Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Apr 12;78(Pt 5):496–499. doi: 10.1107/S2056989022003784

4-[(Benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide hemihydrate: X-ray diffraction study and Hirshfeld surface analysis

Vitalii V Rudiuk a,b, Anna M Shaposhnik c, Vyacheslav M Baumer c, Igor A Levandovskiy b, Svitlana V Shishkina c,d,*
PMCID: PMC9069518  PMID: 35547795

The ability of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide salt to form hydrates was studied. Hirshfeld surfaces analysis was performed for identification of inter­molecular inter­actions.

Keywords: 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide, mol­ecular structure, crystal structure, Hirshfeld surface analysis

Abstract

The hemihydrate of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide, C14H15N2O+·Br·0.5H2O, was studied by single-crystal and powder X-ray diffraction methods. In the asymmetric unit, two organic cations of similar conformation, two bromide anions and one water mol­ecule are present. In the crystal, N—H⋯Br hydrogen bonds link the cations and anions. The formation of a set of inter­molecular C—H⋯Br and C—H⋯π inter­actions result in double chains extending parallel to [011]. A Hirshfeld surface analysis showed high contributions of H⋯H and C⋯H/H⋯C short contacts to the total Hirshfeld surfaces of the cations.

1. Chemical context

The 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium cation (Am+) has been shown to possess anti­viral activity (Buhtiarova et al., 2003; Frolov et al., 2004; Boltz et al., 2018; te Velthuis et al., 2021). Being charged due to quartenization of the pyridine N atom, this type of cation is more stable than its protonated analogue formed by H-atom transition in the form of an acid–base pair. Halogenide anions can be used as simple counter-ions of the organic cation. In fact, the iodide salt of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium (AmI) is known as a multimodal anti­viral drug and has been studied by single-crystal X-ray diffraction, powder diffraction, IR spectroscopy, and DSC methods (Drebushchak et al., 2017). The search for polymorphic modifications, hydrates or solvates is of great importance for the pharmaceutical industry to improve the quality of a drug and to protect intellectual property. However, polymorphic screening performed for the AmI salt did not reveal any other crystalline form. 1.

The 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bro­mide (AmBr) salt is the closest analogue of AmI. Polymorphic screening for this salt resulted in the crystallization of a hemihydrate. In this communication we present the mol­ecular and crystal structures of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium bromide hemihydrate, (C14H15N2O)+Br·0.5H2O.

2. Structural commentary

The asymmetric unit contains two mol­ecules of the cation (denoted A and B), two bromide anions (A and B) and one water mol­ecule (Fig. 1). The positive charge of the cation is located at the quaternized nitro­gen atom of the pyridine ring. The carbamide group is slightly non-coplanar with the plane of the aromatic ring, as shown by the N2—C7—C4—C3 torsion angles given in Table 1. The non-planarity is caused by steric repulsion between the two constituents as revealed by the amideH2⋯H3pyridine and amideH2⋯C3pyridine short contacts (Table 1) as compared to the van der Waals radii sums (Zefirov, 1997) of 2.34 and 2.87 Å, respectively. The cations A and B have similar conformations of the benzyl substituent (Fig. 2). The phenyl fragment of the benzyl substituent is located in an −ac position in relation to the C7—N2 bond and is twisted in relation to the carbamide fragment in both cations A and B, as seen in the C7—N2—C8—C9 and N2—C8—C9—C10 torsion angles (Table 1).

Figure 1.

Figure 1

Mol­ecular structure of the title compound, AmBr hemihydrate. Displacement ellipsoids are shown at the 50% probability level. C—H⋯Br and N—H⋯Br hydrogen bonds are indicated by dotted lines.

Table 1. Some geometrical characteristics (Å, °) of cations A and B in AmBr hemihydrate.

Parameter Cation A Cation B
N1—C2 1.343 (6) 1.323 (7)
N1—C6 1.330 (7) 1.329 (7)
N2—C7—C4—C3 17.1 (7) −1.4 (9)
C7—N2—C8—C9 −102.6 (6) −107.0 (6)
N2—C8—C9—C10 −168.9 (5) −167.4 (5)
H2⋯H3 2.11 2.04
H2⋯C3 2.59 2.54

Figure 2.

Figure 2

Mol­ecular overlay plot of cations A and B.

3. Supra­molecular features

In the crystal, cations A and B inter­act with the bromide anions by N—H⋯Br hydrogen bonds. In addition, a set of C—H⋯Br and C—H⋯π inter­actions are found in the crystal structure (Table 2). The solvent water mol­ecule forms one C—H⋯O hydrogen bond as a proton acceptor and O—H⋯Br and O—H⋯O hydrogen bonds as a proton donor (Table 2). All these hydrogen-bonding inter­actions result in the formation of double chains extending parallel to [011] (Fig. 3).

Table 2. Hydrogen-bond geometry (Å, °).

CgA and CgB are the centroids of the C9A–C14A and C9B–C14B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯Br1A 0.86 2.53 3.339 (5) 158
C3A—H3A⋯Br1A 0.93 2.98 3.814 (5) 150
C2A—H2AA⋯Br1A i 0.93 2.84 3.725 (6) 159
C1A—H1AA⋯Br1A i 0.96 2.88 3.784 (6) 157
C6A—H6ACgB ii 0.93 2.65 3.510 (7) 154
N2B—H2B⋯Br1B 0.86 2.60 3.419 (5) 159
C3B—H3B⋯Br1B 0.93 2.83 3.753 (5) 175
C6B—H6BCgA iii 0.93 2.71 3.400 (7) 132
O1W—H1WA⋯Br1B iv 0.85 3.03 3.473 (7) 115
C1A—H1AC⋯O1W v 0.96 2.89 3.794 (10) 157

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Figure 3.

Figure 3

Crystal packing of AmBr hemihydrate in a view along [100]. Hydrogen-bonding inter­actions are shown by dashed lines.

4. Hirshfeld surface analysis

Inter­molecular inter­actions were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots by using CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces were calculated separately for cations A and B using a standard high surface resolution, mapped over d norm (Fig. 4). The red spots corresponding to contacts that are shorter than the van der Waals radii sum of the closest atoms are observed at the hydrogen atom of the amino group and at some phenyl and methyl hydrogen atoms. The two-dimensional fingerprint plots showed the absence of strong hydrogen bonds in the structure under study. To compare inter­molecular inter­actions of different types in a more qu­anti­tative way, their contributions to the total Hirshfeld surfaces were analysed (Fig. 5). The main contribution is provided by H⋯H short contacts (Fig. 5 g,h). The contribution of C⋯H/H⋯C short contacts is also significant (Fig. 5 i,j). The Br⋯H/H⋯Br and O⋯H/H⋯O inter­actions contribute to the total Hirshfeld surface in the same way (Fig. 5 c,d and 5e,f).

Figure 4.

Figure 4

Hirshfeld surfaces mapped over d norm for cations A (left) and B (right) in the crystal structure of AmBr hemihydrate.

Figure 5.

Figure 5

Contributions of inter­actions of different types to the total Hirshfeld surface of cations A and B in the crystal structure of AmBr hemihydrate.

5. Database survey

A search of the Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al., 2016) revealed the structure of the anhydrous AmI salt with an equimolar cation:iodine ratio (refcode BEBFIA; Drebushchak et al., 2017). A comparison of the mol­ecular conformation of the cation showed its flexibility due to rotation about the N—Csp 3 and Csp 3—Car­yl bonds.

6. Powder diffraction characterization

An X-ray powder diffraction pattern of the title compound was registered using a Siemens D500 powder diffractometer (Cu Kα radiation, Bragg–Brentano geometry, curved graphite monochromator on the counter arm, 4 < 2θ < 60°, D2θ = 0.02°). A Rietveld refinement (Fig. 6) on the basis of the obtained pattern was carried out with FullProf and WinPLOTR (Rodriguez-Carvajal & Roisnel, 1998) using data of an external standard (NIST SRM1976) for the calculation of the instrumental profile function and the single-crystal data as the structure model for refinement. The main results of the Rietveld refinement are shown in Table 3. On the basis of the Rietveld refinement, the experimental powder X-ray diffraction pattern coincides with the theoretical one calculated from the X-ray single crystal study.

Figure 6.

Figure 6

Final Rietveld plots for the title compound. Observed data points are indicated by red circles, the best-fit profile (black upper trace) and the difference pattern (blue lower trace) are shown as solid lines. The vertical green bars correspond to the Bragg reflections.

Table 3. Experimental data of the X-ray powder diffraction study performed at 293 K.

Crystal system, space group Triclinic, P Inline graphic
a (Å) 5.8858 (2)
b (Å) 14.7604 (3)
c (Å) 17.8118 (4)
α (°) 65.819 (1)
β (°) 85.321 (2)
γ (°) 85.402 (1)
V3) 1405.09 (6)
D x (Mg m−3) 1.499
Refinement  
R p 0.0359
R wp 0.0522
R exp  0.0120
R B 0.0371
R F 0.0171

7. Synthesis and crystallization

4-[(Benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide (57.7 g, 0.163 mol), silver bromide (33.77 g, 0.180 mol) and 700 ml of water were loaded into a glass flask. The mixture was stirred for 72 h, and the resulting precipitate was filtered off. The solvent was evaporated under reduced pressure. To the precipitate were added 300 ml of aceto­nitrile and refluxed for 2 h. The reaction then was spontaneously cooled to a temperature of 303 K and the precipitate filtered off and rinsed on the filter with 50 ml of cooled aceto­nitrile. The product was dried at 313 K for 12 h. Yield: 14 g of 4-[(benz­yl­amino)­carbon­yl]-1-methyl­pyridinium bromide (28%); colourless crystals.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All of the hydrogen atoms were placed in calculated positions and treated as riding with C—H = 0.96 Å, U iso(H) = 1.5U eq for methyl groups and with Car—H = 0.93 Å, C sp 2—H = 0.97 Å, U iso(H) = 1.2U eq for all other hydrogen atoms.

Table 4. Experimental details.

Crystal data
Chemical formula C14H15N2O+·Br·0.5H2O
M r 316.19
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 5.8891 (4), 14.7565 (10), 17.8090 (11)
α, β, γ (°) 65.773 (6), 85.396 (6), 85.544 (6)
V3) 1405.08 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.92
Crystal size (mm) 0.30 × 0.15 × 0.10
 
Data collection
Diffractometer Xcalibur, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.634, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14465, 4925, 3547
R int 0.075
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.060, 0.175, 1.06
No. of reflections 4925
No. of parameters 339
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.45

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), Mercury (Macrae et al., 2020), OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022003784/wm5623sup1.cif

e-78-00496-sup1.cif (639.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022003784/wm5623Isup2.hkl

e-78-00496-Isup2.hkl (387.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022003784/wm5623Isup3.cml

CCDC reference: 2164796

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Farmak JSC for support.

supplementary crystallographic information

Crystal data

C14H15N2O+·Br·0.5H2O Z = 4
Mr = 316.19 F(000) = 644
Triclinic, P1 Dx = 1.495 Mg m3
a = 5.8891 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 14.7565 (10) Å Cell parameters from 4991 reflections
c = 17.8090 (11) Å θ = 3.6–25.4°
α = 65.773 (6)° µ = 2.92 mm1
β = 85.396 (6)° T = 293 K
γ = 85.544 (6)° Plate, colorless
V = 1405.08 (17) Å3 0.30 × 0.15 × 0.10 mm

Data collection

Xcalibur, Atlas diffractometer 4925 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3547 reflections with I > 2σ(I)
Detector resolution: 10.3779 pixels mm-1 Rint = 0.075
ω scans θmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −6→6
Tmin = 0.634, Tmax = 1.000 k = −16→17
14465 measured reflections l = −21→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060 H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.8154P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
4925 reflections Δρmax = 1.12 e Å3
339 parameters Δρmin = −0.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1A 0.68503 (10) 1.06475 (4) 0.84634 (4) 0.0614 (2)
Br1B 0.37067 (11) 0.44764 (5) 0.67323 (4) 0.0621 (2)
O1A 0.3136 (7) 0.6956 (3) 0.9887 (2) 0.0611 (11)
N1A 0.9794 (7) 0.7007 (3) 1.1351 (2) 0.0438 (10)
N1B 0.6285 (7) 0.7967 (3) 0.3685 (3) 0.0496 (11)
N2A 0.3986 (7) 0.8566 (3) 0.9181 (3) 0.0493 (11)
H2A 0.486736 0.902420 0.913909 0.059*
O1B −0.0865 (8) 0.8195 (3) 0.5244 (3) 0.0766 (14)
N2B 0.0287 (8) 0.6602 (4) 0.5982 (3) 0.0518 (11)
H2B 0.133971 0.614443 0.603968 0.062*
C9B −0.1252 (8) 0.6264 (4) 0.7400 (3) 0.0413 (12)
C9A 0.2998 (8) 0.8874 (4) 0.7765 (3) 0.0432 (12)
C2A 0.9195 (9) 0.7968 (4) 1.0910 (3) 0.0473 (13)
H2AA 0.996826 0.846374 1.096125 0.057*
C10B −0.2902 (9) 0.5848 (4) 0.8037 (3) 0.0505 (14)
H10B −0.423087 0.563252 0.792737 0.061*
C4A 0.6308 (8) 0.7478 (4) 1.0305 (3) 0.0406 (12)
C6A 0.8719 (9) 0.6286 (4) 1.1285 (3) 0.0440 (12)
H6A 0.915307 0.562491 1.159801 0.053*
C7A 0.4317 (8) 0.7654 (4) 0.9765 (3) 0.0431 (12)
C14A 0.5157 (9) 0.8564 (4) 0.7586 (3) 0.0484 (13)
H14A 0.618478 0.829285 0.800112 0.058*
C3A 0.7436 (9) 0.8223 (4) 1.0381 (3) 0.0471 (13)
H3A 0.701404 0.888839 1.007835 0.057*
C8A 0.2168 (9) 0.8807 (4) 0.8609 (3) 0.0516 (14)
H8AA 0.141562 0.943815 0.855334 0.062*
H8AB 0.104777 0.830227 0.883854 0.062*
C4B 0.2677 (9) 0.7633 (4) 0.4813 (3) 0.0435 (12)
C6B 0.4700 (10) 0.8688 (4) 0.3605 (4) 0.0576 (15)
H6B 0.481705 0.930081 0.315903 0.069*
C13A 0.5825 (10) 0.8647 (4) 0.6799 (4) 0.0572 (15)
H13A 0.730428 0.845033 0.668565 0.069*
C5A 0.6988 (9) 0.6501 (4) 1.0763 (3) 0.0456 (12)
H5A 0.626632 0.598873 1.071699 0.055*
C8B −0.1697 (9) 0.6367 (4) 0.6549 (3) 0.0517 (14)
H8BA −0.226852 0.574898 0.658879 0.062*
H8BB −0.287947 0.688592 0.632632 0.062*
C14B 0.0695 (9) 0.6561 (4) 0.7590 (3) 0.0495 (13)
H14B 0.182173 0.683315 0.717605 0.059*
C10A 0.1499 (9) 0.9266 (4) 0.7139 (3) 0.0509 (14)
H10A 0.003602 0.948655 0.724536 0.061*
C13B 0.1036 (10) 0.6469 (4) 0.8380 (3) 0.0560 (14)
H13B 0.236700 0.667865 0.849318 0.067*
C11B −0.2587 (10) 0.5752 (5) 0.8820 (4) 0.0600 (16)
H11B −0.370718 0.547599 0.923613 0.072*
C1A 1.1677 (9) 0.6740 (5) 1.1928 (3) 0.0537 (15)
H1AA 1.250770 0.732005 1.181669 0.080*
H1AB 1.268614 0.623796 1.185187 0.080*
H1AC 1.104851 0.649076 1.248552 0.080*
C12B −0.0633 (10) 0.6060 (5) 0.8998 (4) 0.0591 (15)
H12B −0.043285 0.599418 0.953119 0.071*
C7B 0.0549 (9) 0.7494 (4) 0.5377 (3) 0.0490 (13)
C2B 0.6158 (10) 0.7092 (4) 0.4317 (3) 0.0575 (15)
H2BA 0.729127 0.659726 0.436849 0.069*
C12A 0.4310 (11) 0.9020 (5) 0.6185 (4) 0.0653 (17)
H12A 0.473938 0.905876 0.565843 0.078*
C3B 0.4378 (10) 0.6904 (4) 0.4896 (3) 0.0540 (14)
H3B 0.431425 0.628916 0.534200 0.065*
C5B 0.2912 (10) 0.8543 (4) 0.4166 (3) 0.0560 (15)
H5B 0.184373 0.906179 0.411098 0.067*
C11A 0.2154 (11) 0.9334 (5) 0.6356 (4) 0.0658 (17)
H11A 0.112389 0.959471 0.594095 0.079*
C1B 0.8149 (11) 0.8123 (5) 0.3041 (4) 0.0697 (18)
H1BA 0.752677 0.819184 0.253735 0.105*
H1BB 0.922527 0.756296 0.321780 0.105*
H1BC 0.890242 0.871600 0.295088 0.105*
O1W 0.1099 (12) 0.5752 (7) 0.4262 (5) 0.132 (3)
H1WA 0.222090 0.534776 0.446576 0.198*
H1WB 0.054401 0.561287 0.389761 0.198*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.0648 (4) 0.0476 (4) 0.0676 (4) −0.0142 (3) −0.0086 (3) −0.0165 (3)
Br1B 0.0719 (4) 0.0510 (4) 0.0559 (4) −0.0091 (3) −0.0022 (3) −0.0133 (3)
O1A 0.068 (3) 0.049 (2) 0.061 (2) −0.0199 (19) −0.0167 (19) −0.0110 (19)
N1A 0.050 (2) 0.047 (3) 0.033 (2) −0.0052 (19) −0.0020 (17) −0.015 (2)
N1B 0.056 (3) 0.052 (3) 0.041 (2) −0.016 (2) 0.0023 (19) −0.018 (2)
N2A 0.054 (3) 0.045 (3) 0.045 (2) −0.0116 (19) −0.0074 (19) −0.011 (2)
O1B 0.069 (3) 0.059 (3) 0.075 (3) 0.002 (2) 0.018 (2) −0.005 (2)
N2B 0.058 (3) 0.052 (3) 0.040 (2) −0.003 (2) 0.0033 (19) −0.015 (2)
C9B 0.044 (3) 0.038 (3) 0.039 (3) −0.007 (2) −0.002 (2) −0.011 (2)
C9A 0.046 (3) 0.033 (3) 0.046 (3) −0.007 (2) −0.008 (2) −0.009 (2)
C2A 0.062 (3) 0.036 (3) 0.043 (3) −0.008 (2) −0.009 (2) −0.012 (2)
C10B 0.043 (3) 0.054 (4) 0.053 (3) −0.015 (2) 0.007 (2) −0.020 (3)
C4A 0.049 (3) 0.041 (3) 0.032 (3) −0.007 (2) 0.001 (2) −0.015 (2)
C6A 0.053 (3) 0.033 (3) 0.039 (3) −0.003 (2) −0.004 (2) −0.008 (2)
C7A 0.049 (3) 0.045 (3) 0.036 (3) −0.009 (2) 0.002 (2) −0.016 (2)
C14A 0.048 (3) 0.041 (3) 0.052 (3) −0.002 (2) −0.011 (2) −0.013 (2)
C3A 0.057 (3) 0.034 (3) 0.048 (3) −0.006 (2) −0.007 (2) −0.013 (2)
C8A 0.045 (3) 0.051 (4) 0.052 (3) 0.001 (2) −0.011 (2) −0.013 (3)
C4B 0.054 (3) 0.043 (3) 0.033 (3) −0.005 (2) −0.005 (2) −0.015 (2)
C6B 0.064 (4) 0.040 (3) 0.054 (3) −0.007 (3) 0.003 (3) −0.005 (3)
C13A 0.058 (3) 0.051 (4) 0.062 (4) 0.000 (3) −0.004 (3) −0.023 (3)
C5A 0.057 (3) 0.037 (3) 0.043 (3) −0.012 (2) 0.003 (2) −0.016 (2)
C8B 0.058 (3) 0.049 (3) 0.043 (3) −0.009 (2) 0.000 (2) −0.012 (3)
C14B 0.050 (3) 0.043 (3) 0.048 (3) −0.010 (2) 0.005 (2) −0.012 (3)
C10A 0.043 (3) 0.050 (3) 0.052 (3) −0.001 (2) −0.013 (2) −0.011 (3)
C13B 0.060 (3) 0.058 (4) 0.055 (4) −0.009 (3) −0.007 (3) −0.025 (3)
C11B 0.064 (4) 0.063 (4) 0.050 (3) −0.019 (3) 0.018 (3) −0.021 (3)
C1A 0.047 (3) 0.060 (4) 0.049 (3) 0.000 (3) −0.014 (2) −0.016 (3)
C12B 0.072 (4) 0.062 (4) 0.046 (3) −0.004 (3) −0.002 (3) −0.025 (3)
C7B 0.051 (3) 0.051 (4) 0.039 (3) −0.001 (3) −0.003 (2) −0.013 (3)
C2B 0.065 (4) 0.045 (4) 0.056 (4) 0.000 (3) 0.002 (3) −0.015 (3)
C12A 0.079 (4) 0.061 (4) 0.061 (4) −0.012 (3) 0.000 (3) −0.029 (3)
C3B 0.063 (3) 0.045 (3) 0.042 (3) −0.003 (3) 0.004 (2) −0.007 (3)
C5B 0.058 (3) 0.045 (3) 0.054 (3) 0.001 (3) 0.004 (3) −0.011 (3)
C11A 0.068 (4) 0.063 (4) 0.062 (4) 0.002 (3) −0.022 (3) −0.019 (3)
C1B 0.067 (4) 0.072 (5) 0.062 (4) −0.012 (3) 0.019 (3) −0.021 (3)
O1W 0.103 (5) 0.189 (8) 0.132 (6) 0.013 (5) −0.021 (4) −0.095 (6)

Geometric parameters (Å, º)

O1A—C7A 1.223 (6) C4B—C5B 1.373 (7)
N1A—C6A 1.330 (7) C4B—C3B 1.382 (7)
N1A—C2A 1.343 (6) C4B—C7B 1.514 (7)
N1A—C1A 1.491 (7) C6B—C5B 1.357 (8)
N1B—C2B 1.323 (7) C6B—H6B 0.9300
N1B—C6B 1.329 (7) C13A—C12A 1.372 (9)
N1B—C1B 1.480 (7) C13A—H13A 0.9300
N2A—C7A 1.332 (6) C5A—H5A 0.9300
N2A—C8A 1.459 (7) C8B—H8BA 0.9700
N2A—H2A 0.8600 C8B—H8BB 0.9700
O1B—C7B 1.231 (6) C14B—C13B 1.386 (8)
N2B—C7B 1.326 (7) C14B—H14B 0.9300
N2B—C8B 1.446 (7) C10A—C11A 1.382 (8)
N2B—H2B 0.8600 C10A—H10A 0.9300
C9B—C14B 1.373 (7) C13B—C12B 1.384 (8)
C9B—C10B 1.397 (7) C13B—H13B 0.9300
C9B—C8B 1.502 (7) C11B—C12B 1.375 (9)
C9A—C14A 1.376 (7) C11B—H11B 0.9300
C9A—C10A 1.381 (7) C1A—H1AA 0.9600
C9A—C8A 1.507 (8) C1A—H1AB 0.9600
C2A—C3A 1.381 (8) C1A—H1AC 0.9600
C2A—H2AA 0.9300 C12B—H12B 0.9300
C10B—C11B 1.370 (8) C2B—C3B 1.370 (8)
C10B—H10B 0.9300 C2B—H2BA 0.9300
C4A—C5A 1.379 (7) C12A—C11A 1.372 (9)
C4A—C3A 1.385 (7) C12A—H12A 0.9300
C4A—C7A 1.515 (7) C3B—H3B 0.9300
C6A—C5A 1.365 (8) C5B—H5B 0.9300
C6A—H6A 0.9300 C11A—H11A 0.9300
C14A—C13A 1.383 (8) C1B—H1BA 0.9600
C14A—H14A 0.9300 C1B—H1BB 0.9600
C3A—H3A 0.9300 C1B—H1BC 0.9600
C8A—H8AA 0.9700 O1W—H1WA 0.8506
C8A—H8AB 0.9700 O1W—H1WB 0.8502
C6A—N1A—C2A 120.9 (4) C6A—C5A—H5A 120.0
C6A—N1A—C1A 119.3 (4) C4A—C5A—H5A 120.0
C2A—N1A—C1A 119.9 (5) N2B—C8B—C9B 114.0 (5)
C2B—N1B—C6B 120.5 (5) N2B—C8B—H8BA 108.8
C2B—N1B—C1B 119.4 (5) C9B—C8B—H8BA 108.8
C6B—N1B—C1B 120.0 (5) N2B—C8B—H8BB 108.8
C7A—N2A—C8A 121.7 (5) C9B—C8B—H8BB 108.8
C7A—N2A—H2A 119.1 H8BA—C8B—H8BB 107.6
C8A—N2A—H2A 119.1 C9B—C14B—C13B 122.1 (5)
C7B—N2B—C8B 122.7 (5) C9B—C14B—H14B 119.0
C7B—N2B—H2B 118.6 C13B—C14B—H14B 119.0
C8B—N2B—H2B 118.6 C9A—C10A—C11A 120.6 (5)
C14B—C9B—C10B 117.7 (5) C9A—C10A—H10A 119.7
C14B—C9B—C8B 123.6 (4) C11A—C10A—H10A 119.7
C10B—C9B—C8B 118.7 (5) C12B—C13B—C14B 119.1 (6)
C14A—C9A—C10A 118.3 (5) C12B—C13B—H13B 120.5
C14A—C9A—C8A 123.7 (4) C14B—C13B—H13B 120.5
C10A—C9A—C8A 118.0 (5) C10B—C11B—C12B 120.7 (5)
N1A—C2A—C3A 120.4 (5) C10B—C11B—H11B 119.7
N1A—C2A—H2AA 119.8 C12B—C11B—H11B 119.7
C3A—C2A—H2AA 119.8 N1A—C1A—H1AA 109.5
C11B—C10B—C9B 120.8 (5) N1A—C1A—H1AB 109.5
C11B—C10B—H10B 119.6 H1AA—C1A—H1AB 109.5
C9B—C10B—H10B 119.6 N1A—C1A—H1AC 109.5
C5A—C4A—C3A 118.6 (5) H1AA—C1A—H1AC 109.5
C5A—C4A—C7A 116.8 (5) H1AB—C1A—H1AC 109.5
C3A—C4A—C7A 124.7 (5) C11B—C12B—C13B 119.7 (6)
N1A—C6A—C5A 120.9 (5) C11B—C12B—H12B 120.2
N1A—C6A—H6A 119.5 C13B—C12B—H12B 120.2
C5A—C6A—H6A 119.5 O1B—C7B—N2B 123.4 (5)
O1A—C7A—N2A 124.3 (5) O1B—C7B—C4B 119.2 (5)
O1A—C7A—C4A 118.4 (5) N2B—C7B—C4B 117.4 (5)
N2A—C7A—C4A 117.2 (5) N1B—C2B—C3B 120.8 (5)
C9A—C14A—C13A 121.1 (5) N1B—C2B—H2BA 119.6
C9A—C14A—H14A 119.4 C3B—C2B—H2BA 119.6
C13A—C14A—H14A 119.4 C13A—C12A—C11A 119.2 (6)
C2A—C3A—C4A 119.3 (5) C13A—C12A—H12A 120.4
C2A—C3A—H3A 120.4 C11A—C12A—H12A 120.4
C4A—C3A—H3A 120.4 C2B—C3B—C4B 119.6 (5)
N2A—C8A—C9A 113.5 (4) C2B—C3B—H3B 120.2
N2A—C8A—H8AA 108.9 C4B—C3B—H3B 120.2
C9A—C8A—H8AA 108.9 C6B—C5B—C4B 120.2 (5)
N2A—C8A—H8AB 108.9 C6B—C5B—H5B 119.9
C9A—C8A—H8AB 108.9 C4B—C5B—H5B 119.9
H8AA—C8A—H8AB 107.7 C12A—C11A—C10A 120.6 (5)
C5B—C4B—C3B 117.8 (5) C12A—C11A—H11A 119.7
C5B—C4B—C7B 117.6 (5) C10A—C11A—H11A 119.7
C3B—C4B—C7B 124.6 (5) N1B—C1B—H1BA 109.5
N1B—C6B—C5B 121.0 (5) N1B—C1B—H1BB 109.5
N1B—C6B—H6B 119.5 H1BA—C1B—H1BB 109.5
C5B—C6B—H6B 119.5 N1B—C1B—H1BC 109.5
C12A—C13A—C14A 120.2 (6) H1BA—C1B—H1BC 109.5
C12A—C13A—H13A 119.9 H1BB—C1B—H1BC 109.5
C14A—C13A—H13A 119.9 H1WA—O1W—H1WB 109.4
C6A—C5A—C4A 120.0 (5)
C6A—N1A—C2A—C3A 0.3 (8) C14B—C9B—C8B—N2B 12.8 (8)
C1A—N1A—C2A—C3A −179.3 (5) C10B—C9B—C8B—N2B −167.4 (5)
C14B—C9B—C10B—C11B 0.7 (8) C10B—C9B—C14B—C13B −0.7 (8)
C8B—C9B—C10B—C11B −179.0 (6) C8B—C9B—C14B—C13B 179.0 (5)
C2A—N1A—C6A—C5A 0.4 (8) C14A—C9A—C10A—C11A 0.6 (8)
C1A—N1A—C6A—C5A −180.0 (5) C8A—C9A—C10A—C11A −179.1 (6)
C8A—N2A—C7A—O1A −1.5 (8) C9B—C14B—C13B—C12B 0.3 (9)
C8A—N2A—C7A—C4A 177.9 (5) C9B—C10B—C11B—C12B −0.3 (10)
C5A—C4A—C7A—O1A 15.0 (7) C10B—C11B—C12B—C13B −0.1 (10)
C3A—C4A—C7A—O1A −163.5 (5) C14B—C13B—C12B—C11B 0.1 (9)
C5A—C4A—C7A—N2A −164.4 (5) C8B—N2B—C7B—O1B −0.2 (9)
C3A—C4A—C7A—N2A 17.1 (7) C8B—N2B—C7B—C4B −178.4 (5)
C10A—C9A—C14A—C13A 0.5 (8) C5B—C4B—C7B—O1B −0.9 (8)
C8A—C9A—C14A—C13A −179.8 (6) C3B—C4B—C7B—O1B −179.7 (6)
N1A—C2A—C3A—C4A −0.5 (8) C5B—C4B—C7B—N2B 177.4 (5)
C5A—C4A—C3A—C2A −0.1 (8) C3B—C4B—C7B—N2B −1.4 (9)
C7A—C4A—C3A—C2A 178.4 (5) C6B—N1B—C2B—C3B 0.9 (9)
C7A—N2A—C8A—C9A −102.6 (6) C1B—N1B—C2B—C3B −176.0 (6)
C14A—C9A—C8A—N2A 11.4 (8) C14A—C13A—C12A—C11A 1.9 (10)
C10A—C9A—C8A—N2A −168.9 (5) N1B—C2B—C3B—C4B 0.9 (10)
C2B—N1B—C6B—C5B −0.3 (9) C5B—C4B—C3B—C2B −3.1 (9)
C1B—N1B—C6B—C5B 176.6 (6) C7B—C4B—C3B—C2B 175.6 (6)
C9A—C14A—C13A—C12A −1.8 (9) N1B—C6B—C5B—C4B −2.0 (10)
N1A—C6A—C5A—C4A −1.0 (8) C3B—C4B—C5B—C6B 3.7 (9)
C3A—C4A—C5A—C6A 0.8 (8) C7B—C4B—C5B—C6B −175.1 (6)
C7A—C4A—C5A—C6A −177.8 (5) C13A—C12A—C11A—C10A −0.8 (10)
C7B—N2B—C8B—C9B −107.0 (6) C9A—C10A—C11A—C12A −0.5 (10)

Hydrogen-bond geometry (Å, º)

CgA and CgB are the centroids of the C9A–C14A and C9B–C14B rings, respectively.

D—H···A D—H H···A D···A D—H···A
N2A—H2A···Br1A 0.86 2.53 3.339 (5) 158
C3A—H3A···Br1A 0.93 2.98 3.814 (5) 150
C2A—H2AA···Br1Ai 0.93 2.84 3.725 (6) 159
C1A—H1AA···Br1Ai 0.96 2.88 3.784 (6) 157
C6A—H6A···CgBii 0.93 2.65 3.510 (7) 154
N2B—H2B···Br1B 0.86 2.60 3.419 (5) 159
C3B—H3B···Br1B 0.93 2.83 3.753 (5) 175
C6B—H6B···CgAiii 0.93 2.71 3.400 (7) 132
O1W—H1WA···Br1Biv 0.85 3.03 3.473 (7) 115
C1A—H1AC···O1Wv 0.96 2.89 3.794 (10) 157

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+1, −z+2; (iii) −x+1, −y+2, −z+1; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z+1.

Funding Statement

Funding for this research was provided by: National Academy of Sciences of Ukraine (grant No. 0120U102660).

References

  1. Boltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P. G. & Margitich, V. (2018). Antivir. Chem. Chemother. 26, 1–9. [DOI] [PMC free article] [PubMed]
  2. Buhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72–74.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967–970. [DOI] [PMC free article] [PubMed]
  5. Frolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69–74.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  8. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  9. Rodriguez-Carvajal, J. & Roisnel, T. (1998). International Union of Crystallography Newsletter, 20, 35–36.
  10. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  11. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  12. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://Hirshfeldsurface.net.
  13. Velthuis, A. J. W., te Zubkova, T. G., Shaw, M., Mehle, A., Boltz, D., Gmeinwieser, N., Stammer, H., Milde, J., Müller, L. & Margitich, V. (2021). Antimicrob. Agents Chemother. 65, e02605–20. [DOI] [PMC free article] [PubMed]
  14. Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022003784/wm5623sup1.cif

e-78-00496-sup1.cif (639.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022003784/wm5623Isup2.hkl

e-78-00496-Isup2.hkl (387.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022003784/wm5623Isup3.cml

CCDC reference: 2164796

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES