Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Apr 28;78(Pt 5):536–539. doi: 10.1107/S2056989022004339

Crystal structure and photoluminescent properties of a new EuIII–phthalate–acetate coordination polymer

Prakottakarn Jittipiboonwat a, Thammanoon Chuasaard a, Apinpus Rujiwatra a,b,*
PMCID: PMC9069523  PMID: 35547790

The crystal structure of a new one-dimensional [EuIII(phth)(OAc)(H2O)] coordination polymer and its room-temperature photoluminescent properties are reported.

Keywords: coordination polymer, lanthanide, phthalate, acetate, crystal structure, photoluminescence

Abstract

A new coordination polymer, poly[(acetato)aqua(μ3-phthalato)europium(III)], [Eu(C8H4O4)(CH3O2)(H2O)] n or [EuIII(phth)(OAc)(H2O)] (phth2− = phthalate and OAc = acetate) was synthesized and characterized, revealing it to be a supra­molecular assembly of one-dimensional [EuIII(phth)(OAc)(H2O)] chains. Each chain is built up of edge-sharing distorted tricapped trigonal–prismatic TPRS-{EuIIIO9} building motifs and assembled in a regular fashion through hydrogen-bonding and aromatic π–π inter­actions. The fully deprotonated phth2− ligand was shown to be an effective sensitizer, promoting the characteristic 5 D 07 FJ (J = 1–4) emissions of EuIII even in the presence of the non-sensitizing OAc group.

1. Chemical context

Inter­est in crystal engineering of lanthanide coordination polymers has been driven by the unique coordination chemistry and electronic properties of trivalent lanthanides (Ln III), which bring about a wide variety of potential applications ranging from, for instance, luminescence sensing (Hasegawa & Kitagawa, 2022), magnetism (Hu et al., 2021), catalysis (Sinchow et al., 2021), gas storage and separation (Li & Chen, 2014), to drug delivery (Wei et al., 2020) and biomolecular imaging (Miller et al., 2016). However, the high coordination numbers, flexible coordination geometries and lack of directionality of Ln—O bonds complicate prediction of the designed polymeric frameworks, which are also greatly influenced by differences in synthetic parameters, i.e. reaction temperature and time, solvent, pH of reaction, etc (Bünzli, 2014; Qiu & Zhu, 2009). The study of structure–property relationships, which is an essence of property design, is consequently limited. 1.

Unlike transition-metal-based coordination polymers in which the preferred coordination geometries of the transition-metal ions play an important role in directing the framework architecture (Kitagawa et al., 2004), those based on Ln III are principally governed by the organic ligands. Polycarb­oxy­lic acids are notably the most commonly utilized, facilitating diversity through their modes of coordination such as those found for phthalic acid (H2phth) (Fig. 1). These coordination modes can also be diversified through the presence of the other ligands such as those found in, for instance, [LnI II(bdc)0.5(phth)(H2O)2] (Ln III = EuIII, TbIII, HoIII, ErIII and TmIII, H2bdc = terephthalic acid; Chuasaard et al., 2020), [Ln III(abdc)0.5(phth)(H2O)2]·2H2O (Ln III = EuIII, GdIII and TbIII, H2abdc = azo­benzene-4,4′-di­carb­oxy­lic acid; Chuasaard et al., 2022) and [Ln III(ox)(phth)(H2O)2]·0.5H2O (Ln III = SmIII and TbIII, H2ox = oxalic acid; Wang et al., 2010).

Figure 1.

Figure 1

Coordination modes of phth2− and Hphth found in lanthanide coordination compounds deposited to the CSD (Groom et al., 2016) with frequency of appearance in parentheses.

With respect to photoluminescence, phth2− is acknowledged as a good sensitizer and can effectively promote ff emissions in, for example, [EuIII 2(phth)3(H2O)] (Wan et al., 2002). The apparent photoluminescence can, nonetheless, be modulated by the other ligands such as ad2− in [Ln III(ad)0.5(phth)(H2O)2] (Chuasaard et al., 2018) and bdc2− in [Ln III(bdc)0.5(phth)(H2O)2] (Chuasaard et al., 2020).

2. Structural commentary

The asymmetric unit of the title compound, [EuIII(phth)(OAc)(H2O)], is composed of one crystallographically unique EuIII ion, a whole mol­ecule of phth2−, and the coordinating OAc and water mol­ecules (Fig. 2). The EuIII ion is ninefold coordinated to O atoms from three phth2−, two OAc and one water mol­ecule, which define a distorted tricapped trigonal–prismatic TPRS-{EuIIIO9} building motif. The Eu—O bond distances are in the range 2.352 (2)-2.605 (2) Å (Table 1), which are consistent with those reported for other EuIII frameworks of phth2− and OAc, viz. [EuIII(abdc)0.5(phth)(H2O)2]·2H2O (Chuasaard et al., 2022), [EuIII(phth)(STP)] (NaSTP = sodium 2-(2,2′:6′,2′′-terpyridin-4′-yl)benzene­sulfonate; Hu et al., 2019) and [C2mim]2[Eu2(OAc)8] (C2mim = 1-ethyl-3-methyl­imidazolium; Bousrez et al., 2021). The TPRS-{EuIIIO9} motifs are fused through the μ 2-O atoms of phth2−, forming an infinite one-dimensional zigzag chain of edge-sharing TPRS-{EuIIIO9} motifs extending along the b-axis direction. Not only phth2−, which helps facilitating the formation of the one-dimensional chain through the overall μ31221 mode of coordination (mode i in Fig. 1), but also the smaller OAc link adjacent EuIII centers in a bridging μ211 coord­ination mode.

Figure 2.

Figure 2

Extended asymmetric unit of the title compound drawn using 50% probability for ellipsoids (hydrogen atoms are omitted for clarity). Symmetry codes: (i) Inline graphic  − x, Inline graphic  + y, Inline graphic  − z; (ii) Inline graphic  − x, − Inline graphic  + y, Inline graphic  − z.

Table 1. Selected bond lengths (Å).

Eu1—O1i 2.570 (2) Eu1—O4ii 2.605 (2)
Eu1—O1 2.397 (2) Eu1—O5 2.352 (2)
Eu1—O2i 2.474 (2) Eu1—O6i 2.434 (3)
Eu1—O3 2.381 (2) Eu1—O7 2.446 (2)
Eu1—O3ii 2.484 (2)    

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

3. Supra­molecular features

The three-dimensional supra­molecular assembly of [EuIII(phth)(OAc)(H2O)] chains are facilitated by hydrogen bonding and aromatic π–π inter­actions (Fig. 3). The hydrogen-bonding inter­actions can be divided into the inter­chain O7—H7A⋯O4 and the intra­chain O7—H7B⋯O6 and C3—H3⋯O2 inter­actions (Table 2). The π–π inter­action between neighboring chains is considered to be of the displaced-stacking type (Banerjee et al., 2019; Yao et al., 2018), with an inter­planar angle of 0°, an offset distance of ca 1.0 Å and a centroid-to-centroid distance of ca 3.6 Å.

Figure 3.

Figure 3

Depiction of (a) intra­chain and (b) inter­chain hydrogen-bonding inter­actions, and (c) π–π inter­actions.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4iii 0.85 2.17 2.9384 149
O7—H7B⋯O6iv 0.85 2.28 3.0438 150
C3—H3⋯O2 0.93 2.46 2.7741 100

Symmetry codes: (iii) Inline graphic ; (iv) Inline graphic .

4. Photoluminescent properties

The emission spectrum of ground crystals of the title compound was recorded at room temperature. Upon the excitation at 370 nm, the characteristic red emission originating from the 5 D 07 FJ (J = 1–4) transitions of EuIII were displayed (Fig. 4). This indicates the efficiency of phth2− as a good sensitizer, even in the presence of the non-sensitizing OAc. A split of the very intense 5 D 07 F 2 emission suggests that the EuIII ion is not located at a site with a center of symmetry (Binnemans, 2015), which is consistent with its distorted tricapped trigonal–prismatic coordination geometry. The split of the 5 D 07 F 4 emission, on the other hand, should be due to the ligand-field effect (Gupta et al., 2015; Okayasu & Yuasa, 2021; Puntus et al., 2010).

Figure 4.

Figure 4

Room-temperature photoluminescent emission spectrum of the title compound.

5. Database survey

A search of the CSD database (CSD version 5.43, update of November 2021; Groom et al., 2016) using the ConQuest software (version 2021.3.0; Bruno et al., 2002), found 115 structures of lanthanide compounds including phth2−. In six of these structures, phth2− adopts the same μ31221 mode of coordination as in the title compound. This mode of coordination apparently promotes the formation of a one-dimensional coordination framework, as, for example, in [Pr3(phen)2(phth)4(NO3)]·H2O (phen = 1,10-phenanthroline) (refcode: LAXWOX; Thirumurugan & Natarajan, 2005), [Nd(Nphgly)(phth)(H2O)]·2H2O (Nphgly = N-phthaloylglycine) (refcode: TOHJEH; Yang et al., 2014), and [Gd2Ni(2,5-pdc)2(phth)2(H2O)4]·8H2O (2,5-H2pdc = 2,5-pyridinedi­carb­oxy­lic acid) (refcode: XOZYER; Mahata et al., 2009).

Regarding OAc, there are 566 structures containing this deposited in the CSD, none of which also contains phth2−. There are, however, structures containing both OAc and isophthalate (iso-phth2−), e.g. [Sm2(iso-phth)2(OAc)2(H2O)4]·H2O (refcode: VOJNAK; Jin et al., 2008), and [Dy4(iso-phth)4(OAc)4(H2O)8]·2H2O (refcode: DIBZEU; Hu et al., 2007).

6. Synthesis and crystallization

All chemicals used in this work were obtained commercially and used without purification: Eu2O3 (Strategic Elements, 99.99%), phthalic acid (H2phth; C8H6O4, BDH laboratory, 99%), NaOH (RCI Labscan, 99.0%), glacial acetic acid (AcOH; CH3COOH, QRëC, 99.8%), tetra­hydro­furan (THF; C4H8O, RCI Labscan, 99.8%), ethanol (EtOH; C2H5OH, RCI Labscan, 99.7%). Eu(OAc)3·4H2O, was prepared by dissolving Eu2O3 (2.5000 g, 7.1038 mmol) in 50.0 mL of deionized water with a few drops of glacial acetic acid (HOAc). After the pH of the suspension was adjusted to 3 using HOAc, the mixture was gently heated and a colorless homogeneous solution was attained. The white powder of Eu(OAc)3·4H2O was then recovered through slow evaporation of the solvent.

To synthesize the title compound, Eu(OAc)3·4H2O (0.16 g, 0.40 mmol) was dissolved in 2.0 mL of deionized water to prepare solution A. Solution B was separately prepared by dissolving Na2phth (84 mg, 0.40 mmol) and NaOAc (33 mg, 0.4 mmol) in a mixed solvent prepared from 1.0 mL of deionized water and 5.0 mL of tetra­hydro­furan (THF). Solutions A and B were then mixed in a 15 mL glass vial. The volume of the reaction was adjusted to 10.0 mL using deionized water and the pH of the solution was adjusted to 4 using HOAc. The reaction was left under stirring at room temperature for 2 h, after which the solvent was slowly evaporated, leading to the crystallization of colorless block-shaped crystals of [Eu(phth)(OAc)(H2O)] (78% yield based on EuIII). The crystals were characterized using FT–IR spectroscopy (PerkinElmer/Frontier FT–IR instrument; ATR mode; cm−1): 3541(br), 3419(br), 2978(w), 1548(w), 1402(m), 1373(m), 804(s), 754(s), 707(s), 650(s), 543(m), 503(m). The room-temperature photoluminescent spectrum was collected using a ASEQ LR-1T broad-range spectrophotometer equipped with an Ultrafire G60 UV LED Flashlight Torch excitation source (5 W, 370 nm)

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically and refined isotropically using a riding model. The C—H bond lengths in the aromatic phth2− linker and in OAc were restrained to 0.93 Å [U iso(H) = 1.2U eq(C)] and 0.96 Å [U iso(H) = 1.5U eq(C)], respectively. The O—H bond lengths in the coordinated water mol­ecule were restrained to 0.85 Å with U iso(H) = 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula [Eu(C8H4O4)(CH3O2)(H2O)]
M r 393.13
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 26.5184 (15), 7.2632 (2), 15.3622 (8)
β (°) 130.906 (9)
V3) 2236.3 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.63
Crystal size (mm) 0.2 × 0.1 × 0.1
 
Data collection
Diffractometer Rigaku SuperNova, single source at offset/far, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.218, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9923, 2393, 2138
R int 0.032
(sin θ/λ)max−1) 0.648
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.052, 1.05
No. of reflections 2393
No. of parameters 167
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.79

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022004339/zn2019sup1.cif

e-78-00536-sup1.cif (147.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022004339/zn2019Isup2.hkl

e-78-00536-Isup2.hkl (131.7KB, hkl)

CCDC reference: 2168116

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Eu(C8H4O4)(CH3O2)(H2O)] F(000) = 1504
Mr = 393.13 Dx = 2.335 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 26.5184 (15) Å Cell parameters from 7078 reflections
b = 7.2632 (2) Å θ = 2.0–27.4°
c = 15.3622 (8) Å µ = 5.63 mm1
β = 130.906 (9)° T = 293 K
V = 2236.3 (3) Å3 Block, clear light colourless
Z = 8 0.2 × 0.1 × 0.1 mm

Data collection

Rigaku SuperNova, Single source at offset/far, HyPix3000 diffractometer 2393 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source 2138 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.032
Detector resolution: 10.0000 pixels mm-1 θmax = 27.4°, θmin = 2.0°
ω scans h = −33→33
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) k = −9→9
Tmin = 0.218, Tmax = 1.000 l = −19→18
9923 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024 H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0235P)2 + 1.2859P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2393 reflections Δρmax = 0.64 e Å3
167 parameters Δρmin = −0.79 e Å3
1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Eu1 0.75770 (2) 0.36927 (2) 0.71208 (2) 0.01709 (7)
O1 0.69745 (10) 0.1993 (3) 0.7522 (2) 0.0219 (5)
O4 0.68510 (12) 0.6542 (3) 0.8366 (2) 0.0264 (6)
O3 0.68174 (10) 0.5756 (3) 0.69468 (19) 0.0185 (5)
O6 0.69030 (12) −0.0954 (3) 0.5869 (2) 0.0290 (6)
O2 0.62648 (11) −0.0281 (3) 0.6844 (2) 0.0273 (6)
O7 0.72235 (14) 0.5336 (4) 0.5410 (2) 0.0422 (7)
H7A 0.697069 0.483288 0.474914 0.063*
H7B 0.708422 0.643920 0.528604 0.063*
O5 0.67155 (11) 0.2044 (3) 0.5460 (2) 0.0308 (6)
C7 0.59568 (15) 0.4602 (4) 0.6922 (3) 0.0185 (7)
C2 0.58415 (15) 0.2718 (4) 0.6633 (3) 0.0185 (7)
C8 0.65937 (15) 0.5624 (4) 0.7479 (3) 0.0181 (7)
C9 0.66224 (16) 0.0380 (5) 0.5165 (3) 0.0257 (8)
C1 0.63844 (17) 0.1403 (4) 0.7002 (3) 0.0196 (8)
C10 0.61510 (19) −0.0007 (5) 0.3902 (3) 0.0412 (10)
H10A 0.616586 −0.129448 0.377789 0.062*
H10B 0.627783 0.070141 0.354452 0.062*
H10C 0.570626 0.032152 0.357152 0.062*
C6 0.54332 (17) 0.5698 (5) 0.6621 (3) 0.0282 (8)
H6 0.551117 0.692945 0.683999 0.034*
C3 0.52024 (16) 0.2027 (5) 0.6028 (3) 0.0257 (8)
H3 0.512351 0.077936 0.585067 0.031*
C4 0.46810 (17) 0.3156 (5) 0.5685 (3) 0.0301 (9)
H4 0.425093 0.268326 0.524046 0.036*
C5 0.47994 (17) 0.4983 (5) 0.6002 (3) 0.0318 (9)
H5 0.445276 0.573408 0.579933 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Eu1 0.01881 (11) 0.01068 (11) 0.02213 (12) 0.00003 (6) 0.01356 (9) −0.00015 (6)
O1 0.0190 (12) 0.0157 (11) 0.0322 (14) 0.0006 (10) 0.0173 (11) 0.0032 (11)
O4 0.0294 (14) 0.0245 (14) 0.0270 (14) −0.0045 (10) 0.0191 (12) −0.0049 (11)
O3 0.0205 (12) 0.0112 (11) 0.0261 (13) −0.0006 (9) 0.0162 (11) 0.0012 (10)
O6 0.0311 (14) 0.0253 (14) 0.0243 (14) 0.0014 (11) 0.0154 (12) 0.0038 (11)
O2 0.0255 (13) 0.0127 (12) 0.0439 (15) −0.0017 (10) 0.0228 (12) −0.0027 (11)
O7 0.0635 (19) 0.0265 (15) 0.0297 (15) −0.0021 (14) 0.0275 (15) 0.0026 (12)
O5 0.0299 (14) 0.0218 (13) 0.0312 (14) −0.0048 (11) 0.0158 (12) −0.0053 (11)
C7 0.0202 (17) 0.0164 (17) 0.0204 (17) 0.0005 (13) 0.0139 (15) 0.0027 (14)
C2 0.0191 (17) 0.0157 (17) 0.0214 (17) 0.0006 (13) 0.0136 (15) 0.0012 (14)
C8 0.0174 (16) 0.0097 (16) 0.0256 (18) 0.0063 (13) 0.0135 (15) 0.0054 (14)
C9 0.0231 (18) 0.028 (2) 0.0270 (19) −0.0079 (16) 0.0168 (17) −0.0048 (17)
C1 0.0243 (19) 0.0166 (18) 0.0210 (19) 0.0015 (13) 0.0161 (16) 0.0041 (13)
C10 0.049 (3) 0.037 (2) 0.023 (2) −0.0107 (19) 0.017 (2) −0.0014 (18)
C6 0.029 (2) 0.0200 (18) 0.041 (2) 0.0016 (16) 0.0257 (18) 0.0003 (17)
C3 0.0239 (18) 0.0208 (18) 0.0279 (19) −0.0018 (15) 0.0149 (16) 0.0013 (16)
C4 0.0168 (18) 0.033 (2) 0.035 (2) −0.0030 (16) 0.0143 (17) 0.0025 (18)
C5 0.0228 (19) 0.027 (2) 0.044 (2) 0.0075 (15) 0.0213 (18) 0.0055 (18)

Geometric parameters (Å, º)

Eu1—O1i 2.570 (2) Eu1—O4ii 2.605 (2)
Eu1—O1 2.397 (2) Eu1—O5 2.352 (2)
Eu1—O2i 2.474 (2) Eu1—O6i 2.434 (3)
Eu1—O3 2.381 (2) Eu1—O7 2.446 (2)
Eu1—O3ii 2.484 (2)
O1—Eu1—Eu1i 100.62 (6) Eu1—O3—Eu1i 107.20 (8)
O1i—Eu1—Eu1i 36.44 (5) C8—O3—Eu1i 95.16 (19)
O1—Eu1—O1i 135.94 (6) C8—O3—Eu1 126.05 (19)
O1—Eu1—O4ii 112.11 (8) C9—O6—Eu1ii 133.7 (2)
O1i—Eu1—O4ii 110.21 (7) C1—O2—Eu1ii 96.9 (2)
O1—Eu1—O3ii 72.40 (7) Eu1—O7—H7A 121.4
O1—Eu1—O6i 69.36 (8) Eu1—O7—H7B 120.3
O1—Eu1—O2i 138.23 (8) H7A—O7—H7B 104.5
O1—Eu1—O7 132.57 (9) C9—O5—Eu1 134.6 (2)
O4ii—Eu1—Eu1i 146.65 (5) C2—C7—C8 126.3 (3)
O3—Eu1—Eu1i 37.29 (5) C6—C7—C2 119.2 (3)
O3ii—Eu1—Eu1i 141.16 (5) C6—C7—C8 114.4 (3)
O3—Eu1—O1i 71.11 (7) C7—C2—C1 123.0 (3)
O3—Eu1—O1 72.28 (8) C3—C2—C7 118.7 (3)
O3ii—Eu1—O1i 130.07 (7) C3—C2—C1 118.3 (3)
O3ii—Eu1—O4ii 51.12 (7) O4—C8—Eu1i 63.93 (18)
O3—Eu1—O4ii 162.55 (8) O4—C8—O3 120.3 (3)
O3—Eu1—O3ii 141.75 (4) O4—C8—C7 119.7 (3)
O3—Eu1—O6i 79.11 (8) O3—C8—Eu1i 58.54 (16)
O3—Eu1—O2i 119.05 (7) O3—C8—C7 119.3 (3)
O3—Eu1—O7 82.61 (9) C7—C8—Eu1i 156.5 (2)
O6i—Eu1—Eu1i 66.91 (5) O6—C9—C10 119.2 (3)
O6i—Eu1—O1i 80.35 (8) O5—C9—O6 124.1 (3)
O6i—Eu1—O4ii 118.34 (8) O5—C9—C10 116.7 (3)
O6i—Eu1—O3ii 75.15 (8) O1—C1—Eu1ii 62.34 (16)
O6i—Eu1—O2i 73.70 (8) O1—C1—C2 120.2 (3)
O6i—Eu1—O7 144.26 (8) O2—C1—Eu1ii 57.86 (16)
O2i—Eu1—Eu1i 81.77 (5) O2—C1—O1 120.1 (3)
O2i—Eu1—O1i 51.37 (7) O2—C1—C2 119.6 (3)
O2i—Eu1—O4ii 69.76 (7) C2—C1—Eu1ii 174.1 (2)
O2i—Eu1—O3ii 79.99 (7) C9—C10—H10A 109.5
O7—Eu1—Eu1i 79.97 (7) C9—C10—H10B 109.5
O7—Eu1—O1i 64.69 (8) C9—C10—H10C 109.5
O7—Eu1—O4ii 82.51 (9) H10A—C10—H10B 109.5
O7—Eu1—O3ii 133.38 (9) H10A—C10—H10C 109.5
O7—Eu1—O2i 89.12 (9) H10B—C10—H10C 109.5
O5—Eu1—Eu1i 125.35 (6) C7—C6—H6 119.5
O5—Eu1—O1 71.29 (8) C5—C6—C7 120.9 (3)
O5—Eu1—O1i 133.75 (8) C5—C6—H6 119.5
O5—Eu1—O4ii 73.60 (8) C2—C3—H3 119.3
O5—Eu1—O3 92.82 (8) C4—C3—C2 121.3 (3)
O5—Eu1—O3ii 89.44 (7) C4—C3—H3 119.3
O5—Eu1—O6i 140.44 (9) C3—C4—H4 120.1
O5—Eu1—O2i 139.98 (8) C5—C4—C3 119.8 (3)
O5—Eu1—O7 70.49 (9) C5—C4—H4 120.1
Eu1—O1—Eu1ii 104.00 (8) C6—C5—H5 120.0
C1—O1—Eu1ii 91.53 (18) C4—C5—C6 119.9 (3)
C1—O1—Eu1 139.6 (2) C4—C5—H5 120.0
C8—O4—Eu1i 90.7 (2)
Eu1—O1—C1—Eu1ii 113.9 (3) C7—C2—C3—C4 1.7 (5)
Eu1ii—O1—C1—O2 −3.0 (3) C7—C6—C5—C4 0.7 (6)
Eu1—O1—C1—O2 110.9 (3) C2—C7—C8—Eu1i 140.5 (5)
Eu1ii—O1—C1—C2 174.0 (3) C2—C7—C8—O4 −127.1 (3)
Eu1—O1—C1—C2 −72.1 (4) C2—C7—C8—O3 62.7 (4)
Eu1i—O4—C8—O3 16.5 (3) C2—C7—C6—C5 −2.9 (5)
Eu1i—O4—C8—C7 −153.6 (2) C2—C3—C4—C5 −3.9 (5)
Eu1—O3—C8—Eu1i 115.7 (2) C8—C7—C2—C1 8.9 (5)
Eu1—O3—C8—O4 98.2 (3) C8—C7—C2—C3 −174.4 (3)
Eu1i—O3—C8—O4 −17.4 (3) C8—C7—C6—C5 173.7 (3)
Eu1—O3—C8—C7 −91.6 (3) C1—C2—C3—C4 178.4 (3)
Eu1i—O3—C8—C7 152.8 (2) C6—C7—C2—C1 −174.9 (3)
Eu1ii—O6—C9—O5 21.5 (5) C6—C7—C2—C3 1.7 (5)
Eu1ii—O6—C9—C10 −158.7 (3) C6—C7—C8—Eu1i −35.8 (7)
Eu1ii—O2—C1—O1 3.1 (3) C6—C7—C8—O4 56.7 (4)
Eu1ii—O2—C1—C2 −173.9 (3) C6—C7—C8—O3 −113.6 (3)
Eu1—O5—C9—O6 23.5 (5) C3—C2—C1—O1 177.3 (3)
Eu1—O5—C9—C10 −156.3 (3) C3—C2—C1—O2 −5.7 (5)
C7—C2—C1—O1 −6.1 (5) C3—C4—C5—C6 2.7 (5)
C7—C2—C1—O2 170.9 (3)

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H7A···O4iii 0.85 2.17 2.9384 149
O7—H7B···O6iv 0.85 2.28 3.0438 150
C3—H3···O2 0.93 2.46 2.7741 100

Symmetry codes: (iii) x, −y, z−1/2; (iv) −x+1/2, y+1/2, −z+1/2.

Funding Statement

This research was funded by Chiang Mai University and the Program Management Unit – Brain Power (PMU B), The Office of National Higher Education Science Research and Innovation Policy Council (NXPO) in a Global Partnership Project.

References

  1. Banerjee, A., Saha, A. & Saha, B. K. (2019). Cryst. Growth Des. 19, 2245–2252.
  2. Binnemans, K. (2015). Coord. Chem. Rev. 295, 1–45.
  3. Bousrez, G., Renier, O., Kelley, S. P., Adranno, B., Tahavori, E., Titi, H. M., Smetana, V., Tang, S.-F., Mudring, A.-V. & Rogers, R. D. (2021). Chem. Eur. J. 27, 13181–13189. [DOI] [PMC free article] [PubMed]
  4. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  5. Bünzli, J.-C. G. (2014). J. Coord. Chem. 67, 3706–3733.
  6. Chuasaard, T., Ngamjarurojana, A., Konno, T. & Rujiwatra, A. (2020). J. Coord. Chem. 73, 333–345.
  7. Chuasaard, T., Ngamjarurojana, A., Surinwong, S., Konno, T., Bureekaew, S. & Rujiwatra, A. (2018). Inorg. Chem. 57, 2620–2630. [DOI] [PubMed]
  8. Chuasaard, T., Thammakan, S., Semakul, N., Konno, T. & Rujiwatra, A. (2022). J. Mol. Struct. 1251, 131940.
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Gupta, S. K., Ghosh, P. S., Sahu, M., Bhattacharyya, K., Tewari, R. & Natarajan, V. (2015). RSC Adv. 5, 58832–58842.
  12. Hasegawa, Y. & Kitagawa, Y. (2022). J. Photochem. Photobiol. Photochem. Rev. 51, 100485.
  13. Hu, D.-X., Chen, P.-K., Luo, F., Che, Y.-X. & Zheng, J.-M. (2007). J. Mol. Struct. 837, 179–184.
  14. Hu, J.-J., Peng, Y., Liu, S.-J. & Wen, H.-R. (2021). Dalton Trans. 50, 15473–15487. [DOI] [PubMed]
  15. Hu, Y.-C., Bai, C., Hu, H.-M., Li, C.-T., Zhang, T.-H. & Liu, W. (2019). Acta Cryst. B75, 855–864. [DOI] [PubMed]
  16. Jin, Y., Luo, F., Che, Y.-X. & Zheng, J. M. (2008). Inorg. Chem. Commun. 11, 711–713.
  17. Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334–2375. [DOI] [PubMed]
  18. Li, B. & Chen, B. (2014). Lanthanide Metal–Organic Frameworks. Structure and Bonding, edited by P. Cheng, pp. 75–107. Berlin, Heidelberg: Springer.
  19. Mahata, P., Ramya, K. V. & Natarajan, S. (2009). Inorg. Chem. 48, 4942–4951. [DOI] [PubMed]
  20. Miller, S. E., Teplensky, M. H., Moghadam, P. Z. & Fairen-Jimenez, D. (2016). Interface Focus, 6, 20160027. [DOI] [PMC free article] [PubMed]
  21. Okayasu, Y. & Yuasa, J. (2021). J. Phys. Chem. Lett. 12, 6867–6874. [DOI] [PMC free article] [PubMed]
  22. Puntus, L. N., Lyssenko, K. A., Pekareva, I. S. & Antipin, M. Y. (2010). Mol. Phys. 108, 557–572.
  23. Qiu, S. & Zhu, G. (2009). Coord. Chem. Rev. 253, 2891–2911.
  24. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Sinchow, M., Semakul, N., Konno, T. & Rujiwatra, A. (2021). ACS Sustainable Chem. Eng. 9, 8581–8591.
  28. Thirumurugan, A. & Natarajan, S. (2005). J. Mater. Chem. 15, 4588–4594.
  29. Wan, Y., Jin, L., Wang, K., Zhang, L., Zheng, X. & Lu, S. (2002). New J. Chem. 26, 1590–1596.
  30. Wang, Z., Xing, Y.-H., Wang, C.-G., Sun, L.-X., Zhang, J., Ge, M.-F. & Niu, S.-Y. (2010). CrystEngComm, 12, 762–773.
  31. Wei, D., Xin, Y., Rong, Y., Li, Y., Zhang, C., Chen, Q., Qin, S., Wang, W. & Hao, Y. (2020). J. Inorg. Organomet. Polym. 30, 1121–1131.
  32. Yang, Y.-T., Tu, C.-Z., Yin, H.-J. & Cheng, F.-X. (2014). Inorg. Chem. Commun. 46, 107–109.
  33. Yao, Z.-F., Wang, J.-Y. & Pei, J. (2018). Cryst. Growth Des. 18, 7–15.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022004339/zn2019sup1.cif

e-78-00536-sup1.cif (147.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022004339/zn2019Isup2.hkl

e-78-00536-Isup2.hkl (131.7KB, hkl)

CCDC reference: 2168116

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES