Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Apr 22;78(Pt 5):500–505. doi: 10.1107/S2056989022003954

Crystal structures and electrochemical properties of nickel(II) complexes with N,N′,N′′,S-tetra­dentate Schiff base ligands

Masakazu Hirotsu a,*, Junhei Sanou b, Toyotaka Nakae b, Takumi Matsunaga b, Isamu Kinoshita b
PMCID: PMC9069516  PMID: 35547792

Nickel(II) Schiff base complexes containing thiol­ate S and polyamine N donor atoms exhibit electrocatalytic activity for proton reduction. The piperazine moiety in the Schiff base ligand gives a smaller bite angle, which is effective in reducing the overpotential.

Keywords: crystal structure, nickel(II) complex, thiol­ate, tetra­dentate Schiff base ligand, piperazine, proton reduction

Abstract

The thiol­ate nickel complexes {2-[({2-[(2-amino­ethyl-κN)(meth­yl)amino-κN]eth­yl}imino-κN)meth­yl]benzene­thiol­ato-κS}nickel(II) chloride, [Ni(C12H18N3S)]Cl (1), and [2-({[2-(piperazin-1-yl-κ2 N 1,N 4)eth­yl]imino-κN}meth­yl)benzene­thiol­ato-κS]nickel(II) hexa­fluoro­phosphate di­chloro­methane monosolvate, [Ni(C13H18N3S)]PF6·CH2Cl2 (2), were synthesized by the reactions of 2-(tert-butyl­thio)­benzaldehyde, tri­amines, and nickel(II) salts. Both complexes have a nickel ion surrounded by an N,N′,N′′,S-tetra­dentate ligand, forming a square-planar geometry. The terminal N,N-chelating moiety is N,N-di­alkyl­ethane-1,2-di­amine for 1 and 1-alkyl­piperazine for 2. The N—Ni—N bite angle in the terminal N,N-chelate ring in 2 [76.05 (10)°] is much smaller than that in 1 [86.16 (6)°]. Cyclic voltammograms of 1 and 2 in aqueous media indicated that the reduction and oxidation potentials of 2 are more positive than those of 1. The smaller bite angle of the terminal piperazine chelate in 2 reduces the electron-donating ability of the tetra­dentate ligand, resulting in a positive shift of the redox potentials. Both complexes exhibit catalytic activity for proton reduction, and the piperazine moiety in 2 is effective in reducing the overpotential.

1. Chemical context

Sulfur donor atoms bound to iron or nickel ions are commonly found in the active site of hydrogenase enzymes in nature. In [NiFe] hydrogenases, cysteine sulfurs are bound to the metal centers, and in [FeFe] hydrogenases, the amine moiety in the aza­dithiol­ate ligand bound to the iron centers is essential to the catalytic function (Lubitz et al., 2014). Nickel(II) complexes with sulfur and nitro­gen donor atoms are efficient precatalysts or real catalysts for the electro- and photoreduction of protons (Han et al., 2012; Martin et al., 2015; Luo et al., 2017; Inoue et al., 2020). It has been pointed out that the hemilabile pyridine ligand in [Ni(C5H4NS)3] is protonated in the photocatalytic hydrogen production (Han et al., 2012). The pendant amines as a proton acceptor site are also important for developing efficient electrocatalysts for hydrogen production (Helm et al., 2011; Stewart et al., 2013). In this context, thiol­ate complexes with pendant amino groups are good candidates for the development of proton-reduction catalysts.

The nickel(II) complex [Ni(C11H16N3S)]Cl (Bouwman et al., 1999) contains an N,N′,N′′,S-tetra­dentate Schiff base ligand with terminal thiol­ate and amine moieties. The terminal amino group that is bound to the Ni center is a potential proton-acceptor site. For instance, the Schiff base ligands derived from salicyl­aldehydes and 1-(2-amino­eth­yl)piperazine give square-planar and/or octa­hedral nickel(II) complexes, in which the terminal piperazinyl group binds to Ni in the bidentate chelate mode and the monodentate mode with protonation (Mukhopadhyay et al., 2003). Furthermore the cationic complex [Ni(C11H16N3S)]Cl is water-soluble, which makes it possible to investigate its catalytic performance in aqueous media. In the electrocatalytic proton reduction, the electrochemical properties of the precatalysts are directly related to the formation of real catalysts. Therefore the tuning of the redox properties is also required in the ligand design. 1.

In this work we synthesized two water-soluble N3S Schiff base nickel(II) complexes, [Ni(C12H18N3S)]Cl (1) and [Ni(C13H18N3S)]PF6 (2), in which the N,N′,N′′,S-tetra­dentate Schiff base ligands contain an additional N-methyl group and a terminal piperazine moiety, respectively. The electrochemical properties of these complexes were investigated by cyclic voltammetry in water, and compared with those of [Ni(C11H16N3S)]Cl (3) without N-substituents.

2. Structural commentary

The complex cations in 1 and 2 consist of an Ni2+ ion and a monoanionic N,N′,N′′,S-tetra­dentate ligand, giving a square-planar geometry. The asymmetric unit in 1 comprises the complex cation and a chloride anion, whereas in 2 a hexa­fluoro­phosphate anion and a di­chloro­methane mol­ecule are incorporated into the crystal lattice.

Each complex cation contains a six-membered chelate ring with N and S donor atoms and two five-membered chelate rings with two N donor atoms (Fig. 1 and Fig. 2). In the N,S-chelate, the N1—Ni1—S1 angles are 97.77 (5)° in 1 (Table 1) and 98.90 (7)° in 2 (Table 2), which are comparable to those in 3 [98.5 (2)°] and the tetra­phenyl­borate salt [Ni(C11H16N3S)]B(C6H5)4 [3′; 95.8 (2)°]. The bond distances in the chelate rings are also comparable (Bouwman et al., 1999; Goswami & Eichhorn, 1999). The structural parameters of the central five-membered N,N-chelate rings of these complexes are similar to each other: the N1—Ni1—N2 angles are 86.53 (6)° in 1, 87.80 (10)° in 2, 86.1 (3)° in 3 (Bouwman et al., 1999), and 87.8 (3)° in 3′ (Goswami & Eichhorn, 1999). The bite angles of the N,N-chelate are also similar to those of the nickel(II) complexes with S,N,N,S-tetra­dentate ligands, which have two amine N or two imine N donor atoms besides two S atoms (Yamamura et al., 1993). The structures of the central NCH2CH2N chelate are not significantly dependent on the terminal chelates of the tetra­dentate ligands. In the terminal N,N-chelate ring, the bite angle of the piperazine moiety is significantly restricted. The N2—Ni1—N3 angle of 2 [76.05 (10)°] is much smaller than those of 1 [86.16 (6)°], 3 [86.3 (3)°; Bouwman et al., 1999], and 3′ [86.9 (3)°; Goswami & Eichhorn, 1999], although the Ni—N distances match well with each other.

Figure 1.

Figure 1

Perspective view of the complex cation of 1 with displacement ellipsoids at the 50% probability level. Hydrogen atoms of the minor occupancy component of the disordered region are omitted for clarity.

Figure 2.

Figure 2

Perspective view of the complex cation of 2 with displacement ellipsoids at the 50% probability level.

Table 1. Selected geometric parameters (Å, °) for 1 .

Ni1—N1 1.8587 (14) Ni1—S1 2.1421 (5)
Ni1—N3 1.9268 (14) S1—C1 1.7396 (17)
Ni1—N2 1.9345 (13) N1—C7 1.289 (2)
       
N1—Ni1—N3 172.68 (6) N1—Ni1—S1 97.77 (5)
N1—Ni1—N2 86.53 (6) N3—Ni1—S1 89.53 (5)
N3—Ni1—N2 86.16 (6) N2—Ni1—S1 175.49 (4)
       
N1—C8—C9A—N2 42.9 (2)    

Table 2. Selected geometric parameters (Å, °) for 2 .

Ni1—N1 1.843 (2) Ni1—S1 2.1316 (10)
Ni1—N3 1.917 (3) S1—C1 1.745 (3)
Ni1—N2 1.924 (2) N1—C7 1.285 (3)
       
N1—Ni1—N3 162.95 (10) N1—Ni1—S1 98.90 (7)
N1—Ni1—N2 87.80 (10) N3—Ni1—S1 97.67 (8)
N3—Ni1—N2 76.05 (10) N2—Ni1—S1 171.77 (7)
       
N1—C8—C9—N2 45.1 (3)    

In complex 1, the methyl­ene chains in the two N,N-chelate rings and the methyl group on the tertiary amine N atom are disordered over two sets of sites. These two models are enanti­omers to each other. The conformation of the methyl­ene chains is dependent on the configuration of the methyl group. The N,S-chelate ring in 1 does not show disorder, and the benzene ring and the NiN3S coordination plane are almost coplanar. The dihedral angle between the least-squares planes is 9.74 (8)°. The corresponding inter­planar angle in 2 is 20.92 (12)°. Because there is no significant difference in the conformation of the central chelate ring between 1 [N1—C8—C9A—N2 = 42.9 (2)°] and 2 [N1—C8—C9—N2 = 45.1 (3)°], this bending is due to the rigid structure of the piperazine chelate, which fixes the direction of the methyl­ene groups on the tertiary amine N atom.

3. Supra­molecular features

The crystal structure of 1 shows hydrogen bonds between the terminal amine nitro­gen atom in the complex cation and two chloride ions with the N3⋯Cl1 and N3⋯Cl1(−x +  Inline graphic , y −  Inline graphic , −z +  Inline graphic ) distances of 3.2245 (17) and 3.1948 (17) Å, respectively (Table 3), which are similar to that of 3 (Bouwman et al., 1999). Each chloride ion bridges two complex cations through the hydrogen bonds. Thus in the crystal, the cations and anions pack together to form a zigzag hydrogen-bonded chain along the b-axis direction (Fig. 3). The disorder found in the complex cation does not affect the chain structure. There are π–π inter­actions between the hydrogen-bonded chains through the planar N,S-chelate moieties including the benzene rings [centroid–centroid distances = 3.7378 (12) and 3.8965 (13) Å].

Table 3. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
N3—HN3A⋯Cl1 0.93 (2) 2.40 (2) 3.2245 (17) 148.7 (18)
N3—HN3B⋯Cl1i 0.841 (19) 2.41 (2) 3.1948 (17) 156.0 (17)

Symmetry code: (i) Inline graphic .

Figure 3.

Figure 3

Hydrogen-bond network of 1. Hydrogen atoms are omitted for clarity. Hydrogen bonds are shown as red dashed lines. [Symmetry codes: (i) −x +  Inline graphic , y −  Inline graphic , −z +  Inline graphic ; (ii) −x +  Inline graphic , y +  Inline graphic , −z +  Inline graphic ; (iii) x, y + 1, z; (iv) x, y − 1, z; (v) −x + 1, −y + 1, −z + 1; (vi) x +  Inline graphic , −y +  Inline graphic , z +  Inline graphic ; (vii) x +  Inline graphic , −y +  Inline graphic , z +  Inline graphic ; (viii) −x + 1, −y, −z + 1; (ix) −x + 1, −y + 2, −z + 1.]

Several inter­molecular C—H⋯π inter­actions exist in 2 between the methyl­ene hydrogen atoms of the polyamine moiety and the π system of the benzene ring (Table 4). The piperazine nitro­gen atom N3 in the ligand forms a hydrogen bond to the hexa­fluoro­phosphate ion with the N3⋯F6(−x + 1, −y + 1, −z + 1) distance of 3.114 (3) Å (Table 4). In addition, there are short contacts between the hexa­fluoro­phosphate ion and the methyl­ene hydrogen atoms of the ligand [F6⋯H14B(x, y, z − 1) = 2.47 (4) Å].

Table 4. Hydrogen-bond geometry (Å, °) for 2 .

Cg6 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯F6i 0.80 (3) 2.50 (3) 3.114 (3) 135 (3)
C10—H10A⋯C4ii 0.96 (3) 2.85 (3) 3..695 (5) 147 (2)
C8—H8ACg6ii 0.98 (3) 2.84 (3) 3.778 (4) 160 (2)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

4. Database survey

The two N,N′,N′′,S-tetra­dentate Schiff base ligands studied here have not been reported so far for other transition-metal ions. A similar Schiff base structure that contains benzene­thiol­ate and polyamines is found in a trinuclear nickel(II) complex with a C 3-symmetric ligand based on a 1,3,5-trimercapto­benzene backbone (Feldscher et al., 2014). An analogous mononuclear nickel(II) complex that has a phenol O atom instead of the thiol S atom in 2 shows a piperazine bite angle of 76.65 (8)° (Mukhopadhyay et al., 2003), which is comparable to that of 2.

5. Spectroscopic features

The solution structures of 1 and 2 were characterized by 1H and 1H–1H COSY NMR spectroscopy in methanol-d 4. The 1H NMR spectrum of 1 exhibits an azomethine proton at 8.16 ppm and four aromatic protons in the range 7.07–7.65 ppm (Fig. 4). In the aliphatic region, eight multiplet signals and a singlet signal are due to methyl­ene and methyl groups, respectively. The COSY spectrum of 1 shows cross peaks between the azomethine proton and the two methyl­ene protons at 4.01 and 4.35 ppm; thus, they were attributed to the CH2 group adjacent to the C=N group. Similar spectroscopic features appear for 2 in the aromatic region, whereas six sets of signals due to methyl­ene protons are observed in the aliphatic region. The two sharp signals at 2.83 and 4.31 ppm for 2 were attributed to the central N,N-chelate moiety, and the latter is assigned to the CH2 group adjacent to C=N on the basis of the COSY correlation. This observation is consistent with the fast conformational change of the central chelate ring in 2. Furthermore, the similar signal pattern for the terminal methyl­ene protons at 3.96 and 4.21 ppm suggests a boat conformation of the piperazine moiety that binds to Ni in the bidentate chelate mode.

Figure 4.

Figure 4

1H NMR spectra of (a) 1 (400 MHz) and (b) 2 (300 MHz) in CD3OD.

6. Electrochemical Properties

The redox behavior of the N,N′,N′′,S-tetra­dentate Schiff base nickel(II) complexes 1, 2, and 3 was investigated by cyclic voltammetry. Measurements were performed in 5 × 10−4 M (1 M = 1 mol dm−3) aqueous solution containing KNO3 (0.1 M) at a scan rate of 0.1 V s−1. The working electrode was a glassy carbon disk electrode with a diameter of 3 mm, the auxiliary electrode was a platinum wire, and the reference electrode was Ag/AgCl/saturated KCl. All complexes exhibit irreversible reduction and oxidation processes (Fig. 5). In the reduction process, the cathodic wave appeared at −1.31 V for 1, −1.19 V for 2, and −1.34 V for 3. The anodic peaks in the reverse scan (–0.52 V for 1; −0.70, −0.40 V for 2, and −0.48 V for 3) suggest the adsorption of the reduced species. In the oxidation process, the anodic wave appeared at 0.73 V for 1, 0.79 V for 2, and 0.68 V for 3. In both processes, the redox potentials of 1 are slightly shifted to more positive values than those of 3, which suggests that the electronic and steric effects of the methyl group on the central N atom are not so significant. The voltammogram of 2 shows further positive shifts, and the shift in the reduction process is more pronounced. This is probably related to the smaller bite angle of the terminal piperazine chelate, which reduces the electron-donating ability of the Schiff base ligand toward the nickel center.

Figure 5.

Figure 5

Cyclic voltammograms of complexes 1 (0.5 mM, red dotted line), 2 (0.5 mM, blue solid line), and 3 (0.5 mM, black dashed line) in water containing 0.10 M KNO3: scan rate, 0.1 V s−1; working electrode, glassy carbon; auxiliary electrode, platinum wire; reference electrode, Ag/AgCl/saturated KCl.

The proton-reduction abilities of complexes 1 and 2 were compared in a buffer solution of pH 4.6 (0.1 M acetic acid/sodium acetate). A catalytic current was observed during the reduction process, giving a peak at −1.28 V for 1 and −1.23 V for 2 (Fig. 6). This suggests that the reduced species of the nickel(II) complex is catalytically active for proton reduction. The reduction potential for 2 is more positive than that for 1, and thus the piperazinyl arm in 2 is effective in reducing the overpotential for proton reduction.

Figure 6.

Figure 6

Cyclic voltammograms of complexes 1 (0.5 mM, red dotted line), 2 (0.5 mM, blue solid line), and blank solution (black dashed line) in 0.1 M acetate buffer at pH 4.6 containing 0.10 M KNO3: scan rate, 0.1 V s−1; working electrode, glassy carbon; auxiliary electrode, platinum wire; reference electrode, Ag/AgCl/saturated KCl.

7. Synthesis and crystallization

General Procedures. NMR spectra were recorded on a Bruker AVANCE 300 or a JEOL EX-400 spectrometer at room temperature. Cyclic voltammetric measurements were performed at room temperature with an ALS/DY2325 voltammetric analyzer (Bioanalytical System Ins.) under N2. Elemental analyses were performed by the Analytical Research Service Center at Osaka City University or A Rabbit Science Co., Ltd.

[Ni(C12H18N3S)]Cl (1). A solution of 2,2′-di­amino-N-methyl­diethyl­amine (128 µL, 1.0 mmol) and 2-(t-butyl­thio)­benzaldehyde (194 mg, 1.0 mmol) in ethanol (10 mL) was refluxed under a nitro­gen atmosphere for 1 h to afford a pale-yellow solution. After cooling to room temperature, NiCl2·6H2O (238 mg, 1.0 mmol) was added, and the resulting green suspension was refluxed under a nitro­gen atmosphere for 6 h, during which time the color of the solution turned red. The reaction mixture was cooled to room temperature and filtered. The red filtrate was left for two weeks to give red crystals of 1 (41 mg, 12%). 1H NMR (400 MHz, CD3OD): δ 2.65 (dd, J = 12.1, 4.9 Hz, 1H, C=NCH2CH 2N), 2.67 (dd, J = 12.2, 4.5 Hz, 1H, NCH 2CH2NH2), 2.79 (dd, J = 13.3, 5.9 Hz, 1H, NCH2CH 2NH2), 2.92 (dd, J = 13.3, 4.5 Hz, 1H, NCH2CH 2NH2), 2.95 (s, 3H, NMe), 3.43 (td, J = 12.8, 5.9 Hz, 1H, NCH 2CH2NH2), 3.54 (td, J = 12.8, 6.1 Hz, 1H, C=NCH2CH 2N), 4.01 (dd, J = 15.1, 6.1 Hz, 1H, C=NCH 2CH2N), 4.35 (dddd, J = 15.1, 13.5, 4.9, 1.7 Hz, 1H, C=NCH 2CH2N), 7.07 (ddd, J = 7.8, 7.2, 1.1 Hz, 1H, Ar) 7.25 (ddd, J = 8.0, 7.2, 1.4 Hz 1H, Ar), 7.49 (dd, J = 8.0, 1.3 Hz, 1H, Ar), 7.65 (d, J = 8.1 Hz, 1H, Ar), 8.16 (s, 1H, N=CH). Analysis calculated for C12H18ClN3NiS·0.25H2O: C, 43.02; H, 5.57; N, 12.54. Found: C, 42.94; H, 5.28; N, 12.48.

[Ni(C13H18N3S)]PF6 (2). To a solution of N-(2-amino­eth­yl)piperazine (261 mg, 2.0 mmol) and 2-(t-butyl­thio)­benzaldehyde (490 mg, 2.1 mmol) in ethanol (20 mL) was added NiCl2·6H2O (490 mg, 2.1 mmol). The resulting suspension was refluxed under a nitro­gen atmosphere for 8 h, during which time the color of the solution turned orange and a yellow–green precipitate formed. The reaction mixture was filtered, and an ethanol solution (5 mL) of ammonium hexa­fluoro­phosphate (334 mg, 2.1 mmol) was added to the filtrate. The resulting orange precipitate was collected by filtration and dried under reduced pressure to give an orange powder of 2 (353 mg, 38%). Suitable crystals for X-ray diffraction analysis were grown from a di­chloro­methane solution by layering with diethyl ether. 1H NMR (300 MHz, CD3OD): δ 2.76–2.94 (m, 4H, N(CH 2CH2)2NH), 2.83 (t, J = 6.5 Hz, 2H, C=NCH2CH 2N), 3.91–4.03 (m, 2H, N(CH2CH 2)2NH), 4.16–4.27 (m, 2H, N(CH2CH 2)2NH), 4.31 (td, J = 6.5, 1.2 Hz, 2H, C=NCH 2CH2N), 7.10 (td, J = 7.9, 1.2 Hz, 1H, Ar), 7.28 (td, J = 8.2, 1.5 Hz, 1H, Ar), 7.52 (dd, J = 7.9, 1.5 Hz, 1H, Ar), 7.74 (d, J = 8.2 Hz, 1H, Ar), 8.16 (s, 1H, N=CH). Analysis calculated for C13H18F6N3NiPS·0.75CH2Cl2: C, 32.02; H, 3.81; N, 8.15. Found: C, 32.11; H, 3.93; N, 8.14.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All non-hydrogen atoms were refined anisotropically. A methyl group and two methyl­ene groups bound to the central N atom of two N,N-chelating moieties in 1 were modeled as disordered over two positions each, and the occupancy factors refined to 0.864 (3) and 0.136 (3). Hydrogen atoms on the disordered C atoms and the adjacent C atoms that belong to the minor site were placed in calculated positions with C—H(meth­yl) = 0.98 Å and C—H(methyl­ene) = 0.99 Å and refined using a riding model with U iso(H) = 1.5U eq(C) and 1.2U eq(C), respectively. Other H atoms were found in a difference-Fourier map and freely refined.

Table 5. Experimental details.

  1 2
Crystal data
Chemical formula [Ni(C12H18N3S)]Cl [Ni(C13H18N3S)]PF6·CH2Cl2
M r 330.51 536.97
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic
Temperature (K) 153 153
a, b, c (Å) 7.8601 (14), 9.8884 (17), 18.190 (3) 8.725 (3), 10.507 (4), 11.316 (4)
α, β, γ (°) 90, 98.677 (3), 90 98.065 (4), 101.274 (6), 96.150 (5)
V3) 1397.6 (4) 997.6 (6)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.71 1.49
Crystal size (mm) 0.11 × 0.06 × 0.04 0.17 × 0.11 × 0.08
 
Data collection
Diffractometer Rigaku AFC11 with Saturn 724+ CCD Rigaku AFC11 with Saturn 724+ CCD
Absorption correction Multi-scan (REQAB; Rigaku, 1998) Multi-scan (REQAB; Rigaku, 1998)
T min, T max 0.904, 1.000 0.828, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11199, 3129, 2665 8155, 4392, 3240
R int 0.024 0.041
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.057, 1.05 0.037, 0.087, 0.93
No. of reflections 3129 4392
No. of parameters 263 333
H-atom treatment H atoms treated by a mixture of independent and constrained refinement All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.43, −0.24 0.79, −0.52

Computer programs: CrystalClear (Rigaku, 2008), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989022003954/dj2045sup1.cif

e-78-00500-sup1.cif (691.6KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989022003954/dj20451sup2.hkl

e-78-00500-1sup2.hkl (250KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989022003954/dj20452sup3.hkl

e-78-00500-2sup3.hkl (349.8KB, hkl)

CCDC references: 2165891, 2165890

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

{2-[({2-[(2-Aminoethyl-κN)(methyl)amino-κN]ethyl}imino-κN)methyl]benzenethiolato-κS}nickel(II) chloride (1) . Crystal data

[Ni(C12H18N3S)]Cl F(000) = 688
Mr = 330.51 Dx = 1.571 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
a = 7.8601 (14) Å Cell parameters from 4130 reflections
b = 9.8884 (17) Å θ = 3.1–27.5°
c = 18.190 (3) Å µ = 1.71 mm1
β = 98.677 (3)° T = 153 K
V = 1397.6 (4) Å3 Prism, red
Z = 4 0.11 × 0.06 × 0.04 mm

{2-[({2-[(2-Aminoethyl-κN)(methyl)amino-κN]ethyl}imino-κN)methyl]benzenethiolato-κS}nickel(II) chloride (1) . Data collection

Rigaku AFC11 with Saturn 724+ CCD diffractometer 3129 independent reflections
Radiation source: Rotating Anode 2665 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1 Rint = 0.024
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (REQAB; Rigaku, 1998) h = −10→10
Tmin = 0.904, Tmax = 1.000 k = −12→11
11199 measured reflections l = −23→22

{2-[({2-[(2-Aminoethyl-κN)(methyl)amino-κN]ethyl}imino-κN)methyl]benzenethiolato-κS}nickel(II) chloride (1) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: mixed
wR(F2) = 0.057 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.1838P] where P = (Fo2 + 2Fc2)/3
3129 reflections (Δ/σ)max = 0.001
263 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.24 e Å3

{2-[({2-[(2-Aminoethyl-κN)(methyl)amino-κN]ethyl}imino-κN)methyl]benzenethiolato-κS}nickel(II) chloride (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. A methyl group and two methylene groups bound to N2 were modeled as disordered over two positions each, and the occupancy factors were refined to 0.864 (3) and 0.136 (3).

{2-[({2-[(2-Aminoethyl-κN)(methyl)amino-κN]ethyl}imino-κN)methyl]benzenethiolato-κS}nickel(II) chloride (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.48400 (3) 0.13970 (2) 0.38534 (2) 0.01822 (7)
Cl1 0.40893 (5) 0.34256 (4) 0.18937 (2) 0.02646 (10)
S1 0.26456 (5) 0.23714 (4) 0.41873 (2) 0.02246 (10)
N1 0.64016 (17) 0.17644 (15) 0.47031 (8) 0.0235 (3)
N2 0.66981 (17) 0.04423 (14) 0.34932 (8) 0.0215 (3)
N3 0.34538 (19) 0.08851 (16) 0.29300 (8) 0.0225 (3)
C1 0.3229 (2) 0.33075 (16) 0.49958 (9) 0.0217 (3)
C2 0.1926 (2) 0.4054 (2) 0.52601 (10) 0.0288 (4)
C3 0.2272 (3) 0.4853 (2) 0.58865 (11) 0.0329 (4)
C4 0.3922 (3) 0.4947 (2) 0.62816 (10) 0.0330 (4)
C5 0.5199 (2) 0.4198 (2) 0.60486 (10) 0.0293 (4)
C6 0.4898 (2) 0.33615 (17) 0.54095 (9) 0.0236 (4)
C7 0.6332 (2) 0.25697 (19) 0.52548 (9) 0.0270 (4)
C8 0.8076 (2) 0.1028 (2) 0.47227 (11) 0.0344 (5)
C9A 0.7758 (3) −0.0122 (2) 0.41595 (12) 0.0309 (5) 0.864 (3)
C9B 0.8355 (14) 0.1034 (12) 0.3869 (7) 0.019 (3) 0.136 (3)
C10A 0.5894 (3) −0.0624 (2) 0.29769 (13) 0.0287 (5) 0.864 (3)
C11 0.4437 (2) 0.0035 (2) 0.24619 (10) 0.0279 (4)
C10B 0.6424 (15) 0.0424 (13) 0.2701 (7) 0.022 (3) 0.136 (3)
C12A 0.7731 (3) 0.1392 (2) 0.30855 (12) 0.0277 (5) 0.864 (3)
C12B 0.6622 (19) −0.1036 (12) 0.3796 (8) 0.026 (3) 0.136 (3)
HN3A 0.321 (3) 0.170 (2) 0.2682 (12) 0.041 (6)*
HN3B 0.259 (2) 0.044 (2) 0.3013 (10) 0.025 (5)*
H2 0.077 (2) 0.3969 (18) 0.5015 (10) 0.021 (5)*
H3 0.140 (3) 0.530 (2) 0.6037 (11) 0.035 (6)*
H4 0.415 (3) 0.551 (2) 0.6699 (11) 0.038 (6)*
H5 0.633 (3) 0.417 (2) 0.6294 (11) 0.033 (5)*
H7 0.733 (2) 0.2637 (19) 0.5632 (10) 0.028 (5)*
H8A 0.895 (3) 0.165 (2) 0.4615 (12) 0.022 (6)* 0.864 (3)
H8B 0.840 (3) 0.069 (2) 0.5207 (12) 0.027 (6)* 0.864 (3)
H8C 0.7997 0.0094 0.4910 0.041* 0.136 (3)
H8D 0.9022 0.1507 0.5039 0.041* 0.136 (3)
H9A 0.887 (3) −0.053 (3) 0.4044 (13) 0.041 (7)* 0.864 (3)
H9B 0.698 (4) −0.092 (3) 0.4307 (15) 0.045 (7)* 0.864 (3)
H9C 0.8526 0.1963 0.3691 0.023* 0.136 (3)
H9D 0.9350 0.0467 0.3791 0.023* 0.136 (3)
H10A 0.675 (3) −0.105 (2) 0.2715 (13) 0.032 (6)* 0.864 (3)
H10B 0.547 (3) −0.133 (2) 0.3318 (14) 0.030 (6)* 0.864 (3)
H10C 0.7177 −0.0255 0.2512 0.027* 0.136 (3)
H10D 0.6670 0.1323 0.2501 0.027* 0.136 (3)
H11A 0.485 (3) 0.063 (2) 0.2104 (12) 0.022 (5)* 0.864 (3)
H11B 0.371 (3) −0.063 (2) 0.2180 (12) 0.024 (5)* 0.864 (3)
H11C 0.4066 0.0228 0.1928 0.033* 0.136 (3)
H11D 0.4251 −0.0937 0.2552 0.033* 0.136 (3)
H12A 0.818 (3) 0.216 (2) 0.3439 (13) 0.036 (6)* 0.864 (3)
H12B 0.696 (3) 0.181 (2) 0.2665 (13) 0.029 (6)* 0.864 (3)
H12C 0.868 (3) 0.089 (2) 0.2898 (13) 0.037 (7)* 0.864 (3)
H12D 0.6808 −0.1020 0.4341 0.039* 0.136 (3)
H12E 0.7519 −0.1583 0.3620 0.039* 0.136 (3)
H12F 0.5491 −0.1428 0.3616 0.039* 0.136 (3)

{2-[({2-[(2-Aminoethyl-κN)(methyl)amino-κN]ethyl}imino-κN)methyl]benzenethiolato-κS}nickel(II) chloride (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01721 (11) 0.01974 (11) 0.01704 (11) 0.00138 (8) 0.00044 (8) 0.00006 (8)
Cl1 0.0282 (2) 0.0263 (2) 0.0242 (2) −0.00019 (16) 0.00157 (17) 0.00158 (16)
S1 0.01838 (19) 0.0278 (2) 0.0201 (2) 0.00215 (16) −0.00091 (15) −0.00525 (17)
N1 0.0179 (7) 0.0315 (8) 0.0199 (7) 0.0033 (6) −0.0013 (6) 0.0028 (6)
N2 0.0220 (7) 0.0199 (7) 0.0227 (7) 0.0028 (6) 0.0034 (6) 0.0028 (6)
N3 0.0236 (8) 0.0236 (7) 0.0200 (7) −0.0003 (6) 0.0018 (6) −0.0021 (6)
C1 0.0253 (8) 0.0226 (8) 0.0168 (8) −0.0018 (7) 0.0020 (7) −0.0004 (6)
C2 0.0265 (9) 0.0310 (9) 0.0288 (10) 0.0024 (7) 0.0033 (8) −0.0053 (8)
C3 0.0399 (11) 0.0317 (10) 0.0286 (10) 0.0046 (9) 0.0103 (9) −0.0052 (8)
C4 0.0494 (12) 0.0298 (9) 0.0196 (9) −0.0044 (9) 0.0048 (8) −0.0054 (8)
C5 0.0321 (10) 0.0354 (10) 0.0185 (9) −0.0071 (8) −0.0019 (8) −0.0017 (7)
C6 0.0256 (8) 0.0280 (9) 0.0163 (8) −0.0027 (7) 0.0008 (7) 0.0010 (7)
C7 0.0229 (8) 0.0372 (10) 0.0186 (8) −0.0014 (8) −0.0041 (7) 0.0007 (7)
C8 0.0221 (9) 0.0531 (13) 0.0259 (10) 0.0116 (9) −0.0027 (8) 0.0009 (9)
C9A 0.0289 (11) 0.0346 (12) 0.0286 (12) 0.0113 (10) 0.0026 (9) 0.0095 (9)
C9B 0.011 (5) 0.022 (6) 0.025 (6) 0.005 (4) 0.004 (5) −0.005 (5)
C10A 0.0343 (12) 0.0205 (10) 0.0317 (12) 0.0030 (9) 0.0066 (9) −0.0043 (9)
C10B 0.020 (6) 0.024 (6) 0.025 (6) −0.001 (5) 0.009 (5) 0.002 (5)
C11 0.0296 (9) 0.0296 (9) 0.0242 (9) 0.0016 (8) 0.0034 (8) −0.0069 (8)
C12A 0.0256 (11) 0.0299 (11) 0.0286 (11) −0.0004 (9) 0.0080 (9) 0.0034 (9)
C12B 0.037 (7) 0.016 (6) 0.025 (7) −0.009 (5) 0.009 (6) −0.003 (5)

{2-[({2-[(2-Aminoethyl-κN)(methyl)amino-κN]ethyl}imino-κN)methyl]benzenethiolato-κS}nickel(II) chloride (1) . Geometric parameters (Å, º)

Ni1—N1 1.8587 (14) C7—H7 0.96 (2)
Ni1—N3 1.9268 (14) C8—C9A 1.526 (3)
Ni1—N2 1.9345 (13) C8—C9B 1.601 (12)
Ni1—S1 2.1421 (5) C8—H8C 0.9900
S1—C1 1.7396 (17) C8—H8D 0.9900
N1—C7 1.289 (2) C8—H8A 0.96 (2)
N1—C8 1.499 (2) C8—H8B 0.94 (2)
N2—C10B 1.425 (12) C11—C10A 1.513 (3)
N2—C9A 1.473 (2) C11—C10B 1.604 (12)
N2—C10A 1.488 (2) C11—H11C 0.9900
N2—C9B 1.496 (12) C11—H11D 0.9900
N2—C12A 1.507 (2) C11—H11A 0.97 (2)
N2—C12B 1.566 (12) C11—H11B 0.96 (2)
N3—C11 1.492 (2) C9A—H9A 1.02 (2)
N3—HN3A 0.93 (2) C9A—H9B 1.06 (3)
N3—HN3B 0.841 (19) C10A—H10A 0.97 (2)
C1—C2 1.404 (2) C10A—H10B 1.02 (2)
C1—C6 1.411 (2) C12A—H12A 1.02 (3)
C2—C3 1.380 (3) C12A—H12B 0.99 (2)
C2—H2 0.953 (19) C12A—H12C 1.00 (2)
C3—C4 1.388 (3) C9B—H9C 0.9900
C3—H3 0.89 (2) C9B—H9D 0.9900
C4—C5 1.365 (3) C10B—H10C 0.9900
C4—H4 0.94 (2) C10B—H10D 0.9900
C5—C6 1.417 (2) C12B—H12D 0.9800
C5—H5 0.93 (2) C12B—H12E 0.9800
C6—C7 1.435 (2) C12B—H12F 0.9800
N1—Ni1—N3 172.68 (6) H8C—C8—H8D 109.1
N1—Ni1—N2 86.53 (6) N1—C8—H8A 109.7 (13)
N3—Ni1—N2 86.16 (6) C9A—C8—H8A 112.8 (13)
N1—Ni1—S1 97.77 (5) N1—C8—H8B 107.9 (13)
N3—Ni1—S1 89.53 (5) C9A—C8—H8B 110.8 (14)
N2—Ni1—S1 175.49 (4) H8A—C8—H8B 108.6 (18)
C1—S1—Ni1 111.00 (6) N3—C11—C10A 107.33 (15)
C7—N1—C8 114.95 (14) N3—C11—C10B 106.1 (5)
C7—N1—Ni1 131.91 (12) N3—C11—H11C 110.5
C8—N1—Ni1 113.07 (11) C10B—C11—H11C 110.5
C9A—N2—C10A 112.64 (15) N3—C11—H11D 110.5
C10B—N2—C9B 117.1 (7) C10B—C11—H11D 110.5
C9A—N2—C12A 111.16 (15) H11C—C11—H11D 108.7
C10A—N2—C12A 109.86 (15) N3—C11—H11A 107.3 (12)
C10B—N2—C12B 109.6 (7) C10A—C11—H11A 112.3 (12)
C9B—N2—C12B 106.3 (7) N3—C11—H11B 111.8 (12)
C10B—N2—Ni1 110.0 (5) C10A—C11—H11B 111.6 (13)
C9A—N2—Ni1 105.56 (11) H11A—C11—H11B 106.5 (17)
C10A—N2—Ni1 106.80 (12) N2—C9A—C8 106.59 (16)
C9B—N2—Ni1 107.7 (4) N2—C9A—H9A 112.3 (13)
C12A—N2—Ni1 110.66 (12) C8—C9A—H9A 112.1 (14)
C12B—N2—Ni1 105.4 (5) N2—C9A—H9B 102.4 (15)
C11—N3—Ni1 111.83 (11) C8—C9A—H9B 115.4 (14)
C11—N3—HN3A 107.1 (13) H9A—C9A—H9B 108 (2)
Ni1—N3—HN3A 104.2 (14) N2—C10A—C11 107.20 (15)
C11—N3—HN3B 107.7 (13) N2—C10A—H10A 110.9 (14)
Ni1—N3—HN3B 110.2 (13) C11—C10A—H10A 113.2 (14)
HN3A—N3—HN3B 115.9 (19) N2—C10A—H10B 104.3 (13)
C2—C1—C6 117.68 (15) C11—C10A—H10B 112.4 (14)
C2—C1—S1 117.14 (13) H10A—C10A—H10B 108.4 (18)
C6—C1—S1 125.17 (13) N2—C12A—H12A 108.2 (13)
C3—C2—C1 121.38 (18) N2—C12A—H12B 109.1 (13)
C3—C2—H2 119.5 (11) H12A—C12A—H12B 106.5 (19)
C1—C2—H2 119.1 (11) N2—C12A—H12C 110.2 (14)
C2—C3—C4 121.23 (18) H12A—C12A—H12C 112.4 (19)
C2—C3—H3 118.2 (13) H12B—C12A—H12C 110.2 (18)
C4—C3—H3 120.6 (13) N2—C9B—C8 101.8 (7)
C5—C4—C3 118.43 (17) N2—C9B—H9C 111.4
C5—C4—H4 120.9 (13) C8—C9B—H9C 111.4
C3—C4—H4 120.7 (13) N2—C9B—H9D 111.4
C4—C5—C6 122.11 (17) C8—C9B—H9D 111.4
C4—C5—H5 124.1 (13) H9C—C9B—H9D 109.3
C6—C5—H5 113.8 (12) N2—C10B—C11 105.6 (7)
C1—C6—C5 119.10 (16) N2—C10B—H10C 110.6
C1—C6—C7 124.70 (15) C11—C10B—H10C 110.6
C5—C6—C7 116.12 (15) N2—C10B—H10D 110.6
N1—C7—C6 128.09 (16) C11—C10B—H10D 110.6
N1—C7—H7 118.1 (11) H10C—C10B—H10D 108.7
C6—C7—H7 113.8 (11) N2—C12B—H12D 109.5
N1—C8—C9A 106.96 (15) N2—C12B—H12E 109.5
N1—C8—C9B 102.9 (4) H12D—C12B—H12E 109.5
N1—C8—H8C 111.2 N2—C12B—H12F 109.5
C9B—C8—H8C 111.2 H12D—C12B—H12F 109.5
N1—C8—H8D 111.2 H12E—C12B—H12F 109.5
C9B—C8—H8D 111.2
N2—Ni1—N1—C7 168.82 (17) C12A—N2—C9A—C8 71.6 (2)
S1—Ni1—N1—C7 −12.54 (17) C12B—N2—C9A—C8 −146.3 (7)
N2—Ni1—N1—C8 −7.83 (13) Ni1—N2—C9A—C8 −48.46 (18)
S1—Ni1—N1—C8 170.81 (12) N1—C8—C9A—N2 42.9 (2)
Ni1—S1—C1—C2 177.10 (12) C9B—C8—C9A—N2 −50.5 (5)
Ni1—S1—C1—C6 −3.70 (17) C10B—N2—C10A—C11 −55.6 (6)
C6—C1—C2—C3 2.3 (3) C9A—N2—C10A—C11 162.30 (16)
S1—C1—C2—C3 −178.40 (15) C9B—N2—C10A—C11 −137.0 (9)
C1—C2—C3—C4 −0.2 (3) C12A—N2—C10A—C11 −73.2 (2)
C2—C3—C4—C5 −1.8 (3) C12B—N2—C10A—C11 145.6 (6)
C3—C4—C5—C6 1.6 (3) Ni1—N2—C10A—C11 46.86 (18)
C2—C1—C6—C5 −2.5 (3) N3—C11—C10A—N2 −45.4 (2)
S1—C1—C6—C5 178.33 (13) C10B—C11—C10A—N2 50.7 (6)
C2—C1—C6—C7 174.18 (17) C10B—N2—C9B—C8 173.6 (7)
S1—C1—C6—C7 −5.0 (3) C9A—N2—C9B—C8 −47.8 (4)
C4—C5—C6—C1 0.5 (3) C10A—N2—C9B—C8 −127.0 (6)
C4—C5—C6—C7 −176.40 (18) C12A—N2—C9B—C8 153.0 (8)
C8—N1—C7—C6 −177.03 (18) C12B—N2—C9B—C8 −63.5 (8)
Ni1—N1—C7—C6 6.4 (3) Ni1—N2—C9B—C8 49.1 (6)
C1—C6—C7—N1 5.2 (3) N1—C8—C9B—N2 −53.5 (6)
C5—C6—C7—N1 −178.09 (18) C9A—C8—C9B—N2 48.0 (4)
C7—N1—C8—C9A 165.20 (17) C9A—N2—C10B—C11 124.5 (6)
Ni1—N1—C8—C9A −17.6 (2) C10A—N2—C10B—C11 50.5 (5)
C7—N1—C8—C9B −141.0 (5) C9B—N2—C10B—C11 −168.6 (6)
Ni1—N1—C8—C9B 36.2 (5) C12A—N2—C10B—C11 −148.4 (9)
Ni1—N3—C11—C10A 23.43 (19) C12B—N2—C10B—C11 70.2 (9)
Ni1—N3—C11—C10B −26.0 (5) Ni1—N2—C10B—C11 −45.2 (8)
C10B—N2—C9A—C8 141.6 (9) N3—C11—C10B—N2 45.7 (8)
C10A—N2—C9A—C8 −164.64 (17) C10A—C11—C10B—N2 −53.3 (5)
C9B—N2—C9A—C8 52.5 (5)

{2-[({2-[(2-Aminoethyl-κN)(methyl)amino-κN]ethyl}imino-κN)methyl]benzenethiolato-κS}nickel(II) chloride (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—HN3A···Cl1 0.93 (2) 2.40 (2) 3.2245 (17) 148.7 (18)
N3—HN3B···Cl1i 0.841 (19) 2.41 (2) 3.1948 (17) 156.0 (17)

Symmetry code: (i) −x+1/2, y−1/2, −z+1/2.

[2-({[2-(Piperazin-1-yl-κ2N1,N4)ethyl]imino-κN}methyl)benzenethiolato-κS]nickel(II) hexafluorophosphate dichloromethane monosolvate (2) . Crystal data

[Ni(C13H18N3S)]PF6·CH2Cl2 Z = 2
Mr = 536.97 F(000) = 544
Triclinic, P1 Dx = 1.788 Mg m3
a = 8.725 (3) Å Mo Kα radiation, λ = 0.71075 Å
b = 10.507 (4) Å Cell parameters from 3095 reflections
c = 11.316 (4) Å θ = 3.3–27.5°
α = 98.065 (4)° µ = 1.49 mm1
β = 101.274 (6)° T = 153 K
γ = 96.150 (5)° Prism, orange
V = 997.6 (6) Å3 0.17 × 0.11 × 0.08 mm

[2-({[2-(Piperazin-1-yl-κ2N1,N4)ethyl]imino-κN}methyl)benzenethiolato-κS]nickel(II) hexafluorophosphate dichloromethane monosolvate (2) . Data collection

Rigaku AFC11 with Saturn 724+ CCD diffractometer 4392 independent reflections
Radiation source: Rotating Anode 3240 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1 Rint = 0.041
ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (REQAB; Rigaku, 1998) h = −10→11
Tmin = 0.828, Tmax = 1.000 k = −13→13
8155 measured reflections l = −14→11

[2-({[2-(Piperazin-1-yl-κ2N1,N4)ethyl]imino-κN}methyl)benzenethiolato-κS]nickel(II) hexafluorophosphate dichloromethane monosolvate (2) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 All H-atom parameters refined
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0389P)2] where P = (Fo2 + 2Fc2)/3
S = 0.93 (Δ/σ)max = 0.001
4392 reflections Δρmax = 0.79 e Å3
333 parameters Δρmin = −0.52 e Å3
0 restraints

[2-({[2-(Piperazin-1-yl-κ2N1,N4)ethyl]imino-κN}methyl)benzenethiolato-κS]nickel(II) hexafluorophosphate dichloromethane monosolvate (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

[2-({[2-(Piperazin-1-yl-κ2N1,N4)ethyl]imino-κN}methyl)benzenethiolato-κS]nickel(II) hexafluorophosphate dichloromethane monosolvate (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.57594 (4) 0.27835 (3) 0.57343 (3) 0.01844 (11)
Cl1 0.25537 (9) 0.20611 (8) 0.80312 (7) 0.0387 (2)
Cl2 0.11870 (9) 0.29079 (8) 1.01271 (7) 0.03346 (19)
S1 0.32922 (8) 0.21518 (7) 0.51052 (6) 0.02276 (16)
P1 0.72668 (8) 0.35508 (8) 0.17761 (7) 0.02436 (18)
F1 0.5860 (3) 0.2992 (3) 0.2304 (3) 0.0855 (9)
F2 0.6694 (3) 0.2481 (2) 0.0598 (2) 0.0743 (8)
F3 0.8640 (3) 0.4110 (3) 0.1214 (3) 0.0879 (9)
F4 0.7800 (3) 0.4640 (3) 0.2946 (2) 0.0931 (10)
F5 0.8362 (2) 0.2621 (2) 0.24263 (19) 0.0551 (6)
F6 0.6156 (2) 0.44975 (18) 0.11403 (16) 0.0351 (4)
N1 0.6501 (2) 0.1584 (2) 0.4715 (2) 0.0199 (5)
N2 0.7907 (2) 0.3602 (2) 0.6333 (2) 0.0213 (5)
N3 0.5633 (3) 0.4116 (2) 0.7042 (2) 0.0241 (5)
C1 0.2997 (3) 0.1243 (3) 0.3646 (3) 0.0203 (6)
C2 0.1451 (3) 0.1044 (3) 0.2930 (3) 0.0279 (7)
C3 0.1064 (4) 0.0296 (3) 0.1791 (3) 0.0323 (7)
C4 0.2205 (4) −0.0298 (3) 0.1305 (3) 0.0336 (8)
C5 0.3726 (4) −0.0106 (3) 0.1968 (3) 0.0286 (7)
C6 0.4164 (3) 0.0657 (3) 0.3139 (3) 0.0224 (6)
C7 0.5804 (3) 0.0807 (3) 0.3730 (3) 0.0222 (6)
C8 0.8213 (3) 0.1579 (3) 0.5183 (3) 0.0255 (6)
C9 0.8952 (3) 0.2982 (3) 0.5619 (3) 0.0261 (7)
C10 0.8201 (4) 0.3475 (3) 0.7658 (3) 0.0297 (7)
C11 0.6707 (4) 0.3764 (3) 0.8096 (3) 0.0302 (7)
C12 0.7813 (4) 0.4991 (3) 0.6233 (3) 0.0259 (6)
C13 0.6363 (4) 0.5334 (3) 0.6723 (3) 0.0272 (7)
C14 0.2908 (4) 0.2570 (4) 0.9634 (3) 0.0385 (8)
H2 0.070 (3) 0.152 (3) 0.325 (3) 0.034 (9)*
H3 0.002 (3) 0.016 (3) 0.134 (3) 0.027 (8)*
H3N 0.479 (3) 0.421 (3) 0.719 (3) 0.019 (8)*
H4 0.194 (3) −0.085 (3) 0.047 (3) 0.037 (9)*
H5 0.451 (3) −0.054 (3) 0.168 (3) 0.032 (9)*
H7 0.639 (3) 0.028 (3) 0.332 (3) 0.028 (8)*
H8A 0.829 (3) 0.111 (3) 0.588 (3) 0.028 (8)*
H8B 0.869 (3) 0.118 (3) 0.452 (3) 0.027 (8)*
H9A 1.006 (3) 0.303 (3) 0.611 (3) 0.025 (8)*
H9B 0.902 (3) 0.344 (3) 0.496 (3) 0.024 (8)*
H10A 0.841 (3) 0.260 (3) 0.770 (2) 0.015 (7)*
H10B 0.913 (3) 0.404 (3) 0.812 (3) 0.029 (8)*
H11A 0.621 (3) 0.303 (3) 0.834 (2) 0.010 (6)*
H11B 0.687 (3) 0.448 (3) 0.878 (3) 0.033 (9)*
H12A 0.877 (3) 0.559 (3) 0.667 (3) 0.025 (8)*
H12B 0.775 (3) 0.514 (3) 0.539 (3) 0.025 (8)*
H13A 0.667 (3) 0.602 (3) 0.743 (3) 0.020 (7)*
H13B 0.565 (3) 0.566 (3) 0.616 (3) 0.019 (7)*
H14A 0.324 (4) 0.184 (4) 1.000 (3) 0.052 (11)*
H14B 0.365 (4) 0.337 (4) 0.982 (4) 0.064 (13)*

[2-({[2-(Piperazin-1-yl-κ2N1,N4)ethyl]imino-κN}methyl)benzenethiolato-κS]nickel(II) hexafluorophosphate dichloromethane monosolvate (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01714 (19) 0.01885 (19) 0.01872 (19) 0.00118 (13) 0.00293 (14) 0.00337 (14)
Cl1 0.0409 (5) 0.0399 (5) 0.0342 (4) 0.0054 (4) 0.0098 (4) −0.0002 (4)
Cl2 0.0305 (4) 0.0396 (5) 0.0276 (4) −0.0010 (3) 0.0044 (3) 0.0036 (3)
S1 0.0184 (3) 0.0259 (4) 0.0240 (4) 0.0026 (3) 0.0050 (3) 0.0039 (3)
P1 0.0214 (4) 0.0288 (4) 0.0229 (4) 0.0044 (3) 0.0037 (3) 0.0049 (3)
F1 0.0698 (15) 0.098 (2) 0.136 (2) 0.0414 (15) 0.0698 (17) 0.0879 (19)
F2 0.1012 (18) 0.0459 (15) 0.0566 (15) 0.0286 (13) −0.0211 (13) −0.0173 (12)
F3 0.0450 (13) 0.111 (2) 0.137 (3) 0.0190 (14) 0.0501 (16) 0.069 (2)
F4 0.134 (2) 0.0682 (18) 0.0475 (15) 0.0435 (17) −0.0427 (15) −0.0239 (14)
F5 0.0545 (13) 0.0671 (16) 0.0495 (13) 0.0363 (11) 0.0028 (10) 0.0201 (12)
F6 0.0394 (10) 0.0343 (11) 0.0340 (10) 0.0125 (8) 0.0044 (8) 0.0123 (8)
N1 0.0178 (11) 0.0194 (12) 0.0234 (12) 0.0029 (9) 0.0028 (10) 0.0086 (10)
N2 0.0187 (12) 0.0214 (12) 0.0224 (12) −0.0008 (9) 0.0001 (10) 0.0073 (10)
N3 0.0237 (14) 0.0268 (14) 0.0212 (12) 0.0011 (11) 0.0052 (11) 0.0034 (10)
C1 0.0198 (14) 0.0174 (14) 0.0248 (15) 0.0019 (11) 0.0041 (12) 0.0087 (11)
C2 0.0237 (16) 0.0267 (16) 0.0320 (17) 0.0016 (13) 0.0006 (14) 0.0098 (13)
C3 0.0281 (17) 0.0295 (18) 0.0336 (18) −0.0037 (13) −0.0073 (15) 0.0117 (14)
C4 0.045 (2) 0.0236 (16) 0.0254 (16) −0.0033 (14) −0.0047 (15) 0.0028 (13)
C5 0.0341 (18) 0.0218 (15) 0.0278 (16) 0.0025 (13) 0.0032 (14) 0.0026 (13)
C6 0.0242 (15) 0.0171 (14) 0.0252 (15) 0.0000 (11) 0.0034 (12) 0.0063 (12)
C7 0.0258 (16) 0.0170 (14) 0.0275 (15) 0.0060 (12) 0.0105 (13) 0.0066 (12)
C8 0.0183 (15) 0.0273 (16) 0.0319 (17) 0.0066 (12) 0.0037 (13) 0.0079 (14)
C9 0.0184 (15) 0.0281 (17) 0.0325 (17) 0.0015 (12) 0.0047 (13) 0.0094 (14)
C10 0.0295 (17) 0.0324 (18) 0.0230 (16) −0.0022 (14) −0.0059 (13) 0.0115 (14)
C11 0.0401 (19) 0.0314 (18) 0.0177 (15) 0.0002 (14) 0.0036 (14) 0.0069 (13)
C12 0.0256 (16) 0.0237 (16) 0.0271 (16) −0.0027 (12) 0.0036 (13) 0.0078 (13)
C13 0.0350 (18) 0.0225 (16) 0.0221 (15) 0.0021 (13) 0.0018 (14) 0.0042 (13)
C14 0.0293 (18) 0.051 (2) 0.0314 (19) 0.0023 (17) −0.0002 (15) 0.0072 (17)

[2-({[2-(Piperazin-1-yl-κ2N1,N4)ethyl]imino-κN}methyl)benzenethiolato-κS]nickel(II) hexafluorophosphate dichloromethane monosolvate (2) . Geometric parameters (Å, º)

Ni1—N1 1.843 (2) C3—C4 1.391 (5)
Ni1—N3 1.917 (3) C3—H3 0.94 (3)
Ni1—N2 1.924 (2) C4—C5 1.369 (4)
Ni1—S1 2.1316 (10) C4—H4 1.01 (3)
Cl1—C14 1.773 (4) C5—C6 1.408 (4)
Cl2—C14 1.755 (4) C5—H5 0.95 (3)
S1—C1 1.745 (3) C6—C7 1.438 (4)
P1—F3 1.561 (2) C7—H7 0.93 (3)
P1—F1 1.562 (2) C8—C9 1.517 (4)
P1—F2 1.578 (2) C8—H8A 0.98 (3)
P1—F4 1.581 (2) C8—H8B 0.99 (3)
P1—F5 1.592 (2) C9—H9A 1.01 (3)
P1—F6 1.6064 (19) C9—H9B 0.95 (3)
N1—C7 1.285 (3) C10—C11 1.528 (5)
N1—C8 1.485 (3) C10—H10A 0.96 (3)
N2—C9 1.476 (4) C10—H10B 0.96 (3)
N2—C12 1.489 (4) C11—H11A 0.94 (3)
N2—C10 1.499 (4) C11—H11B 0.98 (3)
N3—C11 1.482 (4) C12—C13 1.535 (4)
N3—C13 1.490 (4) C12—H12A 0.98 (3)
N3—H3N 0.80 (3) C12—H12B 0.98 (3)
C1—C2 1.409 (4) C13—H13A 0.97 (3)
C1—C6 1.417 (4) C13—H13B 0.93 (3)
C2—C3 1.371 (4) C14—H14A 0.96 (4)
C2—H2 0.96 (3) C14—H14B 0.97 (4)
N1—Ni1—N3 162.95 (10) C4—C5—H5 120.6 (18)
N1—Ni1—N2 87.80 (10) C6—C5—H5 117.3 (18)
N3—Ni1—N2 76.05 (10) C5—C6—C1 119.0 (3)
N1—Ni1—S1 98.90 (7) C5—C6—C7 116.6 (3)
N3—Ni1—S1 97.67 (8) C1—C6—C7 124.4 (3)
N2—Ni1—S1 171.77 (7) N1—C7—C6 127.1 (3)
C1—S1—Ni1 107.93 (9) N1—C7—H7 119.2 (18)
F3—P1—F1 178.42 (16) C6—C7—H7 113.7 (18)
F3—P1—F2 89.42 (17) N1—C8—C9 107.1 (2)
F1—P1—F2 89.56 (17) N1—C8—H8A 105.7 (16)
F3—P1—F4 91.08 (18) C9—C8—H8A 110.2 (18)
F1—P1—F4 89.91 (18) N1—C8—H8B 109.8 (16)
F2—P1—F4 178.47 (14) C9—C8—H8B 110.4 (17)
F3—P1—F5 90.76 (14) H8A—C8—H8B 113 (2)
F1—P1—F5 90.47 (13) N2—C9—C8 106.7 (2)
F2—P1—F5 91.00 (13) N2—C9—H9A 112.5 (16)
F4—P1—F5 90.44 (13) C8—C9—H9A 110.4 (17)
F3—P1—F6 89.75 (13) N2—C9—H9B 107.6 (17)
F1—P1—F6 89.03 (12) C8—C9—H9B 112.4 (18)
F2—P1—F6 89.73 (12) H9A—C9—H9B 107 (2)
F4—P1—F6 88.82 (12) N2—C10—C11 106.3 (2)
F5—P1—F6 179.11 (11) N2—C10—H10A 106.5 (16)
C7—N1—C8 118.7 (2) C11—C10—H10A 112.9 (16)
C7—N1—Ni1 131.57 (19) N2—C10—H10B 111.7 (18)
C8—N1—Ni1 109.78 (18) C11—C10—H10B 112.7 (17)
C9—N2—C12 114.7 (2) H10A—C10—H10B 107 (2)
C9—N2—C10 115.9 (2) N3—C11—C10 106.3 (2)
C12—N2—C10 108.4 (2) N3—C11—H11A 109.2 (16)
C9—N2—Ni1 110.28 (17) C10—C11—H11A 111.3 (16)
C12—N2—Ni1 103.48 (17) N3—C11—H11B 107.8 (19)
C10—N2—Ni1 102.70 (17) C10—C11—H11B 114.8 (17)
C11—N3—C13 109.2 (2) H11A—C11—H11B 107 (2)
C11—N3—Ni1 102.14 (19) N2—C12—C13 106.3 (2)
C13—N3—Ni1 104.61 (18) N2—C12—H12A 114.1 (17)
C11—N3—H3N 111 (2) C13—C12—H12A 111.2 (16)
C13—N3—H3N 110 (2) N2—C12—H12B 111.3 (18)
Ni1—N3—H3N 119 (2) C13—C12—H12B 112.4 (17)
C2—C1—C6 117.5 (3) H12A—C12—H12B 102 (2)
C2—C1—S1 116.8 (2) N3—C13—C12 106.1 (3)
C6—C1—S1 125.6 (2) N3—C13—H13A 111.2 (17)
C3—C2—C1 121.9 (3) C12—C13—H13A 110.8 (16)
C3—C2—H2 121.7 (18) N3—C13—H13B 111.6 (17)
C1—C2—H2 116.2 (18) C12—C13—H13B 112.1 (17)
C2—C3—C4 120.4 (3) H13A—C13—H13B 105 (2)
C2—C3—H3 120.1 (17) Cl2—C14—Cl1 112.25 (19)
C4—C3—H3 119.5 (17) Cl2—C14—H14A 106 (2)
C5—C4—C3 119.1 (3) Cl1—C14—H14A 106 (2)
C5—C4—H4 119.4 (17) Cl2—C14—H14B 108 (2)
C3—C4—H4 121.5 (17) Cl1—C14—H14B 107 (2)
C4—C5—C6 121.9 (3) H14A—C14—H14B 117 (3)
N3—Ni1—N1—C7 −178.7 (3) C5—C6—C7—N1 170.2 (3)
N2—Ni1—N1—C7 −160.0 (3) C1—C6—C7—N1 −8.5 (5)
S1—Ni1—N1—C7 15.1 (3) C7—N1—C8—C9 138.9 (3)
N3—Ni1—N1—C8 1.5 (5) Ni1—N1—C8—C9 −41.2 (3)
N2—Ni1—N1—C8 20.09 (19) C12—N2—C9—C8 −146.0 (2)
S1—Ni1—N1—C8 −164.72 (18) C10—N2—C9—C8 86.4 (3)
Ni1—S1—C1—C2 −162.6 (2) Ni1—N2—C9—C8 −29.6 (3)
Ni1—S1—C1—C6 19.5 (3) N1—C8—C9—N2 45.1 (3)
C6—C1—C2—C3 1.1 (4) C9—N2—C10—C11 −161.6 (2)
S1—C1—C2—C3 −177.0 (2) C12—N2—C10—C11 67.7 (3)
C1—C2—C3—C4 0.1 (5) Ni1—N2—C10—C11 −41.3 (3)
C2—C3—C4—C5 −1.3 (5) C13—N3—C11—C10 −64.2 (3)
C3—C4—C5—C6 1.1 (5) Ni1—N3—C11—C10 46.2 (3)
C4—C5—C6—C1 0.1 (5) N2—C10—C11—N3 −2.9 (3)
C4—C5—C6—C7 −178.7 (3) C9—N2—C12—C13 164.6 (2)
C2—C1—C6—C5 −1.2 (4) C10—N2—C12—C13 −64.2 (3)
S1—C1—C6—C5 176.7 (2) Ni1—N2—C12—C13 44.4 (3)
C2—C1—C6—C7 177.5 (3) C11—N3—C13—C12 67.6 (3)
S1—C1—C6—C7 −4.7 (4) Ni1—N3—C13—C12 −41.1 (3)
C8—N1—C7—C6 179.4 (3) N2—C12—C13—N3 −2.2 (3)
Ni1—N1—C7—C6 −0.4 (5)

[2-({[2-(Piperazin-1-yl-κ2N1,N4)ethyl]imino-κN}methyl)benzenethiolato-κS]nickel(II) hexafluorophosphate dichloromethane monosolvate (2) . Hydrogen-bond geometry (Å, º)

Cg6 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N3—H3N···F6i 0.80 (3) 2.50 (3) 3.114 (3) 135 (3)
C10—H10A···C4ii 0.96 (3) 2.85 (3) 0.0000 (5) 147 (2)
C8—H8A···Cg6ii 0.98 (3) 2.84 (3) 3.778 (4) 160 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1.

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bouwman, E., Henderson, R. K., Reedijk, J., Veldman, N. & Spek, A. L. (1999). Inorg. Chim. Acta, 287, 105–108.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Feldscher, B., Theil, H., Stammler, A., Bögge, H. & Glaser, T. (2014). Dalton Trans. 43, 4102–4114. [DOI] [PubMed]
  5. Goswami, N. & Eichhorn, D. M. (1999). Inorg. Chem. 38, 4329–4333.
  6. Han, Z., McNamara, W. R., Eum, M.-S., Holland, P. L. & Eisenberg, R. (2012). Angew. Chem. Int. Ed. 51, 1667–1670. [DOI] [PubMed]
  7. Helm, M. L., Stewart, M. P., Bullock, M., DuBois, M. R. & DuBois, D. L. (2011). Science, 333, 863–866. [DOI] [PubMed]
  8. Inoue, S., Yan, Y.-N., Yamanishi, K., Kataoka, Y. & Kawamoto, T. (2020). Chem. Commun. 56, 2829–2832. [DOI] [PubMed]
  9. Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. (2014). Chem. Rev. 114, 4081–4148. [DOI] [PubMed]
  10. Luo, G.-G., Wang, Y.-H., Wang, J.-H., Wu, J.-H. & Wu, R. (2017). Chem. Commun. 53, 7007–7010. [DOI] [PubMed]
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  12. Martin, D. J., McCarthy, B. D., Donley, C. L. & Dempsey, J. L. (2015). Chem. Commun. 51, 5290–5293. [DOI] [PubMed]
  13. Mukhopadhyay, S., Mandal, D., Ghosh, D., Goldberg, I. & Chaudhury, M. (2003). Inorg. Chem. 42, 8439–8445. [DOI] [PubMed]
  14. Rigaku (1998). REQAB, Rigaku Corporation, Tokyo, Japan.
  15. Rigaku (2008). CrystalClear, Rigaku Corporation, Tokyo, Japan.
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Stewart, M. P., Ho, M.-H., Wiese, S., Lindstrom, M. L., Thogerson, C. E., Raugei, S., Bullock, R. M. & Helm, M. L. (2013). J. Am. Chem. Soc. 135, 6033–6046. [DOI] [PubMed]
  18. Yamamura, T., Tadokoro, M., Tanaka, K. & Kuroda, R. (1993). Bull. Chem. Soc. Jpn, 66, 1984–1990.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989022003954/dj2045sup1.cif

e-78-00500-sup1.cif (691.6KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989022003954/dj20451sup2.hkl

e-78-00500-1sup2.hkl (250KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989022003954/dj20452sup3.hkl

e-78-00500-2sup3.hkl (349.8KB, hkl)

CCDC references: 2165891, 2165890

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES