Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 May 7;38(4):847–855. doi: 10.1007/s40242-022-2087-9

Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation

Sisi Chen 1,#, Lei Zhang 1,#, Quan Yuan 1,, Jie Tan 1,
PMCID: PMC9077342  PMID: 35573821

Abstract

The interaction between biomolecules with their target ligands plays a great role in regulating biological functions. Aptamers are short oligonucleotide sequences that can specifically recognize target biomolecules via structural complementarity and thus regulate related biological functions. In the past ten years, aptamers have made great progress in target biomolecule recognition, becoming a powerful tool to regulate biological functions. At present, there are many reviews on aptamers applied in biomolecular recognition, but few reviews pay attention to aptamer-based regulation of biological functions. Here, we summarize the approaches to enhancing aptamer affinity and the advancements of aptamers in regulating enzymatic activity, cellular immunity and cellular behaviors. Furthermore, this review discusses the challenges and future perspectives of aptamers in target recognition and biological functions regulation, aiming to provide some promising ideas for future regulation of biomolecular functions in a complex biological environment.

Keywords: Aptamer, Molecular recognition, Biological process regulation

Acknowledgements

This work was supported by the National Natural Science Foundation of China(Nos.22174038, 21925401, 21904037).

Footnotes

Conflicts of Interest

The authors declare no conflicts of interest.

These authors contributed equally to this work.

Contributor Information

Quan Yuan, Email: yuanquan@whu.edu.cn.

Jie Tan, Email: tanjie0416@hnu.edu.cn.

References

  • [1].Tan J, Zhao M M, Wang J, Li Z H, Liang L, Zhang L, Yuan Q, Tan W. Angew. Chem. Int. Ed. 2019;58:1621. doi: 10.1002/anie.201809010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Mao X, Li Q, Zuo X, Fan C. ACS Appl. Bio. Mater. 2020;3:2674. doi: 10.1021/acsabm.9b00928. [DOI] [PubMed] [Google Scholar]
  • [3].Alexander H, Gunter M. J. Am. Chem. Soc. 2005;127:822. doi: 10.1021/ja043285e. [DOI] [PubMed] [Google Scholar]
  • [4].Cho R, Huang M, Campbell M, Dong H, Steinmetz H, Sapinoso H, Hampton G, Elledge S, Davis R, Lockhart D. Nat. Genet. 2001;27:48. doi: 10.1038/83751. [DOI] [PubMed] [Google Scholar]
  • [5].Karp P. Bioinformatics. 2000;16:269. doi: 10.1093/bioinformatics/16.3.269. [DOI] [PubMed] [Google Scholar]
  • [6].Batista I A A, Helguero L A. Signal Transduct. Target Ther. 2018;3:19. doi: 10.1038/s41392-018-0017-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Li J, Xun K, Pei K, Liu X, Peng X, Du Y, Qiu L, Tan W. J. Am. Chem. Soc. 2019;141:18013. doi: 10.1021/jacs.9b04725. [DOI] [PubMed] [Google Scholar]
  • [8].Hu M, Han Q, Lyu L, Tong Y, Dong S, Loh Z, Xing B. Chem Commun. 2020;56:10231. doi: 10.1039/D0CC01923B. [DOI] [PubMed] [Google Scholar]
  • [9].Barton G M, Kagan J C. Nat. Rev. Immunol. 2009;9:535. doi: 10.1038/nri2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Case L B, Ditlev J A, Rosen M K. Annu. Rev. Biophys. 2019;48:465. doi: 10.1146/annurev-biophys-052118-115534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Mogaki R, Hashim P K, Okuro K, Aida T. Chem. Soc. Rev. 2017;46:6480. doi: 10.1039/C7CS00647K. [DOI] [PubMed] [Google Scholar]
  • [12].Xing Y, Yan J, Niu Y. Acta Pharm. Sin. B. 2020;10:197. doi: 10.1016/j.apsb.2019.06.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [13].Dunn M, Jimenez R, Chaput J. Nat. Rev. Chem. 2017;1:76. doi: 10.1038/s41570-017-0076. [DOI] [Google Scholar]
  • [14].Tan W, Donovan M J, Jiang J. Chem. Rev. 2013;113:2842. doi: 10.1021/cr300468w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Banerjee J, Nilsen-Hamilton M. J. Mol. Med. 2013;91:1333. doi: 10.1007/s00109-013-1085-2. [DOI] [PubMed] [Google Scholar]
  • [16].Michael F, Gunter M, Michael B. Acc. Chem. Res. 2000;33:591. doi: 10.1021/ar960167q. [DOI] [PubMed] [Google Scholar]
  • [17].Panigaj M, Johnson M B, Ke W, McMillan J, Goncharova E A, Chandler M, Afonin K A. ACS Nano. 2019;13:12301. doi: 10.1021/acsnano.9b06522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Rangel A E, Hariri A A, Eisenstein M, Soh H T. Adv. Mater. 2020;32:e2003704. doi: 10.1002/adma.202003704. [DOI] [PubMed] [Google Scholar]
  • [19].Hasegawa H, Savory N, Abe K, Ikebukuro K. Molecules. 2016;21:421. doi: 10.3390/molecules21040421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [20].Ni S, Yao H, Wang L, Lu J, Jiang F, Lu A, Zhang G. Int. J. Mol. Sci. 2017;18:1683. doi: 10.3390/ijms18081683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Sun H, Zu Y. Molecules. 2015;20:11959. doi: 10.3390/molecules200711959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Qi S, Duan N, Khan I M, Dong X, Zhang Y, Wu S, Wang Z. Biotechnol. Adv. 2022;55:107902. doi: 10.1016/j.biotechadv.2021.107902. [DOI] [PubMed] [Google Scholar]
  • [23].Li L, Jiang Y, Cui C, Yang Y, Zhang P, Stewart K, Pan X, Li X, Yang L, Qiu L, Tan W. J. Am. Chem. Soc. 2018;140:13335. doi: 10.1021/jacs.8b08047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Jia W, Xie D, Li F, Wu X, Wang R, Yang L, Liu L, Yin W, Chang S. Anal. Chim. Acta. 2021;1183:338976. doi: 10.1016/j.aca.2021.338976. [DOI] [PubMed] [Google Scholar]
  • [25].Hermann T, Patel D. Science. 2000;287:820. doi: 10.1126/science.287.5454.820. [DOI] [PubMed] [Google Scholar]
  • [26].Chen Y, Wang Z, Liu S, Zhao G. J. Hazard Mater. 2021;412:125174. doi: 10.1016/j.jhazmat.2021.125174. [DOI] [PubMed] [Google Scholar]
  • [27].Tomilin F N, Moryachkov R, Shchugoreva I, Zabluda V N, Peters G, Platunov M, Spiridonova V, Melnichuk A, Atrokhova A, Zamay S S, Ovchinnikov S G, Zamay G S, Sokolov A, Zamay T N, Berezovski M V, Kichkailo A S. Anal. Bioanal. Chem. 2019;411:6723. doi: 10.1007/s00216-019-02045-0. [DOI] [PubMed] [Google Scholar]
  • [28].Ji D, Lyu K, Zhao H, Kwok C K. Nucleic Acids Res. 2021;49:7280. doi: 10.1093/nar/gkab593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Mao Y, Gu J, Chang D, Wang L, Yao L, Ma Q, Luo Z, Qu H, Li Y, Zheng L. Nucleic Acids Res. 2020;48:10680. doi: 10.1093/nar/gkaa800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Li X, Yang Y, Zhao H, Zhu T, Yang Z, Xu H, Fu Y, Lin F, Pan X, Li L, Cui C, Hong M, Yang L, Wang K K, Tan W. J. Am. Chem. Soc. 2020;142:3862. doi: 10.1021/jacs.9b11490. [DOI] [PubMed] [Google Scholar]
  • [31].He X Q, Guo L, He J L, Xu H, Xie J W. Anal. Chem. 2017;89:6559. doi: 10.1021/acs.analchem.7b00700. [DOI] [PubMed] [Google Scholar]
  • [32].Liu Y, Le C, Tyrrell D L, Le X C, Li X F. Anal. Chem. 2020;92:6495. doi: 10.1021/acs.analchem.9b05740. [DOI] [PubMed] [Google Scholar]
  • [33].Zhao L, Qi X, Yan X, Huang Y, Liang X, Zhang L, Wang S, Tan W. J. Am. Chem. Soc. 2019;141:17493. doi: 10.1021/jacs.9b09292. [DOI] [PubMed] [Google Scholar]
  • [34].Li L., Xu S., Peng X., Ji Y., Yan H., Cui C., Li X., Pan X., Yang L., Qiu L., Jiang J., Tan W., Natl. Sci. Rev., 2021, 8, nwaa202 [DOI] [PMC free article] [PubMed]
  • [35].Lin M, Zhang J, Wan H, Yan C, Xia F. ACS Appl. Mater. Interfaces. 2021;13:9369. doi: 10.1021/acsami.0c15644. [DOI] [PubMed] [Google Scholar]
  • [36].Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Chem. Rev. 2021;121:12035. doi: 10.1021/acs.chemrev.0c01140. [DOI] [PubMed] [Google Scholar]
  • [37].Yeldell S B, Seitz O. Chem. Soc. Rev. 2020;49:6848. doi: 10.1039/D0CS00518E. [DOI] [PubMed] [Google Scholar]
  • [38].Zhang H, Yu X, Liu Y, Lin B, Jiang M, Song J, Di W, Zhu Z, Yang C. Anal. Chem. 2021;93:7235. doi: 10.1021/acs.analchem.1c00330. [DOI] [PubMed] [Google Scholar]
  • [39].Yang Y, Yin Y, Li X, Wang S, Dong Y. Sensors and Actuators B: Chemical. 2020;319:128250. doi: 10.1016/j.snb.2020.128250. [DOI] [Google Scholar]
  • [40].Kuai H, Zhao Z, Mo L, Liu H, Hu X, Fu T, Zhang X, Tan W. J. Am. Chem. Soc. 2017;139:9128. doi: 10.1021/jacs.7b04547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Richards E, Li S, Chen N, Battig M, Wang Y. Biomacromolecules. 2014;15:4561. doi: 10.1021/bm501347s. [DOI] [PubMed] [Google Scholar]
  • [42].Song Y, Shi Y, Huang M, Wang W, Wang Y, Cheng J, Lei Z, Zhu Z, Yang C. Angew. Chem. Int. Ed. 2019;58:2236. doi: 10.1002/anie.201809337. [DOI] [PubMed] [Google Scholar]
  • [43].Sun M, Liu S, Song T, Chen F, Zhang J, Huang J, Wan S, Lu Y, Chen H, Tan W, Song Y, Yang C. J. Am. Chem. Soc. 2021;143:21541. doi: 10.1021/jacs.1c08226. [DOI] [PubMed] [Google Scholar]
  • [44].Tian J, Chen S, Wang X, Li J. Chem. Res. Chinese Universities. 2020;36(2):151. doi: 10.1007/s40242-019-0024-3. [DOI] [Google Scholar]
  • [45].Qin X Y, Su Y, Tan J, Yuan Q. Chem. Res. Chinese Universities. 2020;36(2):164. doi: 10.1007/s40242-019-0033-2. [DOI] [Google Scholar]
  • [46].Rohloff J C, Gelinas A D, Jarvis T C, Ochsner U A, Schneider D J, Gold L, Janjic N. Mol. Ther. Nucleic Acids. 2014;3:e201. doi: 10.1038/mtna.2014.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [47].Rothlisberger P, Hollenstein M. Adv. Drug Deliv. Rev. 2018;134:3. doi: 10.1016/j.addr.2018.04.007. [DOI] [PubMed] [Google Scholar]
  • [48].Abeydeera N D, Egli M, Cox N, Mercier K, Conde J N, Pallan P S, Mizurini D M, Sierant M, Hibti F E, Hassell T, Wang T, Liu F W, Liu H M, Martinez C, Sood A K, Lybrand T P, Frydman C, Monteiro R Q, Gomer R H, Nawrot B, Yang X. Nucleic Acids Res. 2016;44:8052. doi: 10.1093/nar/gkw725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [49].Pagratis N C, Bell C, Chang Y F, Jennings S, Fitzwater T, Jellinek D, Dang C. Nat. Biotechnol. 1997;15:68. doi: 10.1038/nbt0197-68. [DOI] [PubMed] [Google Scholar]
  • [50].Ruckman J, Green L S, Beeson J, Waugh S, Gillette W L, Henninger D D, Claesson-Welsh L, Janjić N. J. Biol. Chem. 1998;273:20556. doi: 10.1074/jbc.273.32.20556. [DOI] [PubMed] [Google Scholar]
  • [51].Gruenke P R, Alam K K, Singh K, Burke D H. RNA. 2020;26:1667. doi: 10.1261/rna.077008.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52].Khvorova A, Watts J K. Nat. Biotechnol. 2017;35:238. doi: 10.1038/nbt.3765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [53].Wang K, Tang Z, Yang C J, Kim Y, Fang X, Li W, Wu Y, Medley C D, Cao Z, Li J, Colon P, Lin H, Tan W. Angew. Chem. Int. Ed. 2009;48:856. doi: 10.1002/anie.200800370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [54].Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I. Nat. Biotechnol. 2013;31:453. doi: 10.1038/nbt.2556. [DOI] [PubMed] [Google Scholar]
  • [55].Matsunaga K I, Kimoto M, Lim V W, Tan H P, Wong Y Q, Sun W, Vasoo S, Leo Y S, Hirao I. Nucleic Acids Res. 2021;49:11407. doi: 10.1093/nar/gkab515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56].Gawande B N, Rohloff J C, Carter J D, Carlowitz I, Zhang C, Schneider D J, Janjic N. Proc. Natl. Acad. Sci. USA. 2017;114:2898. doi: 10.1073/pnas.1615475114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57].Rebek J. Angew. Chem. Int. Ed. 1990;29:245. doi: 10.1002/anie.199002451. [DOI] [Google Scholar]
  • [58].Ahmad M, Helms V, Kalinina O V, Lengauer T. J. Phys. Chem. B. 2016;120:2138. doi: 10.1021/acs.jpcb.5b11593. [DOI] [PubMed] [Google Scholar]
  • [59].Dong H, Liu L, Wang J, Fan J, Wang H H, Nie Z. ACS Appl. Bio. Mater. 2020;3:2796. doi: 10.1021/acsabm.9b01223. [DOI] [PubMed] [Google Scholar]
  • [60].Wu J, Niu S, Tan M, Huang C, Li M, Song Y, Wang Q, Chen J, Shi S, Lan P, Lei M. Cell. 2018;175:1393. doi: 10.1016/j.cell.2018.10.003. [DOI] [PubMed] [Google Scholar]
  • [61].Onagi J, Komatsu T, Ichihashi Y, Kuriki Y, Kamiya M, Terai T, Ueno T, Hanaoka K, Matsuzaki H, Hata K, Watanabe T, Nagano T, Urano Y. J. Am. Chem. Soc. 2017;139:3465. doi: 10.1021/jacs.6b11376. [DOI] [PubMed] [Google Scholar]
  • [62].Chen J J, Gao H J, Li Z H, Li Y X, Yuan Q. Chin. Chem. Lett. 2020;31:1398. doi: 10.1016/j.cclet.2020.03.052. [DOI] [Google Scholar]
  • [63].Wang J, Wei Y, Hu X, Fang Y Y, Li X, Liu J, Wang S, Yuan Q. J. Am. Chem. Soc. 2015;137:10576. doi: 10.1021/jacs.5b04894. [DOI] [PubMed] [Google Scholar]
  • [64].Thompson R E, Liu X, Ripoll-Rozada J, Alonso-Garcia N, Parker B L, Pereira P J B, Payne R J. Nat. Chem. 2017;9:909. doi: 10.1038/nchem.2744. [DOI] [PubMed] [Google Scholar]
  • [65].Lane D A, Philippou H, Huntington J A. Blood. 2005;106:2605. doi: 10.1182/blood-2005-04-1710. [DOI] [PubMed] [Google Scholar]
  • [66].Pigoni M, Wanngren J, Kuhn P H, Munro K M, Gunnersen J M, Takeshima H, Feederle R, Voytyuk I, De Strooper B, Levasseur M D, Hrupka B J, Muller S A, Lichtenthaler S F. Mol. Neurodegener. 2016;11:67. doi: 10.1186/s13024-016-0134-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [67].Kennedy M E, Stamford A W, Chen X, Cox K, Cumming J N, Dockendorf M F, Egan M, Ereshefsky L, Hodgson R A, Hyde L A, Jhee S, Kleijn H J, Kuvelkar R, Li W, Mattson B A, Mei H, Palcza J, Scott J D, Tanen M, Troyer M D, Tseng J L, Stone J A, Parker E M, Forman M S. Sci. Transl. Med. 2016;8:363ra150. doi: 10.1126/scitranslmed.aad9704. [DOI] [PubMed] [Google Scholar]
  • [68].Liang H, Shi Y, Kou Z, Peng Y, Chen W, Li X, Li S, Wang Y, Wang F, Zhang X. PLoS One. 2015;10:e0140733. doi: 10.1371/journal.pone.0140733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69].Xiang J, Zhang W, Cai X F, Cai M, Yu Z H, Yang F, Zhu W, Li X T, Wu T, Zhang J S, Cai D F. Mol. Ther. Nucleic Acids. 2019;16:302. doi: 10.1016/j.omtn.2019.02.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70].Gasse C, Zaarour M, Noppen S, Abramov M, Marliere P, Liekens S, De Strooper B, Herdewijn P. Chembiochem. 2018;19:754. doi: 10.1002/cbic.201700461. [DOI] [PubMed] [Google Scholar]
  • [71].Shraim A S, Hunaiti A, Awidi A, Alshaer W, Ababneh N A, Abu-Irmaileh B, Odeh F, Ismail S. J. Med. Chem. 2020;63:2209. doi: 10.1021/acs.jmedchem.9b00868. [DOI] [PubMed] [Google Scholar]
  • [72].Trenker R, Jura N. Curr. Opin. Cell Biol. 2020;63:174. doi: 10.1016/j.ceb.2020.01.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [73].Eguchi A, Ueki A, Hoshiyama J, Kuwata K, Chikaoka Y, Kawamura T, Nagatoishi S, Tsumoto K, Ueki R, Sando S. JACS Au. 2021;1:578. doi: 10.1021/jacsau.0c00121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [74].Zhao M, Jiang J, Zhao M, Chang C, Wu H, Lu Q. Clin. Rev. Allergy Immunol. 2021;60:68. doi: 10.1007/s12016-020-08813-6. [DOI] [PubMed] [Google Scholar]
  • [75].Moody R, Wilson K, Flanagan K L, Jaworowski A, Plebanski M. Int. J. Mol. Sci. 2021;22:8965. doi: 10.3390/ijms22168965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [76].Scott E A, Karabin N B, Augsornworawat P. Annu. Rev. Biomed. Eng. 2017;19:57. doi: 10.1146/annurev-bioeng-071516-044603. [DOI] [PubMed] [Google Scholar]
  • [77].Pastor F, Berraondo P, Etxeberria I, Frederick J, Sahin U, Gilboa E, Melero I. Nat. Rev. Drug Discov. 2018;17:751. doi: 10.1038/nrd.2018.132. [DOI] [PubMed] [Google Scholar]
  • [78].Zhang D, Zheng Y, Lin Z, Liu X, Li J, Yang H, Tan W. Angew. Chem. Int. Ed. 2020;59:12022. doi: 10.1002/anie.202002145. [DOI] [PubMed] [Google Scholar]
  • [79].Li X, Li Z, Yu H. Chem. Commun. 2020;56:14653. doi: 10.1039/D0CC06032A. [DOI] [PubMed] [Google Scholar]
  • [80].Lv H Y, Wang T F, Pei R J. China Biotechnology. 2019;39:55. [Google Scholar]
  • [81].Yang Y, Xu J, Sun Y, Mo L, Liu B, Pan X, Liu Z, Tan W. J. Am. Chem. Soc. 2021;143:8391. doi: 10.1021/jacs.1c02016. [DOI] [PubMed] [Google Scholar]
  • [82].Yang S, Wen J, Li H, Xu L, Liu Y, Zhao N, Zeng Z, Qi J, Jiang W, Han W, Zu Y. Small. 2019;15:e1900903. doi: 10.1002/smll.201900903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [83].Shi P, Wang X, Davis B, Coyne J, Dong C, Reynolds J, Wang Y. Angew. Chem. Int. Ed. 2020;59:11892. doi: 10.1002/anie.202004206. [DOI] [PubMed] [Google Scholar]
  • [84].Chen W J, Wu H T, Li C L, Lin Y K, Fang Z X, Lin W T, Liu J. Front. Cell Dev. Biol. 2021;9:752426. doi: 10.3389/fcell.2021.752426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [85].Ueki R, Ueki A, Kanda N, Sando S. Angew. Chem. Int. Ed. 2016;55:579. doi: 10.1002/anie.201508572. [DOI] [PubMed] [Google Scholar]
  • [86].Akiyama M, Ueki R, Yanagawa M, Abe M, Hiroshima M, Sako Y, Sando S. Angew. Chem. Int. Ed. 2021;60:22745. doi: 10.1002/anie.202105314. [DOI] [PubMed] [Google Scholar]
  • [87].Kohata A, Ueki R, Okuro K, Hashim P K, Sando S, Aida T. J. Am. Chem. Soc. 2021;143:13937. doi: 10.1021/jacs.1c06816. [DOI] [PubMed] [Google Scholar]
  • [88].Wang L, Liang H, Sun J, Liu Y, Li J, Li J, Li J, Yang H. J. Am. Chem. Soc. 2019;141:12673. doi: 10.1021/jacs.9b05123. [DOI] [PubMed] [Google Scholar]
  • [89].Lee Y J, Kim I S, Park S A, Kim Y, Lee J E, Noh D Y, Kim K T, Ryu S H, Suh P G. Mol. Ther. 2013;21:1004. doi: 10.1038/mt.2013.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [90].Liu X, Yan H, Liu Y, Chang Y. Small. 2011;7:1673. doi: 10.1002/smll.201002292. [DOI] [PubMed] [Google Scholar]
  • [91].Qian S, Chang D, He S, Li Y. Anal. Chim. Acta. 2022;1196:339511. doi: 10.1016/j.aca.2022.339511. [DOI] [PubMed] [Google Scholar]
  • [92].Liu L S, Wang F, Ge Y, Lo P K. ACS Appl. Mater. Interfaces. 2021;13:9329. doi: 10.1021/acsami.0c14788. [DOI] [PubMed] [Google Scholar]
  • [93].Sun H G, Zhang J S, Wu J B, Zu Y L, Zhu X. Prog. Pharm. Sci. 2016;40:583. [Google Scholar]

Articles from Chemical Research in Chinese Universities are provided here courtesy of Nature Publishing Group

RESOURCES