane and Frankfort plane.
SNA/(°) 80.8 79.8 -1.0 82.0
SNB/(°) 75.7 76.3 0.6 80.9
ANB/(°) 5.1 3.5 -1.6 1.6
Facial angle (FH-NPo)/(°) 82.2 82.5 0.3 88.6
Convexity (NA-APo)/(°) 10.9 7.3 -3.6 4.9
U1-NA/mm 9.7 4.7 -5.0 4.3
U1-NA/(°) 36.7 26.1 -10.6 22.8
L1-NB/mm 13.0 7.0 -6.0 4.0
L1-NB/(°) 41.6 31.4 -10.2 25.3
Interincisal angle (U1-L1) /(°) 96.6 119.0 22.4 130.3
U1-SN/(°) 117.5 105.9 -11.6 102.8
MP-SN/(°) 40.3 37.5 -2.8 33.0
FMA (MP-FH) /(°) 33.7 31.4 -2.3 23.9
IMPA (L1-MP) /(°) 105.6 97.6 -8.0 95.0
PFH/AFH/% 51.5 52.8 1.3 60.0
P-A face height (S-Go/N-Me)/% 61.5 64.7 3.2 65.0
ANS-Me/Na-Me/% 53.6 53.7 0.1 55.0
ANS-Me (perp HP)/mm 61.7 62.2 0.5 60.6
U6-PP (UPDH)/mm 23.3 23.9 0.6 23.0
U1-PP (UADH)/mm 28.6 27.9 -0.7 28.0
L6-MP (LPDH)/mm 30.0 32.3 2.3 31.0
L1-MP (LADH)/mm 42.3 38.7 -3.6 40.0
Y-axis (SGn-SN)/(°) 73.8 73.4 -0.4 47.0
Y-axis-downs (SGn-FH)/(°) 67.3 67.3 0.0 60.3
Pog-NB/mm -0.2 0.3 0.5 2.4
Facial plane to SN (SN-NPog)/(°) 75.6 76.4 0.8 80.5
Occ plane to FH /(°) 11.1 13.9 2.8 6.8
图 4.

治疗前后头影测量重叠

Cephalometric superimposition before and after treatment

Based on S-N plane, the red line shows structure before treatment, the blue line shows structure after treatment.

图 4

3. 讨论

3.1. 常规使用两颗磨牙颊侧支抗钉的垂直向控制效果

本研究从下颌平面角和ANB角的变化看, SN-MP和FMA均显示下颌平面角变小,说明治疗后在垂直向上得到了一定的控制;同时ANB角减小,显示治疗后下颌产生了一定的向前向上方向的旋转(逆时针旋转)。从Y轴角和SN-NPog角的变化看,Y轴角的减小和SN-Pog的增大,也同样提示治疗后下颌有一定的前上旋转。从U1-PP、U6-PP距离的变化看,U6-PP距离减小,提示上磨牙产生了一定的压低,同时U1-PP距离减小,说明上切牙也有一定的压低。以上这些测量结果提示,在安氏Ⅱ类拔牙患者关闭间隙时,正是由于在种植钉支抗作用,使得上颌磨牙发生了压低效应,从而引起了下颌平面一定的前上旋转。由于本研究28例患者的上前牙不需要更多的压低,因此下颌前上旋转的量不需要很大, 也不会很大,而这些患者矫正效果良好,提示常规两颗磨牙颊侧微种植体支抗产生的上磨牙少量的压低和下颌少量的前旋是可以有效改善侧貌的。

3.2. 治疗安氏Ⅱ类患者垂直向控制的机制

正畸治疗中的垂直向控制,包括了对磨牙的后部垂直向控制和针对前牙的前部垂直向控制。临床上常见的是针对骨性Ⅱ类患者,特别是高角患者和开Inline graphic患者,通过压低磨牙来控制下颌平面,使其发生向前向上的旋转(逆时针旋转),从而产生有利的治疗效果。同时,下颌前旋的量不仅与磨牙压低的量相关,也受制于前牙的覆Inline graphic和唇齿关系,上前牙一定量的压低,可以解除上前牙对下颌旋转的限制,为下颌骨的前旋创造条件[8-10]

传统矫正技术的垂直向控制,以Tweed技术为代表,患者在长时间佩戴高位牵引头帽以及加以备抗技术后,通过控制上下颌牙齿垂直向高度来产生下颌平面的逆时针旋转,使安氏Ⅱ类患者的侧貌得到较大的改善,但是,头帽口外弓要求患者每天戴用足够的时间(10 h以上),如果患者的依从性差,则矫正效果难以保障[11-13]

应用微种植体支抗进行垂直向控制是有效的治疗方法。Koyama等[14]认为,从种植体牵引前牙的内收力的作用线位于上颌牙列阻抗中心点的下方,可产生上磨牙被压低的效应(即使没有直接从微种植体施力于上磨牙)。所以常规两颗上磨牙颊侧微种植体支抗技术,在控制矢状向磨牙支抗的同时,也能进行少量但有效的垂直向的支抗控制。当然,在临床上,对于严重的骨性安氏Ⅱ类患者,特别是前牙开Inline graphic的患者,如果需要更大量的下颌前上旋转,则可能需要更多的支抗钉(6~8颗)来压低上磨牙,以及压低下磨牙和上前牙[15-17]。但是与此同时,更多的支抗钉将带来更多的临床风险,患者的接受度也将大为降低。

3.3. 使用两颗上磨牙颊侧微种植体支抗进行垂直向控制的临床注意事项

常规上磨牙颊侧微种植体一般植入于上第一磨牙和第二双尖牙牙根之间。植入前若X线片提示第一磨牙与第二双尖牙牙根间的间隙不足,则应该将微种植体植入于第一磨牙和第二磨牙之间;若这两个位置均难以保证足够牙根间隙,则需要先用推簧加力增加牙根间隙。微种植体距离咬合平面的高度要足够大,这样微种植体的牢固性才能更好,产生的后牙压低作用会更明显,但一般不能超过膜龈联合边界[18-19]

安氏Ⅱ类患者上前牙内收关闭间隙时要使用适当的摇椅弓,以适当压低上颌前牙,同时磨牙区会产生少量的压低效应而出现少量的开Inline graphic,特别是第二磨牙。这类似于Tweed技术中的磨牙备抗效应,少量的开Inline graphic在暂停加力后将消失,同时,由于上磨牙区有覆盖增加、舌尖伸长的趋势,在主弓丝上要适当缩小后段弓形,并施加足够的冠舌向转矩。

综上所述,常规两颗上磨牙颊侧微种植体支抗有一定的垂直向控制能力,可以产生一定的下颌逆时针旋转,有利于安氏Ⅱ类患者侧貌的改善。

References

  • 1.Basha AG, Shantaraj R, Mogegowda SB. Comparative study between conventional en-masse retraction (sliding mechanics) and en-masse retraction ssing orthodontic micro implant. Implant Dent. 2010;19(2):128–136. doi: 10.1097/ID.0b013e3181cc4aa5. [DOI] [PubMed] [Google Scholar]
  • 2.Yao CJ, Lai EH, Chang JZ, et al. Comparison of treatment outcomes between skeletal anchorage and extraoral anchorage in adults with maxillary dentoalveolar protrusion. Am J Orthod Dentofacial Orthop. 2008;134(5):615–624. doi: 10.1016/j.ajodo.2006.12.022. [DOI] [PubMed] [Google Scholar]
  • 3.Victor D, Prabhakar R, Karthikeyan MK, et al. Effectiveness of mini implants in three-dimensional control during retraction: A clinical study. J Clin Diagn Res. 2014;8(2):227–232. doi: 10.7860/JCDR/2013/7801.4066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Antoszewska-Smith J, Sarul M, Łyczek J, et al. Effectiveness of orthodontic miniscrew implants in anchorage reinforcement during en-masse retraction: A systematic review and meta-analysis. Am J Orthod Dentofacial Orthop. 2017;151(3):440–455. doi: 10.1016/j.ajodo.2016.08.029. [DOI] [PubMed] [Google Scholar]
  • 5.Jang T, Park J, Moon W, et al. Effects of acid etching and calcium chloride immersion on removal torque and bone-cutting ability of orthodontic mini-implants. Am J Orthod Dentofacial Orthop. 2018;154(1):108–114. doi: 10.1016/j.ajodo.2017.10.032. [DOI] [PubMed] [Google Scholar]
  • 6.Pan C, Liu P, Tseng Y, et al. Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic miniimplants. J Dent Sci. 2019;14(4):383–388. doi: 10.1016/j.jds.2019.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Tatli U, Alraawi M, Toroǧlu MS. Effects of size and insertion angle of orthodontic mini-implants on skeletal anchorage. Am J Orthod Dentofacial Orthop. 2019;156(2):220–228. doi: 10.1016/j.ajodo.2018.08.026. [DOI] [PubMed] [Google Scholar]
  • 8.Becker K, Pliska A, Busch C, et al. Efficacy of orthodontic mini implants for en masse retraction in the maxilla: A systematic review and meta-analysis. Int J Implant Dent. 2018;4(1):35. doi: 10.1186/s40729-018-0144-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Gurdán Z, Szalma J. Evaluation of the success and complication rates of self-drilling orthodontic mini-implants. Niger J Clin Pract. 2018;21(5):546–552. doi: 10.4103/njcp.njcp_105_17. [DOI] [PubMed] [Google Scholar]
  • 10.Li G, Yang Z, Wang T, et al. Meta-analysis dataset comparing orthodontic mini-implants and conventional anchorage reinforcement for maximum orthodontic anchorage. Data Brief. 2020;32:106010. doi: 10.1016/j.dib.2020.106010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Cassetta M, Altieri F, Di Giorgio R, et al. Palatal orthodontic miniscrew insertion using a CAD-CAM surgical guide: description of a technique. Int J Oral Maxillofac Surg. 2018;47(9):1195–1198. doi: 10.1016/j.ijom.2018.03.018. [DOI] [PubMed] [Google Scholar]
  • 12.Mohammed H, Wafaie K, Rizk MZ, et al. Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: A systematic review and meta-analysis. Prog Orthod. 2018;19(1):36. doi: 10.1186/s40510-018-0225-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jung M. Vertical control of a class Ⅱ deep bite malocclusion with the use of orthodontic mini-implants. Am J Orthod Dentofacial Orthop. 2019;155(2):264–275. doi: 10.1016/j.ajodo.2018.08.016. [DOI] [PubMed] [Google Scholar]
  • 14.Koyama I, Iino S, Abe Y, et al. Differences between sliding mechanics with implant anchorage and straight-pull headgear and intermaxillary elastics in adults with bimaxillary protrusion. Eur J Orthod. 2011;33(2):126–131. doi: 10.1093/ejo/cjq047. [DOI] [PubMed] [Google Scholar]
  • 15.Nojima LI, Nojima MDCG, Cunha ACD, et al. Mini-implant selection protocol applied to MARPE. Dental Press J Orthod. 2018;23(5):93–101. doi: 10.1590/2177-6709.23.5.093-101.sar. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.欧 阳莉, 周 彦恒, 傅 民魁, et al. 种植体支抗对高角拔牙病例垂直向控制的颌Inline graphic面改变. 中华口腔正畸学杂志. 2009;16(1):13–18. doi: 10.3760/cma.j.issn.1674-5760.2009.01.003. [DOI] [Google Scholar]
  • 17.Wang XD, Zhang JN, Liu DW, et al. Nonsurgical correction using miniscrew-assisted vertical control of a severe high angle with mandibular retrusion and gummy smile in an adult. Am J Orthod Dentofacial Orthop. 2017;151(5):978–988. doi: 10.1016/j.ajodo.2016.04.034. [DOI] [PubMed] [Google Scholar]
  • 18.覃 昌焘, 韦 海涛, 马 琴琴, et al. 微型种植体支抗对拔牙矫治病例的垂直向控制研究. 临床口腔医学杂志. 2014;30(4):248–250. doi: 10.3969/j.issn.1003-1634.2014.04.022. [DOI] [Google Scholar]
  • 19.欧 阳莉, 周 彦恒. 使用种植体支抗对高角病例进行垂直向控制. 中华口腔正畸学杂志. 2013;20(1):2–7. [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES