Skip to main content
RSC Advances logoLink to RSC Advances
. 2018 Jan 9;8(5):2267–2270. doi: 10.1039/c7ra13080e

Synthesis of benzoxazoles via an iron-catalyzed domino C–N/C–O cross-coupling reaction

Bo Yang 1, Weiye Hu 1, Songlin Zhang 1,
PMCID: PMC9077259  PMID: 35541485

Abstract

An eco-friendly and efficient method has been developed for the synthesis of 2-arylbenzoxazoles via a domino iron-catalyzed C–N/C–O cross-coupling reaction. Some of the issues typically encountered during the synthesis of 2-arylbenzoxazoles in the presence of palladium and copper catalysts, including poor substrate scope and long reaction times have been addressed using this newly developed iron-catalyzed method.


The synthesis of benzoxazoles via an iron-catalyzed cascade C–N and C–O coupling is described.graphic file with name c7ra13080e-ga.jpg


2-Arylbenzoxazoles are an important class of structures in natural products, and pharmaceuticals and has shown a wide range of biological activities, such as antitumor, antiviral, and antimicrobial activities.1 In particular, they show a marvellous efficacy in the treatment of duchenne muscular dystrophy (DMD) which is one of the most common of the muscular dystrophies that is caused by a mutation in the gene DMD, located in humans on the X chromosome (Xp21).2 So the synthesis of 2-arylbenzoxazoles has been intensively studied for use in organic and medicinal chemistry over the past few years.

Numerous methods have been reported to synthesise this motif, one of the common methods is transition-metal-catalyzed (like Pd,3 Ni,4 Cu,5 Mn6etc.) cross-coupling from pre-existing benzoxazoles with aryl halide or arylboronic acid. And another method is the classic one employing a cyclocondensation approach between an aminophenol and either a carboxylic acid7 or benzaldehyde8 (Scheme 1, path a). In 2004, Frank Glorius' group reported a domino copper-catalyzed C–N and C–O cross-coupling for the conversion of primary amides into benzoxazoles9 (Scheme 1, path b) which is a new reaction type for the synthesis of benzoxazoles. Bunch et al. apply this domino reaction in the synthesis of planar heterocycles in 2014.10 In addition the cyclization of o-halobenzenamides to benzoxazoles has been reported several times.11,12 Nevertheless, some limitations in the reported methods need to be overcome, such as the use of palladium complexes and narrow substrate range.

Scheme 1. Classic method of benzoxazole formation.

Scheme 1

In the last few years, there has been a significant increase in the number of reports pertaining to the development of iron-catalyzed reactions in organic synthesis, where iron has shown several significant advantages over other metals, such as being more abundant, commercially inexpensive, environmentally friendly and drug safety.13 Compared with palladium and copper, the use of iron is particularly suitable for reactions involving the preparation of therapeutic agents for human consumption. With this in mind, it was envisaged that an new method should be developed for the synthesis of benzoxazoles via an iron-catalyzed domino C–N/C–O cross-coupling reaction.

The reaction of benzamide (1a) with 1-bromo-2-iodobenzene was used as model transformation to identify the optimum reaction conditions by screening a variety of different iron salts, bases, ligands and solvents (Table 1). Several iron salts were screened in this reaction, including FeCl3, FeCl2·4H2O, FeSO4·7H2O, Fe(acac)3, Fe2O3, Fe3O4, Fe3O4(nano), Fe2O3(nano), Fe2(SO4)3 and Fe(NO3)3·9H2O, Fe2O3 was found to give the best results with the desired product 3a being formed in a yield of 15% while most of the iron salt have no effect on the reaction (Table 1, entries 1–10). Then, several other bases, including LiOtBu, Na2CO3, NaOAc, KOH and K2CO3 were also evaluated under the same conditions using Fe2O3, but all of them failed to provided the desired product 3a except K2CO3 with a yield of 37% (Table 1, entries 11–15). When the reaction was stirred for 24 h at 110 °C in the presence of 20% mol of Fe2O3, 20% mol N,N′-dimethylethanediamine (DMEDA) and 1 equiv. of K2CO3 in PhMe under nitrogen, (N-(2-bromophenyl)benzamide) was obtained as an intermediate which could be converted to the final product with a yield of 87% if extend the reaction time from 24 h to 48 h (Table 1, entries 15, 16). Several ligands were also screened in the model reaction, and the results revealed that the nature of the ligand has a dramatic impact on the yield of the reaction. For example, the use of DMEDA gave 2-phenylbenzo[d]oxazole in 85% yield, whereas 1,10-phenanthroline, dipyridyl and l-proline provided no product (Table 1, entries 16–19). The reaction was conducted in DMSO, DMF and PhMe2 respectively and none of them provided a much higher of the desired product than toluene (Table 1, entries 20–22). Control experiments was taken in the absence of Fe2O3, no product was obtained (Table 1, entry 23). In view of the fact that the trace metals in catalytic, as is well-known, sometime could play an important role in the reaction,14 high-purity Fe2O3 (99.999%) and K2CO3 (99.999%) were applied in the reaction (Table 1, entry 24). The product was formed in a yield of 86% which was similar with the one of the entry 16.

Optimization of reaction conditionsa.

graphic file with name c7ra13080e-u1.jpg
Entry Iron salt Ligand Base Solvent Y b (%)
1 FeCl3 DMEDA KOtBu PhMe Trace
2 FeCl2·4H2O DMEDA KOtBu PhMe Trace
3 FeSO4·7H2O DMEDA KOtBu PhMe 0
4 Fe(acac)3 DMEDA KOtBu PhMe 0
5 Fe2O3 DMEDA KOtBu PhMe 15
6 Fe3O4 DMEDA KOtBu PhMe 0
7 Fe3O4(nano) DMEDA KOtBu PhMe 10
8 Fe2O3(nano) DMEDA KOtBu PhMe 0
9 Fe2(SO4)3 DMEDA KOtBu PhMe 0
10 Fe(NO3)3·9H2O DMEDA KOtBu PhMe 0
11 Fe2O3 DMEDA LiOtBu PhMe 0
12 Fe2O3 DMEDA Na2CO3 PhMe 0
13 Fe2O3 DMEDA NaOAc PhMe 0
14 Fe2O3 DMEDA KOH PhMe 0
15 Fe2O3 DMEDA K2CO3 (24 h) PhMe 37
16 Fe2O3 DMEDA K2CO3 (48 h) PhMe 87
17 Fe2O3 Phen K2CO3 PhMe Trace
18 Fe2O3 l-Proline K2CO3 PhMe 0
19 Fe2O3 Dpy K2CO3 PhMe 0
20 Fe2O3 DMEDA K2CO3 DMSO 0
21 Fe2O3 DMEDA K2CO3 DMF 0
22 Fe2O3 DMEDA K2CO3 PhMe2 0
23 DMEDA K2CO3 PhMe 0
24 Fe2O3 DMEDA K2CO3 PhMe 86c
25 Fe2O3 DMEDA K2CO3 PhMe 58d
a

Reaction conditions: benzamides (0.5 mmol), 1-bromo-2-iodobenzene (1.5 eq.), iron salt (20% mol), base (1 eq.), ligand (20%) were added to a solvent (2 mL) and react at 110 °C for 48 h under N2.

b

Isolated yield based on 1a after silica gel chromatography.

c

Fe2O3 and K2CO3 were applied in purity of 99.999% from alfa.

d

with Fe2O3 in a dosage of 10 mmol%.

At last, the dosage of Fe2O3 was reduce to 10 mmol%, but only 58% yield was obtained (Table 1, entry 26). Taken together, the results of these screening experiments revealed that the optimal conditions for the reaction were Fe2O3 (20 mol%), DMEDA (20 mol%) and K2CO3 (1 eq.) in toluene at 110 °C for 48 h.

It is noteworthy that the intermediate product 4a was formed under the optimized conditions via the C–N cross coupling reaction of benzamide (1a) with 1-bromo-2-iodobenzene (2). So a possible pathway of the reaction was proposed as shown in Scheme 2.

Scheme 2. The pathway of the reaction.

Scheme 2

With the optimized reaction conditions in hand, we proceeded to investigate the substrate scope of the reaction using a variety of different 1,2-dihalobenzene substrates and aryl formamide (Table 2). Benzamide containing electron poor (3d–f, 3l), electron-neutral (3a–c, 3k), and electron-rich (3g–j, 3m–n) substituents were all obtained in moderate to excellent yields. But some functional groups are intolerated in the reaction, like amino (3p) and nitro (3q).

Reagent scope of reactiona.

graphic file with name c7ra13080e-u2.jpg
graphic file with name c7ra13080e-u3.jpg
a

Reaction conditions: 1a (0.5 mmol), o-dihalo substrate (1.5 eq.), Fe2O3 (20% mol), K2CO3 (1 eq.), DMEDA (20%) were added to PhMe (2 mL) and react at 110 °C for 48 h under N2.

Based on the results observed in the current study and Goldberg reaction,15 we have proposed a reaction mechanism for this transformation, which is shown in Scheme 3. The initial transmetalation of benzamide with Fe2O3Ln in the presence of K2CO3 would give rise to the iron(iii) species A. Complex A would then undergo an oxidative addition reaction with 1-bromo-2-iodobenzene to give the iron(v) species B, which would undergo a reductive elimination reaction to give iron(iii) species C with the concomitant formation of a C–N bond. Followed the tautomerism of intermediate C to D, the intermediate iron(iii) species E was formed in the presence of K2CO3, which would undergo another oxidative addition reaction to afford iron(v) species F. Compound 3a would then be obtained via a reductive elimination reaction from iron(v) species F.

Scheme 3. Possible catalytic cycle.

Scheme 3

In summary, we have demonstrated that the cheap and environmental friendly catalyst system composed of Fe2O3 and ligand DMEDA is highly effective for the synthesis of 2-arylbenzoxazoles. The new catalyzed system can be effective for both C–N coupling and C–O coupling.

Conflicts of interest

There are no conflicts to declare.

Supplementary Material

RA-008-C7RA13080E-s001

Acknowledgments

We gratefully acknowledge A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, The Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201207) and the National Natural Science Foundation of China (No. 21072143) for financial support.

Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13080e

Notes and references

  1. (a) Tzanopoulou S. Sagnou M. Paravatou-Petsotas M. Gourni E. Loudos G. Xanthopoulos S. Lafkas D. Kiaris H. Varvarigou A. Pirmettis I. C. Papadopoulos M. Pelecanou M. J. Med. Chem. 2010;53:4633–4641. doi: 10.1021/jm1001293. [DOI] [PubMed] [Google Scholar]; (b) Zandt M. C. V. Jones M. L. Gunn D. E. Geraci L. S. Jones J. H. Sawicki D. R. Sredy J. Jacot J. L. DiCioccio A. T. Petrove T. Mitschler A. Podjarny A. D. J. Med. Chem. 2005;48:3141–3152. doi: 10.1021/jm0492094. [DOI] [PubMed] [Google Scholar]; (c) Katz L. J. Am. Chem. Soc. 1953;75:712–714. doi: 10.1021/ja01099a059. [DOI] [Google Scholar]; (d) Dalvie D. K. Kalgutkar A. S. Khojasteh-Bakht S. C. Obach R. S. O_Donnell J. P. Chem. Res. Toxicol. 2002;15:269. doi: 10.1021/tx015574b. [DOI] [PubMed] [Google Scholar]; (e) Boeini H. Z. Najafabadi K. H. Eur. J. Org. Chem. 2009;2009:4926–4929. doi: 10.1002/ejoc.200900740. [DOI] [Google Scholar]
  2. Chancellor D. R. Davies K. E. Moor O. D. Dorgan C. R. Johnson P. D. Lambert A. G. Lawrence D. Lecci C. Maillol C. Middleton P. J. Nugent G. Poignant S. D. Potter A. C. Price P. D. Pye R. J. Storer R. Tinsley J. M. Well R. V. Vickers R. Vile J. Wilkes F. J. Wilson F. X. Wren S. P. Wynne G. M. J. Med. Chem. 2011;54:3241–3250. doi: 10.1021/jm200135z. [DOI] [PubMed] [Google Scholar]
  3. (a) Kumar M. R. Park K. Lee S. Adv. Synth. Catal. 2010;352:3255–3266. doi: 10.1002/adsc.201000592. [DOI] [Google Scholar]; (b) Hamdy A. M. Eleya N. Mohammed H. H. Patonay T. Spannenberg A. Langer P. Tetrahedron. 2013;69:2081–2086. doi: 10.1016/j.tet.2012.11.021. [DOI] [Google Scholar]; (c) Shibahara F. Yamaguchi E. Murai T. Chem. Commun. 2010;46:2471–2473. doi: 10.1039/B920794E. [DOI] [PubMed] [Google Scholar]; (d) Huang J. Chan J. Chen Y. Borths C. J. Baucom K. D. Larsen R. D. Faul M. M. J. Am. Chem. Soc. 2010;132:3674–3675. doi: 10.1021/ja100354j. [DOI] [PubMed] [Google Scholar]; (e) Sánchez R. S. Zhuravlev F. A. J. Am. Chem. Soc. 2007;129:5824–5825. doi: 10.1021/ja0679580. [DOI] [PubMed] [Google Scholar]; (f) Ranjit S. Liu X.-G. Chem.–Eur. J. 2011;17:1105–1108. doi: 10.1002/chem.201002787. [DOI] [PubMed] [Google Scholar]
  4. (a) Yamamoto T. Muto K. Komiyama M. Canivet J. Yamaguchi J. Itami K. Chem.–Eur. J. 2011;17:10113–10122. doi: 10.1002/chem.201101091. [DOI] [PubMed] [Google Scholar]; (b) Canivet J. Yamaguchi J. Ban I. Itami K. Org. Lett. 2009;11:1733–1736. doi: 10.1021/ol9001587. [DOI] [PubMed] [Google Scholar]; (c) Hachiya H. Hirano K. Satoh T. Miura M. ChemCatChem. 2010;2:140–1406. doi: 10.1002/cctc.201000223. [DOI] [Google Scholar]
  5. (a) Do H.-Q. Daugulis O. J. Am. Chem. Soc. 2007;129:12404–12405. doi: 10.1021/ja075802+. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Zhang W. Zeng Q.-L. Zhang X.-M. Tian Y.-J. Yue Y. Guo Y.-J. Wang Z.-H. J. Org. Chem. 2011;76:4741–4745. doi: 10.1021/jo200452x. [DOI] [PubMed] [Google Scholar]; (c) Hu W.-Y. Wang P.-P. Zhang S.-L. Synthesis. 2015;47:42–48. [Google Scholar]; (d) Yang F.-Z. Xu Z.-Q. Wang Z. Yu Z.-K. Wang R. Chem.–Eur. J. 2011;17:6321–6325. doi: 10.1002/chem.201100136. [DOI] [PubMed] [Google Scholar]
  6. Guchhait S. K. Kashyap M. Saraf S. Synthesis. 2010;2010:1166–1170. doi: 10.1055/s-0029-1219234. [DOI] [Google Scholar]
  7. (a) Wang Y. Sarris K. Sauer D. R. Djuric S. W. Tetrahedron Lett. 2006;47:4823–4826. doi: 10.1016/j.tetlet.2006.05.052. [DOI] [Google Scholar]; (b) Kangani C. O. Kelley D. E. Day B. W. Tetrahedron Lett. 2006;47:6497–6499. doi: 10.1016/j.tetlet.2006.07.032. [DOI] [Google Scholar]
  8. (a) Riadi Y. Mamouni R. Azzalou R. Haddad M. E. Routier S. Guillaumet G. Tetrahedron Lett. 2011;52:3492–3495. doi: 10.1016/j.tetlet.2011.04.121. [DOI] [Google Scholar]; (b) Banerjee S. Payra S. Saha A. Sereda G. Tetrahedron Lett. 2014;55:5515–5520. doi: 10.1016/j.tetlet.2014.07.123. [DOI] [Google Scholar]; (c) Chen Y.-X. Qian L.-F. Zhang W. Han B. Angew. Chem., Int. Ed. 2008;47:9330–9333. doi: 10.1002/anie.200803381. [DOI] [PubMed] [Google Scholar]; (d) Tang L. Guo X.-F. Yang Y. Zha Z.-G. Wang Z.-Y. Chem. Commun. 2014;50:6145–6148. doi: 10.1039/C4CC01822B. [DOI] [PubMed] [Google Scholar]; (e) Nezhad A. K. Panahi F. ACS Catal. 2014;4:1686–1692. doi: 10.1021/cs5000872. [DOI] [Google Scholar]; (f) Osowska K. Miljanic O. S. J. Am. Chem. Soc. 2011;133:724–727. doi: 10.1021/ja109754t. [DOI] [PubMed] [Google Scholar]
  9. Altenhoff G. Glorius F. Adv. Synth. Catal. 2004;346:1661–1664. doi: 10.1002/adsc.200404182. [DOI] [Google Scholar]
  10. Demmer C. S. Hansen J. C. Kehler J. Bunch L. Adv. Synth. Catal. 2014;356:1047–1055. doi: 10.1002/adsc.201300845. [DOI] [Google Scholar]
  11. (a) Xue D. Long Y.-Q. J. Org. Chem. 2014;79:4727–4734. doi: 10.1021/jo5005179. [DOI] [PubMed] [Google Scholar]; (b) Xu Q.-C. Li Z.-N. Chen H.-Y. Chin. J. Chem. 2011;29:925–932. doi: 10.1002/cjoc.201190190. [DOI] [Google Scholar]
  12. (a) Lu J.-Y. Gong X.-Y. Yang H.-J. Fu H. Chem. Commun. 2010;46:4172–4174. doi: 10.1039/C0CC00185F. [DOI] [PubMed] [Google Scholar]; (b) Saha P. Ashif Ali M. Ghosh P. Punniyamurthy T. Org. Biomol. Chem. 2010;8:5692–5699. doi: 10.1039/C0OB00405G. [DOI] [PubMed] [Google Scholar]; (c) Khatun N. Guin S. Rout S. K. Patel B. K. RSC Adv. 2014;4:10770–10778. doi: 10.1039/C3RA46820H. [DOI] [Google Scholar]; (d) Perry R. J. Wilson B. D. J. Org. Chem. 1992;57:6351–6354. doi: 10.1021/jo00049a057. [DOI] [Google Scholar]; (e) Evindar G. Batey R. A. J. Org. Chem. 2006;71:1802–1808. doi: 10.1021/jo051927q. [DOI] [PubMed] [Google Scholar]; (f) Saha P. Ramana T. Purkait N. Ali M. A. Paul R. Punniyamurthy T. J. Org. Chem. 2009;74:8719–8725. doi: 10.1021/jo901813g. [DOI] [PubMed] [Google Scholar]; (g) Park Y.-T. Jung C. H. Kim K.-W. J. Org. Chem. 1999;64:8546–8556. doi: 10.1021/jo9909498. [DOI] [Google Scholar]; (h) Bonnamour J. Bolm C. Org. Lett. 2008;10:2665–2667. doi: 10.1021/ol800744y. [DOI] [PubMed] [Google Scholar]
  13. (a) Bolm C. Legros J. Paih J. L. Zani L. Chem. Rev. 2004;104:6217–6254. doi: 10.1021/cr040664h. [DOI] [PubMed] [Google Scholar]; (b) Damodara D. Arundhathi R. Likhar P. R. Catal. Sci. Technol. 2013;3:797–802. doi: 10.1039/C2CY20624B. [DOI] [Google Scholar]; (c) Bistri O. Correa A. Bolm C. Angew. Chem. 2008;120:596–598. doi: 10.1002/ange.200704018. [DOI] [PubMed] [Google Scholar]; (d) Sun C. L. Li B. J. Shi Z. J. Chem. Rev. 2011;111:1293–1314. doi: 10.1021/cr100198w. [DOI] [PubMed] [Google Scholar]; (e) Wang H. B. Wang L. Shang J. S. Li X. Wang H. Y. Guiand J. Lei A. W. Chem. Commun. 2012;48:76–78. doi: 10.1039/C1CC16184A. [DOI] [PubMed] [Google Scholar]; (f) Gopalaiah K. Chem. Rev. 2013;113:3248–3296. doi: 10.1021/cr300236r. [DOI] [PubMed] [Google Scholar]; (g) Bauer I. Knolker H.-J. Chem. Rev. 2015;115:3170–3387. doi: 10.1021/cr500425u. [DOI] [PubMed] [Google Scholar]
  14. (a) Buchwald S. L. Bolm C. Angew. Chem., Int. Ed. 2009;48:5586. doi: 10.1002/anie.200902237. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Gonda Z. Tolnai G. L. Novak Z. Chem.–Eur. J. 2010;16:11822. doi: 10.1002/chem.201001880. [DOI] [PubMed] [Google Scholar]
  15. (a) Klapars A. Huang X.-H. Buchwald S. L. J. Am. Chem. Soc. 2002;124:7421–7428. doi: 10.1021/ja0260465. [DOI] [PubMed] [Google Scholar]; (b) Strieter E. R. Blackmond D. G. Buchwald S. L. J. Am. Chem. Soc. 2005;127:4120–4121. doi: 10.1021/ja050120c. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

RA-008-C7RA13080E-s001

Articles from RSC Advances are provided here courtesy of Royal Society of Chemistry

RESOURCES