Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Apr 28;78(Pt 5):525–529. doi: 10.1107/S2056989022004297

Crystal structure and Hirshfeld surface analysis of 1-(tert-butyl­amino)-3-mesitylpropan-2-ol hemi­hydrate

Ali N Khalilov a,b, Victor N Khrustalev c,d, Tatiana A Tereshina c, Mehmet Akkurt e, Rovnag M Rzayev a, Anzurat A Akobirshoeva f,*, İbrahim G Mamedov b
PMCID: PMC9069515  PMID: 35547793

In the crystal, the two independent mol­ecules are linked through the water mol­ecules by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds, producing chains along the b-axis direction. These chains are linked with neighboring chains parallel to the (103) plane via C—H inter­actions, generating ribbons along the b axis. The van der Waals inter­actions between the strips ensure the stability of mol­ecular packaging.

Keywords: crystal structure; 1,2-amino alcohols; hydrogen bonds; C—H⋯π inter­actions; Hirshfeld surface analysis

Abstract

The title compound, 2C16H27NO·H2O, crystallizes in the monoclinic P21/c space group with two independent mol­ecules (A and B) in the asymmetric unit. In the crystal, mol­ecules A and B are linked through the water mol­ecules by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds, producing chains along the b-axis direction. These chains are linked with neighboring chains parallel to the (103) plane via C—H⋯π inter­actions, generating ribbons along the b-axis direction. The stability of the mol­ecular packaging is ensured by van der Waals inter­actions between the ribbons. According to the Hirshfeld surface study, H⋯H inter­actions are the most significant contributors to the crystal packing (80.3% for mol­ecule A and 84.8% for mol­ecule B).

1. Chemical context

Amine group-containing compounds are of great inter­est in the fields of organic synthesis, catalysis, material science and medicinal chemistry (Zubkov et al., 2018; Shikhaliyev et al., 2019; Viswanathan et al., 2019; Gurbanov et al., 2020). In particular, the β-amino alcohol moiety is the predominant structural motif in a series of natural and synthetic biologically active mol­ecules (Lee & Kang, 2004). Amino alcohol derivatives are currently being studied for their anti­microbial, anti­fungal, anti­oxidant, cytotoxic, enzyme inhibitory and other important biological activities, which have been well documented in recent works (Baker et al., 2021; Estolano-Cobián et al., 2020; Tafelska-Kaczmarek et al., 2020). 1.

In this study, in the framework of ongoing structural studies (Safavora et al., 2019; Aliyeva et al., 2011; Mamedov et al., 2022), we report the crystal structure and Hirshfeld surface analysis of the title compound, 1-(tert-butyl­amino)-3-mesitylpropan-2-ol hemihydrate.

2. Structural commentary

The title compound (Fig. 1) contains the two independent mol­ecules (mol­ecule A containing atom N1 and mol­ecule B containing N2) in the asymmetric unit. As shown in Fig. 2 (r.m.s. deviation = 0.006 Å), while the 1,2,3,5-tetra­methyl­benzene parts of mol­ecules A and B are overlapped, their 2-(tert-butyl­amino)­ethan-1-ol moieties do not overlap, but rather are oriented in opposite directions. Atoms C2 in mol­ecule A and C18 in mol­ecule B have opposite chiralities. The chirality about the C2 atom is R and that about C18, S. The values of the geometric parameters of mol­ecules A and B are normal and compatible with those of the related compounds mentioned in the Database survey section.

Figure 1.

Figure 1

View of the two independent mol­ecules, A and B, in the asymmetric unit of the title compound, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. For clarity, the minor components of disorder in mol­ecule B are omitted.

Figure 2.

Figure 2

Overlay image of the two independent mol­ecules (A and B) in the asymmetric unit of the title compound. Both the major and minor components of disorder in mol­ecule B are shown. Color code: carbon (gray), hydrogen (white), nitro­gen (blue) and oxygen (red).

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules A and B are linked through the water mol­ecules by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds (Table 1; Figs. 3 and 4), forming chains along the b-axis direction. These chains are linked by C—H⋯π inter­actions with neighboring chains parallel to the (103) plane, forming ribbons along the b-axis direction (Table 1; Figs. 5 and 6). The stability of the mol­ecular packing is ensured by van der Waals inter­actions between the ribbons.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the benzene ring (C4–C9) of mol­ecule A.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.91 (2) 1.82 (2) 2.725 (5) 173 (2)
O1—H1O⋯O3′ 0.91 (2) 1.82 (2) 2.697 (6) 161 (2)
O2—H2O⋯N1 0.91 (2) 1.83 (2) 2.7273 (13) 168.0 (19)
O3—H3C⋯O2i 0.95 (2) 1.83 (2) 2.753 (3) 162 (2)
O3′—H3C⋯O2i 0.92 (2) 1.83 (2) 2.685 (4) 153 (2)
O3—H3D⋯N2 0.98 (3) 1.87 (3) 2.827 (3) 164 (2)
O3′—H3D⋯N2 1.07 (3) 1.87 (3) 2.875 (5) 155 (2)
C11—H11BCg2ii 0.98 2.90 3.7613 (17) 147

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 3.

Figure 3

A view of the inter­molecular O—H⋯O and O—H⋯N inter­actions along the a axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and the minor disorder components in mol­ecule B are omitted.

Figure 4.

Figure 4

A view of the inter­molecular O—H⋯O and O—H⋯N inter­actions along the b axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and the minor disorder components in mol­ecule B are omitted.

Figure 5.

Figure 5

A view of the inter­molecular O—H⋯O and O—H⋯N inter­actions and C—H⋯π inter­actions along the a axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and the minor disorder components in mol­ecule B are omitted.

Figure 6.

Figure 6

A view of the inter­molecular O—H⋯O and O—H⋯N inter­actions and C—H⋯π inter­actions along the b axis in the crystal structure of the title compound. For clarity, H atoms not involved in hydrogen bonding and the minor disorder components in mol­ecule B are omitted.

Hirshfeld surfaces were generated for both independent mol­ecules using Crystal Explorer 17 (Turner et al., 2017). The d norm mappings for mol­ecules A and B were performed in the ranges −0.6784 to 1.2952 a.u. and −0.6765 to 1.3828 a.u., respectively. The O—H⋯O and O—H⋯N inter­actions are indicated by red areas on the Hirshfeld surfaces (Fig. 7 a,b for A and Fig. 7 c,d for B).

Figure 7.

Figure 7

Front (a) and back (b) views of the three-dimensional Hirshfeld surface for mol­ecule A. Front (c) and back (d) views of the three-dimensional Hirshfeld surface for mol­ecule B. Some inter­molecular O—H⋯O and O—H⋯N inter­actions are shown.

Fingerprint plots (Fig. 8) reveal that while H⋯H inter­actions (80.3% for mol­ecule A and 84.8% for mol­ecule B) make the largest contributions to surface contacts (Tables 1 and 2), C⋯H/H⋯C contacts (13.0% for mol­ecule A and 9.1% for mol­ecule B) are also important. Other, less notable linkages are O⋯H/H⋯O (5.7% contribution for mol­ecule A and 4.3% for mol­ecule B) and N⋯H/H⋯N (1.0% for mol­ecule A and 1.8% for mol­ecule B). The surroundings of mol­ecules A and B are very similar, as can be observed from the comparison of the supplied data.

Figure 8.

Figure 8

The two-dimensional fingerprint plots for mol­ecules A and B of the title compound showing (a) all inter­actions, and delineated into (b) H⋯H and (c) C⋯H/H⋯C inter­actions. The d ĩ and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
O2⋯H3C 1.83 x, 1 + y, z
H2O⋯N1 1.83 x, y, z
N2⋯H3D 1.87 x, y, z
H26C⋯H15B 2.58 1 − x, 2 − y, 1 − z
*H31D⋯H17B 2.34 x, − 1 + y, z
*H32B⋯*H30E 2.50 1 − x, Inline graphic  + y, Inline graphic  − z
H24⋯H3B 2.39 −1 + x, y, z
H26B⋯H15C 2.58 1 − x, 1 − y, 1 − z
*H30C⋯C10 3.00 x, −1 + y, z
*H31B⋯H6 2.44 1 − x, − Inline graphic  + y, Inline graphic  − z
*H32D⋯H11C 2.48 1 − x, Inline graphic  + y, Inline graphic  − z
H1O⋯*O3′ 1.82 x, y, z
H1O⋯H1B 2.46 x, −1 + y, z
C9⋯H11B 2.84 2 − x, Inline graphic  + y, Inline graphic  − z
H16C⋯*O3′ 2.89 x, 1 + y, z

The prefix * denotes atoms of the disordered parts of the mol­ecules.

4. Database survey

Two related compounds were found in a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016), viz. 1-methyl­amino-3-(2,4,6-tri­methyl­phen­yl)propan-2-ol (ULIMUY; Maharramov et al., 2011a ) and 3-[2-hy­droxy-3-(2,4,6-tri­methyl­phen­yl)prop­yl]-3-methyl-1-phenyl­thio­urea (URAPOT; Maharramov et al., 2011b ).

In ULIMUY, the methyl­amino­propyl chain adopts an extended zigzag conformation and the N atom shows a trigonal coordination. The N atom acts as hydrogen-bond acceptor to the hy­droxy group of an adjacent mol­ecule to generate a helical chain running along the b-axis of the monoclinic unit cell.

In URAPOT, the four-atoms N—C(=S)—N unit is planar (r.m.s. deviation of 0.005 Å); the phenyl ring connected to one of the two flanking N atoms is twisted out of this plane by 28.6 (1)°. The propyl chain connected to the other N atom bears a hy­droxy substituent; this serves as hydrogen-bond donor and acceptor to the double-bonded S atom of an inversion-related mol­ecule, generating a hydrogen-bonded dimer.

5. Synthesis and crystallization

The title compound was synthesized using our previously reported procedure (Khalilov et al., 2021), and colorless crystals were obtained upon recrystallization from an ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Carbon-bound H atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å; U iso(H) = 1.2 or 1.5U eq(C)] and were included in the refinement in the riding-model approximation. The hy­droxy and amino H atoms were located in a difference Fourier map, and were freely refined [O1—H1O = 0.91 (2) Å, O2—H2O = 0.91 (2) Å, N1—H1N = 0.922 (16) Å and N2—H2N = 0.922 (18) Å]. In mol­ecule B, the methyl groups of the 2-methyl­propane moiety are disordered over two sets of sites with an occupancy ratio of 0.65 (3):0.35 (3). The water mol­ecule is disordered over two positions with an occupancy ratio of 0.59 (3):0.41 (3). The two H atoms of the water mol­ecule were found in a difference-Fourier map and freely refined [O3—H3C = 0.95 (2) Å, O3—H3D = 0.98 (3) Å, O3′—H3C = 0.92 (2) Å and O3′—H3D = 1.07 (3) Å]. The anisotropic displacement parameters of the O3 and O3′ atoms of the disordered water mol­ecule were restrained to be equal (SIMU). SADI and DFIX commands were used for the treatment of the disordered methyl groups of the 2-methyl­propane moiety of mol­ecule B.

Table 3. Experimental details.

Crystal data
Chemical formula 2C16H27NO·H2O
M r 516.79
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.06508 (16), 5.81242 (6), 41.7384 (5)
β (°) 93.3315 (11)
V3) 3164.25 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.53
Crystal size (mm) 0.36 × 0.12 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.805, 0.941
No. of measured, independent and observed [I > 2σ(I)] reflections 40427, 6866, 6251
R int 0.041
(sin θ/λ)max−1) 0.638
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.114, 1.09
No. of reflections 6866
No. of parameters 411
No. of restraints 21
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.20

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022004297/jy2019sup1.cif

e-78-00525-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022004297/jy2019Isup2.hkl

e-78-00525-Isup2.hkl (545.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022004297/jy2019Isup3.cml

CCDC reference: 2168161

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK and IGM; investigation, ANK, MA and TAT; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, RMR and ANK; resources, AAA, VNK and RMR; supervision, ANK and MA.

supplementary crystallographic information

Crystal data

2C16H27NO·H2O F(000) = 1144
Mr = 516.79 Dx = 1.085 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 13.06508 (16) Å Cell parameters from 22446 reflections
b = 5.81242 (6) Å θ = 2.2–79.1°
c = 41.7384 (5) Å µ = 0.53 mm1
β = 93.3315 (11)° T = 100 K
V = 3164.25 (6) Å3 Plate, colourless
Z = 4 0.36 × 0.12 × 0.06 mm

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 6251 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.041
φ and ω scans θmax = 79.7°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −16→16
Tmin = 0.805, Tmax = 0.941 k = −6→7
40427 measured reflections l = −53→52
6866 independent reflections

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: mixed
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9632P] where P = (Fo2 + 2Fc2)/3
6866 reflections (Δ/σ)max = 0.001
411 parameters Δρmax = 0.19 e Å3
21 restraints Δρmin = −0.20 e Å3

Special details

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.83664 (7) 0.63481 (14) 0.38179 (2) 0.02938 (18)
H1O 0.7755 (17) 0.562 (4) 0.3786 (5) 0.068 (6)*
N1 0.75396 (7) 0.93228 (16) 0.42788 (2) 0.02387 (19)
H1N 0.7600 (11) 0.774 (3) 0.4290 (3) 0.031 (4)*
C1 0.82855 (8) 1.01229 (19) 0.40524 (3) 0.0256 (2)
H1A 0.8989 0.9969 0.4152 0.031*
H1B 0.8163 1.1769 0.4003 0.031*
C2 0.81900 (8) 0.87226 (18) 0.37442 (3) 0.0252 (2)
H2 0.7481 0.8905 0.3644 0.030*
C3 0.89639 (9) 0.9587 (2) 0.35095 (3) 0.0293 (2)
H3A 0.8870 1.1266 0.3481 0.035*
H3B 0.9665 0.9334 0.3606 0.035*
C4 0.88794 (9) 0.8449 (2) 0.31835 (3) 0.0291 (2)
C5 0.81775 (9) 0.9285 (2) 0.29442 (3) 0.0325 (3)
C6 0.81180 (9) 0.8239 (2) 0.26423 (3) 0.0360 (3)
H6 0.7642 0.8817 0.2481 0.043*
C7 0.87307 (10) 0.6384 (2) 0.25699 (3) 0.0363 (3)
C8 0.94234 (10) 0.5581 (2) 0.28094 (3) 0.0359 (3)
H8 0.9851 0.4314 0.2764 0.043*
C9 0.95115 (9) 0.6570 (2) 0.31138 (3) 0.0322 (3)
C10 0.74982 (11) 1.1329 (2) 0.30008 (3) 0.0393 (3)
H10A 0.7097 1.1034 0.3188 0.059*
H10B 0.7033 1.1580 0.2811 0.059*
H10C 0.7924 1.2700 0.3040 0.059*
C11 0.86603 (12) 0.5272 (3) 0.22430 (3) 0.0462 (3)
H11A 0.8362 0.3732 0.2259 0.069*
H11B 0.9348 0.5150 0.2162 0.069*
H11C 0.8225 0.6210 0.2095 0.069*
C12 1.03108 (10) 0.5649 (3) 0.33569 (3) 0.0400 (3)
H12A 1.0620 0.4256 0.3272 0.060*
H12B 0.9987 0.5279 0.3557 0.060*
H12C 1.0843 0.6814 0.3400 0.060*
C13 0.76617 (8) 1.02608 (19) 0.46103 (3) 0.0247 (2)
C14 0.86787 (9) 0.9562 (2) 0.47850 (3) 0.0336 (3)
H14A 0.8726 0.7880 0.4794 0.050*
H14B 0.8710 1.0182 0.5004 0.050*
H14C 0.9250 1.0176 0.4669 0.050*
C15 0.67782 (9) 0.9273 (2) 0.47916 (3) 0.0288 (2)
H15A 0.6125 0.9847 0.4695 0.043*
H15B 0.6853 0.9748 0.5017 0.043*
H15C 0.6790 0.7589 0.4779 0.043*
C16 0.75688 (10) 1.2882 (2) 0.45967 (3) 0.0306 (2)
H16A 0.8151 1.3522 0.4488 0.046*
H16B 0.7568 1.3497 0.4815 0.046*
H16C 0.6928 1.3306 0.4478 0.046*
O2 0.57184 (6) 1.06462 (16) 0.39828 (2) 0.0352 (2)
H2O 0.6278 (15) 1.004 (3) 0.4093 (5) 0.062 (5)*
N2 0.50806 (8) 0.78162 (18) 0.34494 (2) 0.0306 (2)
H2N 0.5598 (13) 0.887 (3) 0.3424 (4) 0.047 (4)*
C17 0.43655 (8) 0.8875 (2) 0.36627 (3) 0.0283 (2)
H17A 0.3746 0.7901 0.3671 0.034*
H17B 0.4151 1.0399 0.3577 0.034*
C18 0.48579 (8) 0.91565 (19) 0.39983 (3) 0.0264 (2)
H18 0.5096 0.7620 0.4081 0.032*
C19 0.41002 (9) 1.01744 (19) 0.42282 (3) 0.0271 (2)
H19A 0.4465 1.0414 0.4440 0.032*
H19B 0.3876 1.1702 0.4146 0.032*
C20 0.31558 (8) 0.87209 (19) 0.42747 (2) 0.0244 (2)
C21 0.32295 (8) 0.67813 (19) 0.44783 (2) 0.0246 (2)
C22 0.23623 (9) 0.5454 (2) 0.45241 (3) 0.0269 (2)
H22 0.2424 0.4139 0.4659 0.032*
C23 0.14096 (9) 0.5996 (2) 0.43785 (3) 0.0286 (2)
C24 0.13486 (8) 0.7904 (2) 0.41774 (3) 0.0287 (2)
H24 0.0704 0.8298 0.4075 0.034*
C25 0.21998 (9) 0.92618 (19) 0.41200 (3) 0.0264 (2)
C26 0.42242 (9) 0.6101 (2) 0.46563 (3) 0.0288 (2)
H26A 0.4727 0.5667 0.4502 0.043*
H26B 0.4103 0.4793 0.4797 0.043*
H26C 0.4488 0.7403 0.4785 0.043*
C27 0.04768 (9) 0.4554 (2) 0.44353 (3) 0.0369 (3)
H27A 0.0240 0.4888 0.4649 0.055*
H27B 0.0654 0.2920 0.4422 0.055*
H27C −0.0070 0.4917 0.4272 0.055*
C28 0.20503 (9) 1.1238 (2) 0.38851 (3) 0.0317 (2)
H28A 0.2394 1.2613 0.3974 0.047*
H28B 0.1316 1.1549 0.3847 0.047*
H28C 0.2344 1.0828 0.3682 0.047*
C29 0.46433 (9) 0.7090 (2) 0.31290 (3) 0.0363 (3)
C30 0.5508 (4) 0.5955 (11) 0.29559 (17) 0.074 (2) 0.65 (3)
H30A 0.6091 0.7013 0.2952 0.111* 0.65 (3)
H30B 0.5266 0.5583 0.2735 0.111* 0.65 (3)
H30C 0.5722 0.4540 0.3069 0.111* 0.65 (3)
C31 0.3778 (4) 0.5356 (8) 0.31656 (15) 0.0441 (12) 0.65 (3)
H31A 0.3992 0.4212 0.3329 0.066* 0.65 (3)
H31B 0.3621 0.4583 0.2960 0.066* 0.65 (3)
H31C 0.3166 0.6162 0.3232 0.066* 0.65 (3)
C32 0.4236 (5) 0.9172 (8) 0.29385 (14) 0.0441 (12) 0.65 (3)
H32A 0.3700 0.9927 0.3055 0.066* 0.65 (3)
H32B 0.3950 0.8668 0.2728 0.066* 0.65 (3)
H32C 0.4797 1.0258 0.2910 0.066* 0.65 (3)
C30' 0.5561 (7) 0.632 (3) 0.2945 (2) 0.071 (4) 0.35 (3)
H30D 0.5967 0.7664 0.2891 0.107* 0.35 (3)
H30E 0.5317 0.5529 0.2748 0.107* 0.35 (3)
H30F 0.5987 0.5265 0.3079 0.107* 0.35 (3)
C31' 0.3957 (13) 0.503 (2) 0.3189 (3) 0.088 (5) 0.35 (3)
H31D 0.4373 0.3773 0.3285 0.132* 0.35 (3)
H31E 0.3625 0.4508 0.2985 0.132* 0.35 (3)
H31F 0.3432 0.5472 0.3336 0.132* 0.35 (3)
C32' 0.4036 (12) 0.891 (2) 0.2936 (3) 0.044 (2) 0.35 (3)
H32D 0.3457 0.9426 0.3057 0.066* 0.35 (3)
H32E 0.3779 0.8259 0.2731 0.066* 0.35 (3)
H32F 0.4482 1.0228 0.2897 0.066* 0.35 (3)
O3 0.6489 (2) 0.4428 (10) 0.3681 (3) 0.0388 (14) 0.59 (3)
O3' 0.6420 (5) 0.4819 (13) 0.3828 (5) 0.044 (3) 0.41 (3)
H3C 0.6156 (16) 0.335 (4) 0.3812 (5) 0.072 (6)*
H3D 0.5940 (18) 0.556 (4) 0.3639 (6) 0.083 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0295 (4) 0.0246 (4) 0.0344 (4) 0.0009 (3) 0.0046 (3) 0.0014 (3)
N1 0.0240 (4) 0.0230 (4) 0.0249 (4) −0.0032 (3) 0.0039 (3) −0.0005 (3)
C1 0.0234 (5) 0.0268 (5) 0.0270 (5) −0.0030 (4) 0.0039 (4) 0.0010 (4)
C2 0.0232 (5) 0.0250 (5) 0.0277 (5) 0.0005 (4) 0.0038 (4) 0.0019 (4)
C3 0.0270 (5) 0.0315 (6) 0.0300 (6) −0.0026 (4) 0.0063 (4) 0.0010 (5)
C4 0.0259 (5) 0.0331 (6) 0.0290 (5) −0.0024 (4) 0.0086 (4) 0.0021 (4)
C5 0.0287 (6) 0.0386 (6) 0.0312 (6) 0.0008 (5) 0.0095 (4) 0.0042 (5)
C6 0.0307 (6) 0.0487 (7) 0.0291 (6) 0.0007 (5) 0.0058 (5) 0.0030 (5)
C7 0.0313 (6) 0.0458 (7) 0.0327 (6) −0.0048 (5) 0.0099 (5) −0.0035 (5)
C8 0.0301 (6) 0.0398 (7) 0.0388 (6) 0.0019 (5) 0.0105 (5) −0.0044 (5)
C9 0.0257 (5) 0.0375 (6) 0.0342 (6) 0.0003 (5) 0.0081 (4) 0.0004 (5)
C10 0.0409 (7) 0.0437 (7) 0.0341 (6) 0.0098 (6) 0.0088 (5) 0.0077 (5)
C11 0.0438 (7) 0.0593 (9) 0.0363 (7) −0.0035 (7) 0.0082 (6) −0.0105 (6)
C12 0.0322 (6) 0.0471 (7) 0.0408 (7) 0.0089 (5) 0.0036 (5) −0.0019 (6)
C13 0.0251 (5) 0.0251 (5) 0.0240 (5) −0.0023 (4) 0.0009 (4) 0.0000 (4)
C14 0.0292 (6) 0.0405 (6) 0.0305 (6) −0.0014 (5) −0.0024 (4) 0.0030 (5)
C15 0.0311 (6) 0.0297 (5) 0.0260 (5) −0.0032 (4) 0.0046 (4) 0.0002 (4)
C16 0.0377 (6) 0.0258 (5) 0.0285 (5) −0.0035 (5) 0.0028 (5) −0.0026 (4)
O2 0.0249 (4) 0.0390 (5) 0.0412 (5) −0.0096 (3) −0.0023 (3) 0.0157 (4)
N2 0.0274 (5) 0.0342 (5) 0.0307 (5) 0.0032 (4) 0.0048 (4) 0.0018 (4)
C17 0.0247 (5) 0.0339 (6) 0.0266 (5) 0.0012 (4) 0.0028 (4) 0.0027 (4)
C18 0.0229 (5) 0.0273 (5) 0.0288 (5) −0.0046 (4) 0.0006 (4) 0.0058 (4)
C19 0.0286 (5) 0.0265 (5) 0.0258 (5) −0.0043 (4) −0.0010 (4) 0.0008 (4)
C20 0.0252 (5) 0.0267 (5) 0.0215 (5) −0.0001 (4) 0.0027 (4) −0.0021 (4)
C21 0.0240 (5) 0.0284 (5) 0.0215 (5) −0.0006 (4) 0.0025 (4) −0.0016 (4)
C22 0.0275 (5) 0.0298 (5) 0.0236 (5) −0.0016 (4) 0.0037 (4) 0.0012 (4)
C23 0.0240 (5) 0.0356 (6) 0.0266 (5) −0.0022 (4) 0.0045 (4) −0.0027 (4)
C24 0.0221 (5) 0.0373 (6) 0.0268 (5) 0.0034 (4) 0.0013 (4) −0.0024 (5)
C25 0.0279 (5) 0.0288 (5) 0.0227 (5) 0.0029 (4) 0.0024 (4) −0.0023 (4)
C26 0.0263 (5) 0.0319 (6) 0.0278 (5) −0.0016 (4) −0.0005 (4) 0.0050 (4)
C27 0.0267 (6) 0.0455 (7) 0.0389 (6) −0.0052 (5) 0.0048 (5) 0.0025 (5)
C28 0.0305 (6) 0.0341 (6) 0.0303 (6) 0.0058 (5) 0.0007 (4) 0.0033 (5)
C29 0.0402 (7) 0.0371 (6) 0.0319 (6) 0.0003 (5) 0.0058 (5) −0.0048 (5)
C30 0.049 (3) 0.105 (4) 0.071 (4) 0.004 (3) 0.024 (3) −0.038 (3)
C31 0.055 (2) 0.0376 (16) 0.0394 (19) −0.0078 (15) 0.0027 (13) −0.0046 (13)
C32 0.055 (2) 0.052 (2) 0.0242 (16) −0.0116 (16) −0.0053 (14) 0.0028 (14)
C30' 0.087 (8) 0.087 (6) 0.038 (5) 0.049 (5) −0.008 (4) −0.029 (4)
C31' 0.147 (11) 0.053 (5) 0.060 (5) −0.052 (6) −0.023 (7) −0.003 (4)
C32' 0.044 (4) 0.044 (3) 0.041 (4) −0.004 (3) −0.012 (3) −0.005 (3)
O3 0.0282 (9) 0.0331 (13) 0.055 (3) −0.0023 (7) 0.0027 (11) 0.0153 (17)
O3' 0.0310 (15) 0.0302 (17) 0.068 (7) −0.0053 (12) −0.011 (2) 0.016 (3)

Geometric parameters (Å, º)

O1—C2 1.4298 (13) C18—C19 1.5367 (16)
O1—H1O 0.91 (2) C18—H18 1.0000
N1—C1 1.4718 (13) C19—C20 1.5171 (15)
N1—C13 1.4872 (14) C19—H19A 0.9900
N1—H1N 0.922 (16) C19—H19B 0.9900
C1—C2 1.5211 (15) C20—C25 1.4079 (15)
C1—H1A 0.9900 C20—C21 1.4118 (15)
C1—H1B 0.9900 C21—C22 1.3930 (15)
C2—C3 1.5330 (15) C21—C26 1.5115 (15)
C2—H2 1.0000 C22—C23 1.3892 (16)
C3—C4 1.5117 (16) C22—H22 0.9500
C3—H3A 0.9900 C23—C24 1.3899 (17)
C3—H3B 0.9900 C23—C27 1.5094 (16)
C4—C5 1.4030 (17) C24—C25 1.3958 (16)
C4—C9 1.4096 (17) C24—H24 0.9500
C5—C6 1.3972 (18) C25—C28 1.5151 (16)
C5—C10 1.5097 (18) C26—H26A 0.9800
C6—C7 1.3863 (19) C26—H26B 0.9800
C6—H6 0.9500 C26—H26C 0.9800
C7—C8 1.3896 (19) C27—H27A 0.9800
C7—C11 1.5081 (18) C27—H27B 0.9800
C8—C9 1.3930 (18) C27—H27C 0.9800
C8—H8 0.9500 C28—H28A 0.9800
C9—C12 1.5112 (18) C28—H28B 0.9800
C10—H10A 0.9800 C28—H28C 0.9800
C10—H10B 0.9800 C29—C32' 1.525 (3)
C10—H10C 0.9800 C29—C30 1.526 (2)
C11—H11A 0.9800 C29—C31' 1.527 (3)
C11—H11B 0.9800 C29—C32 1.527 (2)
C11—H11C 0.9800 C29—C30' 1.528 (3)
C12—H12A 0.9800 C29—C31 1.529 (2)
C12—H12B 0.9800 C30—H30A 0.9800
C12—H12C 0.9800 C30—H30B 0.9800
C13—C15 1.5284 (15) C30—H30C 0.9800
C13—C16 1.5289 (16) C31—H31A 0.9800
C13—C14 1.5328 (15) C31—H31B 0.9800
C14—H14A 0.9800 C31—H31C 0.9800
C14—H14B 0.9800 C32—H32A 0.9800
C14—H14C 0.9800 C32—H32B 0.9800
C15—H15A 0.9800 C32—H32C 0.9800
C15—H15B 0.9800 C30'—H30D 0.9800
C15—H15C 0.9800 C30'—H30E 0.9800
C16—H16A 0.9800 C30'—H30F 0.9800
C16—H16B 0.9800 C31'—H31D 0.9800
C16—H16C 0.9800 C31'—H31E 0.9800
O2—C18 1.4235 (13) C31'—H31F 0.9800
O2—H2O 0.91 (2) C32'—H32D 0.9800
N2—C17 1.4631 (15) C32'—H32E 0.9800
N2—C29 1.4846 (16) C32'—H32F 0.9800
N2—H2N 0.922 (18) O3—H3C 0.95 (2)
C17—C18 1.5158 (16) O3—H3D 0.98 (3)
C17—H17A 0.9900 O3'—H3C 0.92 (2)
C17—H17B 0.9900 O3'—H3D 1.07 (3)
C2—O1—H1O 106.9 (13) O2—C18—H18 109.1
C1—N1—C13 116.25 (8) C17—C18—H18 109.1
C1—N1—H1N 106.8 (9) C19—C18—H18 109.1
C13—N1—H1N 108.2 (9) C20—C19—C18 115.06 (9)
N1—C1—C2 110.42 (9) C20—C19—H19A 108.5
N1—C1—H1A 109.6 C18—C19—H19A 108.5
C2—C1—H1A 109.6 C20—C19—H19B 108.5
N1—C1—H1B 109.6 C18—C19—H19B 108.5
C2—C1—H1B 109.6 H19A—C19—H19B 107.5
H1A—C1—H1B 108.1 C25—C20—C21 118.82 (10)
O1—C2—C1 109.29 (9) C25—C20—C19 121.57 (10)
O1—C2—C3 110.48 (9) C21—C20—C19 119.61 (10)
C1—C2—C3 109.88 (9) C22—C21—C20 119.82 (10)
O1—C2—H2 109.1 C22—C21—C26 118.08 (10)
C1—C2—H2 109.1 C20—C21—C26 122.09 (10)
C3—C2—H2 109.1 C23—C22—C21 121.98 (11)
C4—C3—C2 114.54 (9) C23—C22—H22 119.0
C4—C3—H3A 108.6 C21—C22—H22 119.0
C2—C3—H3A 108.6 C22—C23—C24 117.61 (10)
C4—C3—H3B 108.6 C22—C23—C27 121.08 (11)
C2—C3—H3B 108.6 C24—C23—C27 121.30 (11)
H3A—C3—H3B 107.6 C23—C24—C25 122.45 (10)
C5—C4—C9 119.21 (11) C23—C24—H24 118.8
C5—C4—C3 119.98 (11) C25—C24—H24 118.8
C9—C4—C3 120.79 (11) C24—C25—C20 119.30 (10)
C6—C5—C4 119.40 (11) C24—C25—C28 117.76 (10)
C6—C5—C10 118.77 (11) C20—C25—C28 122.93 (10)
C4—C5—C10 121.81 (11) C21—C26—H26A 109.5
C7—C6—C5 122.16 (12) C21—C26—H26B 109.5
C7—C6—H6 118.9 H26A—C26—H26B 109.5
C5—C6—H6 118.9 C21—C26—H26C 109.5
C6—C7—C8 117.70 (12) H26A—C26—H26C 109.5
C6—C7—C11 121.66 (12) H26B—C26—H26C 109.5
C8—C7—C11 120.64 (12) C23—C27—H27A 109.5
C7—C8—C9 122.21 (12) C23—C27—H27B 109.5
C7—C8—H8 118.9 H27A—C27—H27B 109.5
C9—C8—H8 118.9 C23—C27—H27C 109.5
C8—C9—C4 119.31 (11) H27A—C27—H27C 109.5
C8—C9—C12 118.91 (11) H27B—C27—H27C 109.5
C4—C9—C12 121.74 (11) C25—C28—H28A 109.5
C5—C10—H10A 109.5 C25—C28—H28B 109.5
C5—C10—H10B 109.5 H28A—C28—H28B 109.5
H10A—C10—H10B 109.5 C25—C28—H28C 109.5
C5—C10—H10C 109.5 H28A—C28—H28C 109.5
H10A—C10—H10C 109.5 H28B—C28—H28C 109.5
H10B—C10—H10C 109.5 N2—C29—C32' 116.0 (6)
C7—C11—H11A 109.5 N2—C29—C30 107.0 (3)
C7—C11—H11B 109.5 N2—C29—C31' 106.0 (6)
H11A—C11—H11B 109.5 C32'—C29—C31' 109.9 (3)
C7—C11—H11C 109.5 N2—C29—C32 110.3 (3)
H11A—C11—H11C 109.5 C30—C29—C32 109.9 (2)
H11B—C11—H11C 109.5 N2—C29—C30' 105.3 (5)
C9—C12—H12A 109.5 C32'—C29—C30' 109.8 (3)
C9—C12—H12B 109.5 C31'—C29—C30' 109.7 (3)
H12A—C12—H12B 109.5 N2—C29—C31 110.2 (3)
C9—C12—H12C 109.5 C30—C29—C31 109.6 (2)
H12A—C12—H12C 109.5 C32—C29—C31 109.7 (2)
H12B—C12—H12C 109.5 C29—C30—H30A 109.5
N1—C13—C15 106.23 (8) C29—C30—H30B 109.5
N1—C13—C16 109.07 (9) H30A—C30—H30B 109.5
C15—C13—C16 109.40 (9) C29—C30—H30C 109.5
N1—C13—C14 112.86 (9) H30A—C30—H30C 109.5
C15—C13—C14 108.89 (9) H30B—C30—H30C 109.5
C16—C13—C14 110.27 (10) C29—C31—H31A 109.5
C13—C14—H14A 109.5 C29—C31—H31B 109.5
C13—C14—H14B 109.5 H31A—C31—H31B 109.5
H14A—C14—H14B 109.5 C29—C31—H31C 109.5
C13—C14—H14C 109.5 H31A—C31—H31C 109.5
H14A—C14—H14C 109.5 H31B—C31—H31C 109.5
H14B—C14—H14C 109.5 C29—C32—H32A 109.5
C13—C15—H15A 109.5 C29—C32—H32B 109.5
C13—C15—H15B 109.5 H32A—C32—H32B 109.5
H15A—C15—H15B 109.5 C29—C32—H32C 109.5
C13—C15—H15C 109.5 H32A—C32—H32C 109.5
H15A—C15—H15C 109.5 H32B—C32—H32C 109.5
H15B—C15—H15C 109.5 C29—C30'—H30D 109.5
C13—C16—H16A 109.5 C29—C30'—H30E 109.5
C13—C16—H16B 109.5 H30D—C30'—H30E 109.5
H16A—C16—H16B 109.5 C29—C30'—H30F 109.5
C13—C16—H16C 109.5 H30D—C30'—H30F 109.5
H16A—C16—H16C 109.5 H30E—C30'—H30F 109.5
H16B—C16—H16C 109.5 C29—C31'—H31D 109.5
C18—O2—H2O 110.6 (13) C29—C31'—H31E 109.5
C17—N2—C29 116.22 (9) H31D—C31'—H31E 109.5
C17—N2—H2N 106.8 (11) C29—C31'—H31F 109.5
C29—N2—H2N 109.4 (11) H31D—C31'—H31F 109.5
N2—C17—C18 110.86 (9) H31E—C31'—H31F 109.5
N2—C17—H17A 109.5 C29—C32'—H32D 109.5
C18—C17—H17A 109.5 C29—C32'—H32E 109.5
N2—C17—H17B 109.5 H32D—C32'—H32E 109.5
C18—C17—H17B 109.5 C29—C32'—H32F 109.5
H17A—C17—H17B 108.1 H32D—C32'—H32F 109.5
O2—C18—C17 108.52 (9) H32E—C32'—H32F 109.5
O2—C18—C19 109.47 (9) H3C—O3—H3D 100.9 (19)
C17—C18—C19 111.38 (9) H3C—O3'—H3D 97 (2)
C13—N1—C1—C2 169.98 (9) N2—C17—C18—C19 −177.64 (9)
N1—C1—C2—O1 −59.13 (11) O2—C18—C19—C20 −178.38 (9)
N1—C1—C2—C3 179.49 (9) C17—C18—C19—C20 61.61 (12)
O1—C2—C3—C4 64.12 (12) C18—C19—C20—C25 −102.29 (12)
C1—C2—C3—C4 −175.21 (10) C18—C19—C20—C21 77.93 (13)
C2—C3—C4—C5 85.11 (13) C25—C20—C21—C22 −0.39 (16)
C2—C3—C4—C9 −95.98 (13) C19—C20—C21—C22 179.39 (10)
C9—C4—C5—C6 0.10 (17) C25—C20—C21—C26 −179.24 (10)
C3—C4—C5—C6 179.03 (11) C19—C20—C21—C26 0.55 (16)
C9—C4—C5—C10 −178.41 (11) C20—C21—C22—C23 −1.02 (17)
C3—C4—C5—C10 0.52 (17) C26—C21—C22—C23 177.87 (10)
C4—C5—C6—C7 0.16 (19) C21—C22—C23—C24 1.29 (17)
C10—C5—C6—C7 178.71 (12) C21—C22—C23—C27 −179.10 (11)
C5—C6—C7—C8 −0.30 (19) C22—C23—C24—C25 −0.17 (17)
C5—C6—C7—C11 −179.92 (12) C27—C23—C24—C25 −179.78 (11)
C6—C7—C8—C9 0.20 (19) C23—C24—C25—C20 −1.20 (17)
C11—C7—C8—C9 179.81 (12) C23—C24—C25—C28 177.42 (11)
C7—C8—C9—C4 0.05 (19) C21—C20—C25—C24 1.46 (16)
C7—C8—C9—C12 −177.80 (12) C19—C20—C25—C24 −178.32 (10)
C5—C4—C9—C8 −0.20 (17) C21—C20—C25—C28 −177.09 (10)
C3—C4—C9—C8 −179.12 (11) C19—C20—C25—C28 3.13 (16)
C5—C4—C9—C12 177.59 (11) C17—N2—C29—C32' 52.0 (7)
C3—C4—C9—C12 −1.33 (17) C17—N2—C29—C30 −177.7 (3)
C1—N1—C13—C15 177.41 (9) C17—N2—C29—C31' −70.2 (8)
C1—N1—C13—C16 59.59 (12) C17—N2—C29—C32 62.7 (3)
C1—N1—C13—C14 −63.33 (12) C17—N2—C29—C30' 173.6 (6)
C29—N2—C17—C18 170.22 (10) C17—N2—C29—C31 −58.6 (3)
N2—C17—C18—O2 61.79 (12)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the benzene ring (C4–C9) of molecule A.

D—H···A D—H H···A D···A D—H···A
O1—H1O···O3 0.91 (2) 1.82 (2) 2.725 (5) 173 (2)
O1—H1O···O3′ 0.91 (2) 1.82 (2) 2.697 (6) 161 (2)
O2—H2O···N1 0.91 (2) 1.83 (2) 2.7273 (13) 168.0 (19)
O3—H3C···O2i 0.95 (2) 1.83 (2) 2.753 (3) 162 (2)
O3′—H3C···O2i 0.92 (2) 1.83 (2) 2.685 (4) 153 (2)
O3—H3D···N2 0.98 (3) 1.87 (3) 2.827 (3) 164 (2)
O3′—H3D···N2 1.07 (3) 1.87 (3) 2.875 (5) 155 (2)
C11—H11B···Cg2ii 0.98 2.90 3.7613 (17) 147

Symmetry codes: (i) x, y−1, z; (ii) −x+2, y−1/2, −z+1/2.

Funding Statement

This work was supported by Baku State University and the Ministry of Science and Higher Education of the Russian Federation [award No. 075–03–2020-223 (FSSF-2020–0017)].

References

  1. Aliyeva, K. N., Maharramov, A. M., Allahverdiyev, M. A., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o2293. [DOI] [PMC free article] [PubMed]
  2. Baker, J. R., Russell, C. C., Gilbert, J., McCluskey, A. & Sakoff, J. A. (2021). Med. Chem. 12, 929–942. [DOI] [PMC free article] [PubMed]
  3. Estolano-Cobián, A., Noriega-Iribe, E., Díaz-Rubio, L., Padrón, J. M., Brito-Perea, M., Cornejo-Bravo, J. M., Chávez, D., Rivera, R. R., Quintana-Melgoza, J. M., Cruz-Reyes, J. & Córdova-Guerrero, I. (2020). Med. Chem. Res. 29, 1986–1999.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020). CrystEngComm, 22, 628–633.
  7. Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761–11773.
  8. Lee, H.-S. & Kang, S. H. (2004). Synlett, pp. 1673–1685.
  9. Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V., Allahverdiyev, M. A. & Ng, S. W. (2011a). Acta Cryst. E67, o784. [DOI] [PMC free article] [PubMed]
  10. Maharramov, A. M., Khalilov, A. N., Sadikhova, N. D., Gurbanov, A. V. & Ng, S. W. (2011b). Acta Cryst. E67, o1087. [DOI] [PMC free article] [PubMed]
  11. Mamedov, I. G., Khrustalev, V. N., Akkurt, M., Novikov, A. P., Asgarova, A. R., Aliyeva, K. N. & Akobirshoeva, A. A. (2022). Acta Cryst. E78, 291–296. [DOI] [PMC free article] [PubMed]
  12. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.
  13. Safavora, A. S., Brito, I., Cisterna, J., Cardenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Krist. New Cryst. Struct. 234, 1183–1185.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  17. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  18. Tafelska-Kaczmarek, A., Kołodziejska, R., Kwit, M., Stasiak, B., Wypij, M. & Golinska, P. (2020). Materials, 13, 4080. [DOI] [PMC free article] [PubMed]
  19. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://Hirshfeldsurface.net
  20. Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
  21. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022004297/jy2019sup1.cif

e-78-00525-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022004297/jy2019Isup2.hkl

e-78-00525-Isup2.hkl (545.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022004297/jy2019Isup3.cml

CCDC reference: 2168161

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES